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Abstract: Problem statement: Most resent evolutionary algorithms work under kveheoretical
basis and thus, they are computationally expengipgroach: This study discussed the use of new
evolutionary algorithm for automatic programminggsbd on theoretical definitions of program
behaviors. Evolutionary process adapted fixed agiftosganized input-output specification of the
problem, to evolve good finite state machine ttifitiently satisfies these specificatio®esults: The
proposed algorithm enhanced evolutionary processitmultaneously solving multi-parts from the
same problemConclusion: The probability that the algorithm will converge the optimal solution
was highly enhanced when decomposing the main @mobito multi-part.

Key words: Evolutionary computation, genetic programming, omdtic programming, system
design, self-organization system

INTRODUCTION second one leads to evolutionary computing. The
algorithms involved in Evolutionary computing are
Life on earth has evolved for some 3.5 billiontermed as Evolutionary Algorithms (EA). Application
years. Initially only the strongest creatures stedi but  of EC may includes: Bioinformatics, numerical
over time some creatures developed the abilitetalt  combinatorial optimization, system modeling and
past series of events and apply that knowledgerttsva identifications, planning and control, engineering
making intelligent decisions. The very existence ofdesign, data mining, machine learning and artifidie.
humans is testimony to the fact that our ancester® In evolutionary computation, the idea of self-
able to outwit, rather than out power, those whbpyt modification has its origins in the ontogenetic
were in competition with, in other words, theirpease  programming system of Spector and St&felthe
to the threat of their environment was intellectualgraph re-writing system of Grudu and the
adaptation. This could be regarded as the beginoing developmental method of evolving graphs and ciscuit
intelligent behavior. “Intelligent behavior is a of Miller®®.
composite ability to predict one’s environment dedp In this study, we propose new evolutionary
with a translation of each prediction into a suigab algorithm, based on theoretical definition of systand
response in light of some objective”. Evolutionary it's input-output boundaries, in contrast with fitamhal
Computing is a research area within Computer Seienc eyolutionary methods. Then compare it to the most
which draws inspiration from the process of naturalecently used evolutionary algorithms.
evolution. Evolutionary computation, offers praatic
adv_ar_ltag_es to the researcher facing d'ﬁ'cunBackground: Evolutionary algorithms are ubiquitous
optimization problems. These advantages are multi-

fold, including the simplicity of the approach, rsbust nowadays, hglvmg fbeend_ﬁsucc?sdsfully. ap.pluledd. o
response to changing circumstance, its flexibiétyd numerous problems from difiérent domains, ncluding

many other facets. The evolutionary approach can b8Ptimization, automatic programming, machine lezgni
applied to problems where heuristic solutions avé n operations research, b|0|nformat|c_s and soqalesysi_
available or generally lead to unsatisfactory rssul !N many cases the mathematical function, which
Thus evolutionary computing is needed for Develgpin describes the problem is not known and the valdes a
automated problem solvers, where the most powerfutertain parameters are obtained from simulations. |
natural problem solvers are human Brain andcontrast to many other optimization techniques an
evolutionary process (that created the human brainjmportant advantage of evolutionary algorithmshieyt
Designing the problem solvers based on human braipan cope with multi-modal functiofls Additional
leads to the field of “neurocomputing”. While the advantages are listed as follows:
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It is conceptually simple. The procedure may bes Evolutionary Programming (EP)
written as difference equation: « Evolution Strategies (ES)

B e Genetic Algorithm (GA)
X[t+1] = s(v (x [t])) @ . Genetic Programming (GP)
Where:

X[t] = The population at time t under a
representation x

v = Arandom variation operator

s = The selection operator

It is representation independent, in contrast wit

other numerical techniques, which might be

applicable for only continuous values or other

constrained sets

They all share a common conceptual base of
simulating the evolution of individual structuresav
processes of selection, mutation and reproducfite.
processes depend on the perceived performanceeof th
hindividual structures as defined by the problenhl@d.
Evolutionary programming, developed by Foetedl .
traditionally has used representations that ateréa to
the problem domain. EP is often used as an optimize
It offers a framework such that it is Comparablyf'slltho_ugh it arose from the desire to generate machi
intelligence. Rechenberg and Schwefel developed

easy o incorporate prior kn_owledge_ about theEvolutionary Strategies. The algorithm is similarEP
problem. Incorporating such information focuses.

