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Improved Coupled Tank Liquid Levels System Based on Swarm Adaptive
Tuning of Hybrid Proportional-Integral Neural Network Controller
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Abstract: Problem statement: Accuracy and stability of many systems in chemiaatl process
industries which has Two-Input Two-Output (TITO)dee of the key factors of process which have
cross coupling between process input and oufjppr oach: Unlike traditional neural network weight
adaptation using gradient descent method, Part®hesm Optimization (PSO) technique was utilized
for adaptive tuning of neural network weights atijusnt and fine tuning the controller’s parameters.
Design approach for controlling liquid levels of @ded Tank TITO system by using hybrid Pl-Neural
Network (hybrid PI-NN) controllersResults: Tuning method for parameters of improved hybrid Pl
NN controller was also discussedonclusion: Performances of proposed method also compared with
PID-NN controllers, it was shown that hybrid Pl-Nf&ntroller exhibited better performance in terms
of transient response analysis.
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INTRODUCTION ensuring good stability robustness have received
attention in the literatuf&®.
Liquid tank systems play important role in Accurate model and its parameters which capture

industrial application such as in food processingthe characteristic of the coupled tank systemdsired
beverage, dairy, filtration, effluent treatment, for designing its controller for achieving a good
pharmaceutical industry, water purification system,performance. The specific point tackled in the gtisd
industrial chemical processing and spray coating. Agbout the advantages of using a new hybrid PI-NN
typical situation is one that requires fluid to beinstead of a PID-NN controller, consisting of PSO,
supplied to a chemical reactor at a constant vate. Nel_JraI Network (NN)_ and PI co_ntroller. From a geoer
upper tank can be used for filtering the variatioms Uning rule the optimum settings from an Integral
the upstream supply flow. Many times the liquid Iwil ngargd Error criterion point of view are derivathe

be processed by chemical or mixing treatment in thalidation result shows that hybrid PI-NN controlle
tanks, but always the level of the fluid in the kan much faster than PID-NN and also good robustneds an
must be controlled. Vital industries where liquavél ~ Small overshoot.

and flow control are essential include petrochernicaProcess lant description: The schematic diagram of
industries, paper making industries, water treatmen P iption. ) Ic diag .
industrie&! the coupled tank system considered in this study is

shown in Fig. 1 where & {Qi;, Q2} are the inlet

In order to. achieve high performance, feedbackﬂow rate to tank 1 and 2, @is the liquid flow rate
control system is adopted. Classical PID controfer ¢ tank 1 to tank 2 through orifice 4®{Qo1, oz}

widely applied in industry control such as tempemt 5.0 the outlet flow rate of tank 1 and 2 and hhg;, {
control, speed control, position control, but itifficult 1 genotes the liquid level of tank 1 and 2,

for PID regulation to reach the aim of high speed a respectively. In this simulation, the target isctmtrol
short transition time and small oversH8otAdvanced the level in two tanks by the inlet liquid flow frotwo

control methods also have been proposed by severgimps. The process input are u =i(f W(t)}

researchers such as sliding mode cobtroand (voltage input to pumps) and the attpare
nonlinear back stepping contfl tuning methods h = {h,(t), hy(t)} liquid level in tank 1 and 2
based on optimization approaches with the aim ofespectively.
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COUPLED TANK CONTROL APPARATUS pp-100

Fig. 2: Neuron form

Through simple algebraic manipulation, the
! 1 Qa Q,J’ transfer matrix (s) yields to:
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Fig. 1: Schematic of coupled tank process 621(S)=T* G, (s A Lx

The nonlinear plant equations can be obtained by
mass balance equations and Bernoulli's law. AfterA_ser(TlTx+T2Tx+2T1ijs+[ 1,1, 1}

