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Abstract: Problem statement: Accuracy and stability of many systems in chemical and process 
industries which has Two-Input Two-Output (TITO) is one of the key factors of process which have 
cross coupling between process input and output. Approach: Unlike traditional neural network weight 
adaptation using gradient descent method, Particles Swarm Optimization (PSO) technique was utilized 
for adaptive tuning of neural network weights adjustment and fine tuning the controller’s parameters. 
Design approach for controlling liquid levels of Coupled Tank TITO system by using hybrid PI-Neural 
Network (hybrid PI-NN) controllers. Results: Tuning method for parameters of improved hybrid PI-
NN controller was also discussed. Conclusion: Performances of proposed method also compared with 
PID-NN controllers, it was shown that hybrid PI-NN controller exhibited better performance in terms 
of transient response analysis. 
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INTRODUCTION 

 
 Liquid tank systems play important role in 
industrial application such as in food processing, 
beverage, dairy, filtration, effluent treatment, 
pharmaceutical industry, water purification system, 
industrial chemical processing and spray coating. A 
typical situation is one that requires fluid to be 
supplied to a chemical reactor at a constant rate. An 
upper tank can be used for filtering the variations in 
the upstream supply flow. Many times the liquid will 
be processed by chemical or mixing treatment in the 
tanks, but always the level of the fluid in the tanks 
must be controlled. Vital industries where liquid level 
and flow control are essential include petrochemical 
industries, paper making industries, water treatment 
industries[1]. 
 In order to achieve high performance, feedback 
control system is adopted. Classical PID controller is 
widely applied in industry control such as temperature 
control, speed control, position control, but it is difficult 
for PID regulation to reach the aim of high speed and 
short transition time and small overshoot[2]. Advanced 
control methods also have been proposed by several 
researchers such as sliding mode control[3] and 
nonlinear back stepping control[4], tuning methods 
based on optimization approaches with the aim of 

ensuring good stability robustness have received 
attention in the literature[5,6]. 
 Accurate model and its parameters which capture 
the characteristic of the coupled tank system is required 
for designing its controller for achieving a good 
performance. The specific point tackled in the study is 
about the advantages of using a new hybrid PI-NN 
instead of a PID-NN controller, consisting of PSO, 
Neural Network (NN) and PI controller. From a generic 
tuning rule the optimum settings from an Integral 
Squared Error criterion point of view are derived. The 
validation result shows that hybrid PI-NN controller 
much faster than PID-NN and also good robustness and 
small overshoot.  
 
Process plant description: The schematic diagram of 
the coupled tank system considered in this study is 
shown in Fig. 1 where Qi = {Q i1, Qi2} are the inlet 
flow rate to tank 1 and 2, Q12 is the liquid flow rate 
from tank 1 to tank 2 through orifice, Qo= {Qo1, Qo2} 
are the  outlet flow rate of tank 1 and 2 and h = {h1, 
h2} denotes the liquid level of tank 1 and 2, 
respectively. In this simulation, the target is to control 
the level in two tanks by the inlet liquid flow from two 
pumps. The process input are u = {u1(t), u2(t)} 
(voltage    input    to   pumps)   and   the   output   are 
h = {h1(t), h2(t)} liquid level in tank 1 and 2 
respectively.  
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Fig. 1: Schematic of coupled tank process 
 
 The nonlinear plant equations can be obtained by 
mass balance equations and Bernoulli’s law. After 
linearization process, the linear plant equations can be 
obtained as:  
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Where: 
A = The cross sectional area of tank 1 and 2 (cm2) 
a = The cross sectional area of outlet hole of tank 

1, 2 and the cross sectional area of jointed 
opening between tank 1 and 2 (cm2) 

β1 = The valve ratio at the outlet of tank 1 
β2 =  The valve ratio at the outlet of tank 2  
βx = The valve ratio between tank 1 and 2, 1 2h , h are 

the steady-state water level of tank 1 and 2  
g = The gravity (cm2 sec−1)  
k1, k2 = The gain of pump 1 and pump 2 (cm3 Vsec−1), 

respectively 
 
 From the linear plant Eq. 1, it can be transformed to 
yield a nominal block transfer function of the form (2): 
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Fig. 2: Neuron form 
 