. o C .~ in many ways. In the last few years they have had
the evolutionary search, yielding a more efficient ’ ;
: . .~ something of a renaissance and have become more
exploration of the state space of possible solstion . : .
) . . popular, particularly in research work. However, in
Can also be combined with more traditional

timization techni Thi b imol gractical and industrial systems, they have been
optimization techniques. 1his may be as simple a clipsed somewhat by the success of the GA. One
the use of a gradient minimization used after

; : . ; reason behind the GA'’s success is that its advecate
primary search with an evolutionary algorithm, orvery good at describing the algorithm in an easy to
itI ma_yhinvolve simultaneous application of other understand and non-mathematical way.
algorithms ) ) . A genotype-phenotype mapping therefore implies
The evaluation of each_solutlo_n can b? handled in,, alg(?rithmy&atptransfgfms anpiﬁpl?t string of bensP
pa_rallel_and only se!gctlon (Wh'gh requires at“ef?‘sencoding a genotype into another string of numtreats
pair ~ wise competition) requires some Serlalcomprises the phenotype of an individual. Both
processing L evolutionary programming and evolutionary strategie
Trad|t|ona_l methods of optimization are not robustgre  known as phenotypic algorithms  (physical
to dynamic changes in problem the environmeniharacteristic of the genotype like smart, bealtifu
and often require a complete restart in order tq,eaithy). whereas the genetic algorithm is a gepioty
provide a solution (e.g., dynamic programming). INgigorithm (Particular set of genes in a genome).
contrast, e_volutionary a!gorit.hms can be used tcPhenotypic Algorithms operate  directly on the
adapt solutions to changing circumstance ~ parameters of the system itself, whereas genotypic
It has the ability to address problems for whichgigorithms operate on strings representing theesyst
there are no human experts. Although humann other words, the analogy in biology to Phenatypi
expertise should be used when it is available, itz|gorithms is a direct change in an animal's bebaer
often proves less t_han adequate for automatingody and the analogy to Genotypic is a change én th
problem-solving routines animal’s genes, which lie behind the behavior or

_ body.GA is implemented by having arrays of bits or
However there are some disadvantages of EGnaracters to represent the chromosomes. In ER ther

such as: are no such restrictions for the representatiormast

. . . ~ cases the representation follows from the problem.
There is no guarantee for optimum solution withintypically uses an adaptive mutation operator incihi

finite time the severity of mutations is often reduced as tbbaj
Works under weak theoretical basis optimum is approached while GA’s use a pre-fixed
May need parameter tuning mutation operator. Among the schemes to adapt the
Computationally expensive mutation step size, the most widely studied belmgy t

“meta-evolutionary” technique in which the variarafe

Resentally area in EC: Sub-area of the term the mutation distribution is subject to mutation ay
evolutionary computation or evolutionary algorithms fixed variance mutation operator that evolves along
includes: with the solution.
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Table 1: Comparison between different Evolution@lgorithms

Algorithm type  Developed researcher Individualresentation ~ Operators Selection method
Evolutionary programming  Phenotypic Fogehl., 1966 [4] FSMs Mutation only Tournament
Evolutionary strategies Phenotypic Rechenberg, 198 Real values Mainly mutation Ranking
Genetic algorithm Genotypic Holland, 1975 [5] Biitsgs Mainly crossover Proportionate
Genetic programming Phenotypic Koza, 1992 [4][8] pEession trees Mainly crossover Proportionate
On the other hand, when comparing evolutionarycomputational problerftd.. The interesting

programming to evolution strategies, one can idienti characteristic of CGP are:
the following differences: When implemented to solv
real-valued function optimization problems, bothe More powerful program encoding using graphs, than

typically operate on the real values themselves umed using conventional GP tree-like representatiores, th
adaptive reproduction operators. EP typically uses population of strings are of fixed length, whereas
stochastic tournament selection while ES typicaligs their corresponding graphs are of variable length

deterministic selection. EP does not use crossover depending on the number of genes in use
operators while ES uses crossover. Some specific Efficient evaluation derived from the intrinsic
advantages of genetic programming are that no tcelly feature of subgraph-reuse exhibited by graphs
knOW|8dge is needed and still could get accuradalte . Less Comp”cated graph recombination via the
GP approach does scale with the prOblem size. @GR do crossover and mutation genetic Opera‘[ors

impose restrictions on how the structure of sohgio

should be formulated. There are several varianiSRf MATERIALSAND METHODS

some of them are: Linear Genetic Programming (LGP),

Gene Expression Programming (GEP), Multi Expression  proposed method is based on theoretical system
Programming (MEP), Cartesian Genetic Programmingjefinitions discussed !, thus it overcomes the
(CGP), Traceless Genetic Programming (TGP) andjifficulties of traditional method, in addition ftas all
Genetic Algorithm for Deriving Software (GADS). attractive characteristic of CGP. Our evolutionary
Following we shall concentrate on CGP, since this  a|gorithm evolves FSA that achieve input-output
most near to our proposed metfiét specification of the problem. FSA transit from st&d
state according to trajectory data sets, whicheeith
Cartesian genetic programming: Cartesian genetic fixed, or Self-Organized during evolutionary proges
programming was originally developed by Miller and Trajectory data are stored as a string of numbtées (
Thomsoff! for the purpose of evolving digital circuits genotype) and evolved to achieve the optimum
and represents a program as a directed graph. ©ne @apping. The theory is based on McCarthy's formmlis
the benefits of this type of representation isithpglicit of the theory of computer scied@®: There is a set of
re-use of nodes in the directed graph. Original§FC  pase function F and a set of strategies C for Ingjld
used a program topology defined by a rectanguliah gr new function out of old, the closure C (F) compsisd
of nodes with a user defined number of rows anctomputaue functions. For any |anguage L it may be
columns. In CGP, the genotype is a fixed-lengthpossible to isolate a set (F of base functions to
representation and consists of a list of integehichv  express the meaning of identifiers and statementsaa
encode the function and connections of each notieein  set (G) of strategies to express the meaning of the
directed graph. The genotype is then mapped to aphguistic structure and data structures of L. Thiee

indexed graph that can be executed as a program. Keaning of P in L would be computable function in
CGP there are very large numbers of genotypes that (F,):

map to identical genotypes due to the presence of a

large amount of redundancy. Firstly there is node Meaning (P): L C.(F.)

redundancy that is caused by genes associated with

nodes that are not part of the connected graph go p effects a transformation:

representing the program. Another form of redunglanc

in CGP, also present in all other forms of GP is, (P) Xinitial — X final

functional redundancy. Simon Harding and Ltd

introduce computational development using a form ofon a state vector X, which consists of an assariatf
Cartesian Genetic Programming that includes selfthe variable manipulated by the program and their
modification operations. One advantage of thisvalues. A program P can be defined as 9-tuple&ctal
approach is that the system can be used to solv@emantic Finite State Automata (SFEA)
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P = (Xy Xy Ty Fy Zv |1 OY! Xinitial)

Where:

The set of system variables

The set of system states, X = {3
Xfinal}

The time scale, T = [0)

The set of primitive functions

= The state transition function, Z = {(f, X, 1},
X, DEF x X x T, z(f, X, t) =X, "t)}

The set of inputs

The set of outputs

The readout function

The initial state of the system; 26 €X

N T4

|
(@]
Y
Xinitial

All sets involved in the definition of S are arhity,

., 2 (4): 789-795, 2009

ON, where N is the set of restrictions of F1o If (°f,
‘X, "t) is an element ofF x "X x ‘T, then there exists
f€F, such that the restriction of f @ is 'f and "z (f,
X, t)is z (f, X, t).

The idea of recursive function could be simply
applied with the proposed method using mathematical
induction. The principle of mathematical inductican
be used to construct system as well as proofs. i@ens
the following definition of the recursion functiof,
which is highly reminiscent of proofs by mathematic
induction:

fr (X) = X, t = thax +1 if X = 0 (base of induction)

fr (X) = Xiniia = X, t = 0 otherwise (induction step)

except T and F. Time scale T must be some subskeof where, T = [0, ta].
set [0,00) of nonnegative integer numbers, while the set

of primitive function F must be a subset of theGe(F,)

of all computable functions in the language L and
sufficient to generate the remainder functions. Two

features characterize state transition function:
z (- - 1) = ity 1) ift=0

2(f, X, 1) = z (f, z( f(t-1), X, t-1)) if t 0

()
®3)