 Through simple algebraic manipulation, the 
transfer matrix Gij(s) yields to: 
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provided that T1 is the time constant of tank 1, T2 is the 
time constant of tank 2 and Tx is the time constant 
interaction between tank 1 and 2. 
 According to transfer matrix Gij(s) in (2) and (3), 
the transfer functions of coupled-tank process are 
second order form which have cross coupling between 
process input and outputs. The decoupling controllers 
are required for minimizing the effects from cross 
coupling and transform TITO plant transfer function 
into SISO form. This is where neural network structure 
is introduced at which can be functioning as the de-
coupler controller. 

 
PID neural network controller: A control structure 
for controlling the liquid level tank using PID neural 
network controller as shown in Fig. 2 where it has an 
input sj and an output θj. The property of a neuron is 
decided by the input-output activation function (f) 
whereby the P-neuron, I-neuron and D-neuron are 
representing the Proportional (P) function, Integral (I) 
function and Derivatives (D) function, respectively.  
 For any neuron (namely the jth neuron) in the 
network which has n-1 inputs, at any t time, the input of 
the neuron is given by: 



Am. J. Engg. & Applied Sci., 2 (4): 669-675, 2009 
 

671 

n 1

j ij i
i 1

s (t) w x (t)
−

=

=∑  (4)  

 
Where:  
xi(t) = The outputs of n-1 connected neurons in 

foregoing layer and  
wij = The connected weights  
 
 The output of this neuron will depend on its 
activation function which can be Proportional (P), 
Integral (I) or Derivative (D) functions. The neuron’s 
output for each function is shown in Table 1. 
 As a rule, a basic PID-NN consists of two input 
neurons and one output neurons whereby the hidden 
layer of this network structure is made of three neurons 
which each representing P, I and D activation function 
respectively. The basic PID-NN is as shown in Fig. 3. 
 Through connective weight adaptation between 
layers, the PID-NN is actually acting as a conventional 
PID controller. Since PID controllers have been 
widely used in industry, that is to say there are much 
experience to choose P, I and D parameters in order to 
suit the system’s stability without changing one’s 
plant. 
 The control system for controlling the coupled tank 
level system consists of several basic PID-NN whereby 
every basic PID-NN is a sub-net. The multi PID-NN 
control system is shown in Fig. 4. 
 The structure of multi PID-NN is special. If 
suitable connective weights are obtained, each sub-net 
of PID-NN is comparatively equal to a PID controller. 
By referring to Fig. 3 of the basic PID-NN, let say that: 
 
w1j = +1, w2j  = −1, w’1o = KP, w’2o = KI, w’3o = KD  
 
Table 1: Activation function for each type of neuron 
Type of neuron Output, θj (t) 

P js (t)  

I 
t

j

0

s (t)dt∫  

D jds (t)

dt
 

 

 
 
Fig. 3: Basic PID-NN 

 Then, the input to the network structure will be: 
 

j ij i
i

s w x r y e′ = = − =∑   (5) 

 
 Meanwhile, the network output (depending on the 
type of neuron) of the hidden layer for each neuron is 
obtained as: 
 

j jf (s )′ ′θ =   (6) 
 
 Therefore, we derived the total output for the basic 
PID-NN as shown in Fig. 3 as: 
 

o jo j P I D
dew x K e K edt K dt

 ′′ ′ ′θ = = + +
 ∑ ∫

 

 (7) 

 
 At any rate, the manipulated variable signals 
injected into the plant as shown in Fig. 4 is obtained as: 
 

k kU ′′= θ   (8) 
 
Hybrid PI-neural network controller: A 
combinational PI controller with neural network 
structure for controlling the liquid level system of the 
coupled tank as follows. 
 Proportional-Integral (PI) controller is a feedback 
controller which drives the plant to be controlled with a 
weighted sum of error (difference between output and 
desired response) and the integral of that value. The 
general model for a PI controller is given in Eq. 9: 
 

k k

k

P Ik
PI

k

sK KH (s)
G (s)