Input-Output Specification (10S): An I0S is a
modification for input-output specification used thvi
ant colony optimization algorithm givenfifl. 10S is
establishing the input-output boundaries of thaesys

It describes the inputs that the system is designed
handle and the outputs that the system is desitmed
produce. An I0S is not a system, but it determithes
set of all systems that satisfy the 10S. It ista@les:

The concepts of reusable parameterized subsystems

can be implemented by restricting the transitiarcfions
of the main system, so that it has the ability a and

IOS=(T,I,O, T, To, M)

pass parameters to one or more such sub-system&here:

Suppose we have sub-systé#Prand main-system P, then
they can be defined by the following 9-tuples:

P (Xa x! T1 Fl Zy 11 01 %itiah 'Y)
‘P (X, .X, .T, .F, .Z, .l, O, .Xinitial- ."{)

where, x 0 X, "Xinia€X, then there exit €F, 2£Z,
‘f,EF and'z€’Z and h is a function defined over with
value in"X is defined as follows:

h ="z (f, Xinita, 1) = Xt 4)

z(*f, X, t) =z (h, X, t) = %t (5)
*f is a special function we call it sub-SFSA furttito
distinguish it from other primitive functions inetset F.
Also, we call the sub-systeniS, sub-SFSA, to
distinguish it from the main SFSA. Formally, a syst
‘S is a sub-system of a system S,"Wf00 x, TOT, 'l
O1,°00 O,y must be the restriction gfto ‘O and'F
792

T = The time scale of IOS

| = The set of inputs

O = A set of outputs

T; = A set of input trajectories defined over T, with
values in |

T = A set of output trajectories defined over Tthwi
values in O

H = A function defined over Twhose values are

subset of T; that is,n matches with each given
input trajectories T the set of all output
trajectories that might, or could be, or eligibte t
be produced by some systems as output,
experiencing the given input trajectory T

A system P satisfies 10S if there is a state Xof
and some subset U not empty of the time scale H, of
such that for every input trajectory g in, There is an
output trajectory h in Jmatched with g by such that
the output trajectory generated by S, started & th
state X is:

v (Z (f (9), X, t) =n(h(t)) For every€U (6)
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RESULTS 12000 - Beries 1 eries 2
) ) ) 10000 4— — — 1 A ) | |
The search space in genetic program generaton 2 _ .| * ° |V 1/ 7 ) |
algorithm is the set of all possible computer paogs & cooo !
described as an 9-tuples SFSA. Multi-objectiveefisn 5
measure is adopted to incorporate a combination of = 2222"

correctness (satisfy 10S), parsimony (smallnessnid
101 1 i U iR IR ERR IR RRRIRRERRIRRRRRRIRRRRRIRR RRRIR RS

eff|C|_ency (smallness_B), whereas, 3, is the time DA S LA

required by the machine to complete system exegutio No. of sub-program

hence it is high sensitive to the machine type.e Th

fitness value of individual is computed by thedaing  Fig. 1: Convergance time with respect to no. of-sub

equation: program
_ _ & _ _ its clear that using high number of sub-program ma
fitness(i)= 6(0‘1_;}”( T()-nR (J)ﬂ (7) lead to speed ?Jp gaIgorithm convergpenges). Th)(/e
operation of “sub-SFSA creation”, creates new sub-
(T =T+ (B-B) system within an overall system:
Where: Creating sub-SFSA algorithm:
0 = The weight parametes,> = 2
Bi = The run time of individual i « An individual is selected from the population,
T« = The time scale of the individual i based on I's fitness value
R = The actual calculated input trajectory ofe Randomly create sub-SFSA defined by a 9-tuples P
individual i (x,"X, "T,°F,"Z,"l, "0, *initial, "y), where'x is a

) . ) subset of the corresponding term x in the main-
~Three types of points are defined in each  Ega and X gets its value from the state of the
individual: Transition €2, function £F and function calling transition function
arguments. When structure-preserving crossover ig  a uniquely-named sub-SFSA functidhis added
performed, any point type anywhere in the firsestd to the set F of the main-SFSA such that each
:‘Rgl\/s:rilrslt m?r{ebﬁrgzggsgrasgirr]\? glfotiseo‘ézrcgg'cg?gr occurrence off in the transition function set Z will
must be chosen only from among points of this type. ?)eor;aﬁ:gc:gwtl)yé?sairea:jnzﬁlg_nsgsnznm(f, Xinia
The restriction in the choice of the second crossov R y L .

) . - . andomly choose a point in the main-SFSA
points ensures the syntactic validity of the offisgr transition function and mutate it with *
When sub-SFSA functions are being used, the initial
random generation of the population must be crested
that each individual has the intended constraine%xiS
structure, that is one main-SFSA and zero or mobe s
SFSA defined under the condition of transition fiow
restriction. The population at generation 0 is DISSCUSION
architecturally diverse, the architecture of the
participating individuals are changing during a fn  Fixed versus self-organized data trajectory sets:
GPG and hence determine the architecture of a-mu|tiDuring evolutionary process, trajectory information
part system dynamically during the run. play the primary role. States transformations avaed
Sub-systems can be reused to solve multipleiccording to them values, which either fixed, oif-se
problems. They provide rational way to reduceorganized during evolutionary process. Trajectaasad
software cost and increase software quality. Progra are stored as a string of numbers (the genotypd) an
with less sub-programs tend to disappear beca@se thevolved to achieve the optimum mapping.
accrue fitness from generation to generation, more
slowly than those programs with sub-programs. Theexample: Assume we try to solve a search problem to
proposed APS gain leverage in simultaneously sglvin find an occurrence of element e in a list L of teger
the problems of system induction and evolving thenumber. Atleast i+2 inputs are needed (two inputead
architecture of a single or multi-part system. Fileign 1,  the values of eand iand i input to readinget of L).
793

The last step is optional, since it just ensutes t
tence of at least one reference to the nevdgted
sub-SFSA function *f.
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Table 2: Fixed input-output trajectory sets .
I ={e,, L[1], L[2], ....., L[i]}

0={0,1)

Ty = 1 2 3 4 5 6

T = I[1] I12] Ii] -1 -1 -1

To = -1 -1 -1 -1 o1 02
Thenn:

n (Ti)))= OLlift=5

02ift=6, and -1 otherwise

Table 3: Self-Organized Input and Output Trajeck®is.

Ti(at iteration: 0) = -1, -1, I[1]
Ti(at iteration:10) = I[1], -1, -1, I[2] To(at itation: 10) =-1, -1, O1, -1
Ti(at iteration: n) = I[1], 1[2], To(at iteratiom) = -1, -1, -1,
-1,-1,-1, -1, I[3] -1,01,-1,-1

Accordingly, at least two different output may be2
produced by the program to indicate search result
(found and not found, or, 1 and 0). Obviously nohsu
outputs are produced unless at least four opesation
executed that are: input e, input i, input L[1] arfeeck
its equality with e. The time scale of IOS must be
defined under the worst case. i.e., L[i] = e, or noy

occurrence of e is found at all. Now, we can pre-

specified T, T; and T, as fixed set as given in Table 2.
In this case, Evolutionary process computes thmes$i
value for each individual based on applying fitness
function only. While in case of self-organized gase
trajectory sets are randomly built according torently
available information about system input-output
boundaries, as seen in Table 3. At the end of i
generations, these sets are modified accordingh¢o t
input-output specification of the best individuals,
obviously, such modifications are vary continualhtil
the required results are produced. Although trajgct
data are changed over time, but by experimentjliit s
sensitive to initial configuration of SFSA. Thisase of
the most important characteristic of a chaotic esyst
(butterfly effect sensitivity to the initial conains)™.

CONCLUSION

» Proposed method is based on theoretical system
definitions, thus it overcomes the difficulties of
traditional method, in addition it have all attiget
characteristic of CGP

* Sub-systems can be reused to solve multiple

problems. They provide rational way to reduce?.

software cost and increase software quality.
Programs with less sub-programs tend to disappear
because they accrue fitness from generation to
generation, more slowly than those programs with
sub-programs. The proposed APS gain leverage in
simultaneously solving the problems of system
induction and evolving the architecture of a single
or multi-part system

794

To(at iteratiof) = O1, -1, -1 1.

5.

Trajectory information play important role in the
Evolutionary Process. Fixed specification of
trajectory sets, speed-up convergence time of the
algorithm. Although self-organized trajectory sets
are useful tools in chaotic behavior, they takeemor
time to converge to the fine solution
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