E (s) s

+
= =   (9) 

 
Where: 
Hk  = The process variable 
Ek  = The difference between the output and 

the desired response  
KPk and KIk  = The proportional and integral gains 

respectively 
 

 
 
Fig. 4: (TITO) process with multi PID-NN control 

system 
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Fig. 5: (TITO) process with hybrid PI-NN control 

system 
 
 The hybrid PI-NN is constructed by series 
cascading the PI controllers with a neural network 
structure as shown in Fig. 5 Throughout the network, 
the linear activation function is used in all neurons. 
 Figure 5 shows the plant transfer function Gij(s) 
that has the cross coupling between process inputs and 
outputs. Because of interaction between processes, the 
neural network structures will basically act as a de-
coupler controller for minimizing the cross coupling 
effects via its connective weight adaptation. 
 In contrast to the PID-NN, the manipulated 
variable signals injected into the plant for the hybrid PI-
NN is obtained as: 
 

k kU O=   (10) 

 
where we have: 
 

k kj j
j

O W O= ∑
 

 
and  
 

j ji i
i

O W O= ∑
 

  

 
 The net output Oi on the other hand, comes from 
Eq. 9 which yield to 

ki PI kO G (s)E (s)=
 

 
Particles swarm optimization:  
Overview of the PSO: PSO is a method for optimizing 
hard numerical function on metaphor of social behavior 
of flocks of birds and schools of fish. This technique 
has been widely used in across wide range of 
application such as in communication, biomedical[`]. It 
also has, very recently, emerges as an important 
combinatorial metaheuristic technique for both 
continuous-time and discrete-time optimization. In past 
several years, PSO algorithms have been successfully 

applied in many research and application areas. It has 
been demonstrated that PSO gets better results in a 
faster and cheaper way as compared with other 
methods. First introduced by Eberhart and Kennedy[8], 
PSO, like other evolutionary computations, can 
typically initialize a pool of particles with random bird 
positions (called agent) in two-dimensional space[9] 
where each is represented by a point in the X-Y 
coordinates and the velocity is similarly defined. Bird 
flocking is assumed to optimize a certain fitness 
function. Each agent knows its best value so far (pbest) 
and its current position. This information is an analogy 
of personal experience of an agent. Each agent tries to 
modify its position using the concept of velocity. The 
velocity of each agent can be updated by the following 
equation: 
 

k 1 k k k
i i 1 1 i i 2 2 i(pbest ) (gbest )+ψ = ωψ + η Γ − Ω + η Γ − Ω  (11) 

 
Where: 

k
iΨ
 

= The velocity of agent i at iteration k 

 ω  = Weighting function 

1η and 2η  = Weighting factors 

1Γ   and 2Γ  = The cognitive and social learning 

parameters which generated randomly 
between 0 and 1 

k
iΩ   = The current position of agent i at 

iteration k  
pbesti  = The pbest of agent i  
gbest  = The best value so far in the group among 

the pbests of all agents 
 
 The following weighting function is normally used 
in Eq. 11: 
 

max min
max

max

iter
iter

 ω − ωω = ω − × 
 

  (12) 

 
Where: 

maxω
 

= The initial weight  

minω  = The final weight 

maxiter
 
= The maximum iteration number 

iter = The current iteration number 

 
 Using the previous equation, a certain velocity, 
which gradually brings the agent close to pbest and 
gbest, can be calculated. The current position (search 
point in the solution space) can be modified by the 
following equation:  
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k i k k i
i i i

+ +Ω = Ω + Ψ  (13) 

 
 At some iteration, the position of the agent based 
on Eq. 13 might be flying-off from the initial limit. 
Hence, a fly-back algorithm is implemented to bring 
back the agent to within the limit. The fly-back pseudo-
code used in the program is presented below: 
 
If Ωi

k+1 less than Ωmin 

Ω i
k+1 = Ωmin+(Ωmax-Ωmin)X r and 

else if Ω i
k+1 more than Ωmax 

Ω i
k+1 = Ωmin+(Ωmax-Ωmin)X r and  

end 
 
Model reference adaptive tuning using PSO: In both 
PID-NN and hybrid PI-NN control systems; the aim of 
the controllers’ algorithm is to minimize the following 
fitness function (ft): 
 

[ ]
n n m

2

t k ref k k
k 1 k 1 q 1

1
f E {G R }(q) H (q)

m= = =

= = −∑ ∑∑   (14) 

 
Where: 
Rk = The desired set-points and  
Hk = The outputs of the system as shown in Fig. 4 and 5 
 
 Meanwhile, q (=1,2,…,n) is the serial number. Gref 

is the first order model reference transfer function and 
is represented as: 
 

ref

1
G (s)

s 1
=

τ +
  (15) 

 
where, τ the time constant for shaping the output 
transient responses to be as desired.  
 The connective weights of PID-NN and hybrid PI-
NN as well as the PI parameters are changed and 
optimized on each iteration k of the PSO. Before 
beginning the optimization, a population size (i.e., 
number of particles) N and a maximum number of 
iterations itermax are chosen. The computation flow of 
PSO technique can be described in the following steps: 
 
Step 1: Randomly initialize the population: select the 
(normalized) particle positions i i i i

1 2 N, , , Ω = Ω Ω Ω ⋯  and 

velocities i i i i
1 2 N, , , Ψ = Ψ Ψ Ψ ⋯  (i = 1,2,…,N) from 

uniform distributions with j
i min max{ , }Ω ∈ Ω Ω   and 

( )j
i max min{0,0.1 }Ψ ∈ Ω − Ω , j = 1,2,…,N.  

Step 2: Evaluate the fitness function values by ft (Ωi) 
assigning each Ωi as the neural network weights and the 
controller’s parameters. 
 
Step 3: Assign the global and local best positions: Set 
the local best position for each particle using pbesti = Ωi 
and compare the evaluated fitness values and find the 
global best position gbesti = Ωi, for some 1≤ J ≤ N, such 
that j i

t tf ( ) f ( )Ω ≤ Ω  for I = 1, 2… N. 

 
Step 4: Search for minimum value of ft: 
 
• Update the  particle   velocities ΨI

  according to 
Eq. 11 

• Update all positions Ωi using formula (13). Check 
all positions to ensure that i

min j maxΩ ≤ Ω ≤ Ω . If any 

of the components of the position vectors go out of 
bounds, they can be called back using the fly-back 
algorithm 

• Evaluate i
tf ( )Ω  (I = 1,2,…,N) 

• Update the local best position: if i i
t tf ( ) f (pbest )Ω <   

 Then  i ipbest = Ω  
• Update the global best position gbest, by letting 

gbesti = Ωi, for some 1 ≤ J ≤ N  such that 
j i

t tf ( ) f ( )Ω < Ω  for (I = 1,2,…,N) 

 
Step 5: Repeat Step. 4 until a goal is reached or the 
number of iterations is surpassed. 
 

RESULTS AND DISCUSSION 
 
 The parameters of the coupled tank system are 
taken as follows: 
 
Cross sectional area of tank 1and 2, A = 66.25 (cm2) 
Height of each tank H = 18.5 (cm) 
Area of the coupling orifice, a = 0.1963 (cm2) 
Valve ratio at the outlet of tank 1, β1 = 0.35903 
Valve ratio at the outlet of tank 2, β2 = 0.345848 
Valve ration of the outlet between 
tank 1 and 2, βx = 0.38705  
Gravitational rate g = 981 cm sec−12 
 
 The liquid levels of the coupled tank system are 
required to follow step responses within the range of 
0~300 cm (0-100%). System responses namely the 
liquid level for both tank 1 and 2 are observed. The 
minimum and maximum values of the controlled 
manipulated variables are capped to umin = 0 volt and 
umax = 5 V. 
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 In the training stage, initialize the parameters of 
PSO as following. 
 For hybrid PI-NN, there are additional KP’s and KI’s 
for the PI controllers. Population size = 20, inertia 
weight   factor   ω   is   set  according to (20) where 
ωmax = 0.9 and ωmin = 0.1. Cognitive and social learning 
constants are 1 2 1.4Γ = Γ = . The value in every position 

can be clamped to the range min max[ , ]Ω Ω using fly-

back algorithm to reduce the likelihood of particles 
leaving the   search space. The   number of   iterations 
is itermax = 200. The time constant for the model 
reference is chosen as τ = 20s. 
 Figure 6 and 7 shows the liquid level responses of 
coupled tank system using PID-NN and hybrid PI-NN 
controllers for tank 1 and 2, respectively. It is noted that 
both controllers can track the step responses of 150 cm. 
However, the hybrid PI-NN shows a better performance 
in terms of time response specifications and integral 
square error as compared to the PID-NN controller. For 
the time response performance of the liquid level in 
tank 1, the PID-NN produces settling time and rise time 
of 207 and 15.7 sec, whereas the hybrid PI-NN 
produces settling time and rise time of 28.3 and 22 sec. 
 

 
 
Fig. 6: Simulated response of the liquid level in tank 1 
 

 
 
Fig. 7: Simulated response of the liquid level in tank 2 

In the mean time, PID-NN produces settling time and 
rise of 209 and 24 sec whereas the hybrid PI-NN 
produces settling time and rise time of 39.7 and 22.2 sec 
for the liquid level in tank 2. It shows that the PID-NN 
results in a slower response as compared to hybrid PI-
NN. It can be said that with higher number of connective 
weights of neural network structure, the complexity to 
compute the required manipulated variables will increase 
and affect the speed of the response.  
 In term of integral square error for liquid level in 
tank 1, the hybrid PI-NN results in twice less of ISE as 
compared to the PID-NN with the value of 1.145×105 
and 2.567×105 respectively. Similarly for liquid level in 
tank 2, the ISE of hybrid PI-NN and PID-NN were 
obtained as 1.209×105 and 2.567×105, respectively. The 
comparative assessment of both controllers is shown in 
Table 2 
 Figure 8 and 9 shows the liquid level responses in 
tank  1 and 2, respectively, with a step disturbance of 
40 cm injected into the process variable of tank 1 during 
the steady-state response. Noted that the  PID-NN 
controller produced maximum percentage overshoots of 
35 and 41% for liquid level in tank 1 and 2 whereas 
hybrid PI-NN produces 27 and 18%, respectively. 
Furthermore, it could be seen that hybrid PI-NN produce 
minimum oscillation as compared to PID-NN in response 
to disturbance injection. It is proven that the hybrid PI-
NN controller results in faster settling time and minimum 
overshoot. Besides that hybrid PI-NN also exhibits good 
robustness in minimizing the cross-coupling effect 
between two tanks. 
 

 
 
Fig. 8: Simulated response of the liquid level in tank 1 

with disturbance 
 
Table 2: Performance comparison of liquid level in tank 1 and 2 
 Settling time Rise time  Overshoot  ISE  
 (sec)  (sec)  (%)  (×105) 
 --------------------- -------------------- ------------------    ------------------- 
Controller Tank 1 Tank 2 Tank 1 Tank 2 Tank 1 Tank 2 Tank 1 Tank 2 
PID-NN 207 209.0 15.7 24.0 17.78 15.41 2.391 2.567 
Hybrid 383 39.7 22.0 22.2 0.00 0.067 1.145 1.209 
PI-NN 
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Fig. 9: Simulated response of the liquid level in tank 2 

with disturbance at tank 1 
 

CONCLUSION 
 
 This study introduces an improved hybrid PI-NN 
controller for the coupled system. The NN weights 
connective and controller parameters are optimized by 
utilizing the PSO algorithm via model reference 
adaptation. The proposed method provides a better 
performance with respect to PID-NN controller even 
under disturbance injection. The simulations for both 
PID-NN and hybrid PI-NN controllers are also 
performed and compared. Based on the results, it can be 
concluded that hybrid PI-NN is more robust and can 
provide more stable responses than PID-NN.  
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