linearization process, the linear plant equatioms be TT,T, T, TT, T,
obtained as:
) provided that Tis the time constant of tank 1; iE the
hl(t):ﬁul(t)_%\/igwu”BxaI R t tant of tank 2 and,Ts the fi tant
A A \2h. A I H[RO- @ (q) me constant of tank 2 and,Ts the time constan
(=K Ba J 9 1+ Bl g mterzggg?dli)negtv‘tlgi?atr?gfirl r?\g(tjni @) in (2) and (3)
ho(=X2u,0-B2 [ h,+Bel | i ,
A A \2h, Ay 2fh, = B[ H, (- (0] the transfer functions of coupled-tank process are
second order form which have cross coupling between
Where: process input and outputs. The decoupling contslle
A =The cross sectional area of tank 1 and ZYcm  are required for minimizing the effects from cross
a  =The cross sectional area of outlet hole of tankoupling and transform TITO plant transfer function
1, 2 and the cross sectional area of jointednto SISO form. This is where neural network stanet
opening between tank 1 and 2 (gm is introduced at which can be functioning as the de
B1 = The valve ratio at the outlet of tank 1 Coup|er controller.
B, = The valve ratio at the outlet of tank 2
B« = The valve ratio between tank 1 andnz,h,aré  pjp neyral network controller: A control structure
the steady-state water level of tank 1 and 2 for controlling the liquid level tank using PID mal
g = The gravity (crisec1) network controller as shown in Fig. 2 where it laams
ki, k2 = The gain of pump 1 and pump 2 (evtsec”),  input $ and an outpu;. The property of a neuron is
respectively decided by the input-output activation function (f)

whereby the P-neuron, I-neuron and D-neuron are
representing the Proportional (P) function, Intégra
function and Derivatives (D) function, respectively

For any neuron (namely the jth neuron) in the
{hl(s)} :{Gﬂ ) G, (31{ 4 (sﬁ (2) network which has n-1 inputs, at any t time, thguinof
h, () LGu(s) Go(S)L Y (s the neuron is given by:
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From the linear plant Eq. 1, it can be transforrued
yield a nominal block transfer function of the fo(8):
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n-t Then, the input to the network structure will be:
5, (0= W% (1) @)

i=1

S'q:ZWM:r_y:e )
Where:
xi(t) = The outputs of n-1 connected neurons in Meanwhile, the network output (depending on the
foregoing layer and type of neuron) of the hidden layer for each neuson

w; = The connected weights obtained as:

The output of this neuron will depend on its 8 =f(s) (6)
activation function which can be Proportional (P), ) )
Integral (1) or Derivative (D) functions. The neats Therefore, we _derl_ved the total output for theibas
output for each function is shown in Table 1. PID-NN as shown in Fig. 3 as:

As a rule, a basic PID-NN consists of two input
neurons and one output neurons whereby the hlddeﬂ;:Zw’jox'j :[er+ Kljedt+ Kod%J 7)

layer of this network structure is made of threarnas
which each representing P, | and D activation fiomct . . .
respectively. The basic PID-NN is as shown in Big. . At any rate, the manipulated variable signals

Through connective weight adaptation betweeHnJeCted into the plant as shown in Fig. 4 is aledi as:
layers, the PID-NN is actually acting as a convaml p 8)

PID controller. Since PID controllers have been *

widely used in industry, that is to say there anﬂ:m Hybrid Pl-neural  network  controller: A
experience to choose P, | and D parameters in doder compinational Pl controller with neural network
suit the system's stability without changing one’sgtrycture for controlling the liquid level systerf the
plant. coupled tank as follows.

The control system for controlling the coupledktan Proportional-Integral (P1) controller is a feedbac
level system consists of several basic PID-NN winere controller which drives the plant to be controlieith a
every basic PID-NN is a sub-net. The multi PID-NN weighted sum of error (difference between output an
control system is shown in Fig. 4. desired response) and the integral of that valie T

The structure of multi PID-NN is special. If general model for a Pl controller is given in Eg. 9
suitable connective weights are obtained, eachnstib-
of PID-NN is comparatively equal to a PID controlle Gy (5)= H,(s) _SKg + K, 9)

By referring to Fig. 3 of the basic PID-NN, let stiwat: E, (s) s
Wy = +1, Wy = =1, W15= Kp, W= K|, W3= Kp Where:
Hy = The process variable
Table 1: Activation function for each type of neuiro Ex = The difference between the output and
Type of neuron Output,8; (t) the desired response
P s, (1) Kpkand Ky = The proportional and integral gains
. respectively
[ j s (t)dt
0 R S
5 dSJ () __E_I;a}eri
dt Ryfs) | |
()
» G(s) d Ri(s) 5

i
‘
i
:
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: :
{(PD-NNcomwoller ' tPlamt i

Fig. 4: (TITO) process with multi PID-NN control
Fig. 3: Basic PID-NN system
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(hybrid PINN controler ! ipay

Fig. 5: (TITO) process with hybrid PI-NN control
system

The hybrid PI-NN

applied in many research and application areasasdt
been demonstrated that PSO gets better results in a
faster and cheaper way as compared with other
methods. First introduced by Eberhart and Kenfkdy
PSO, like other evolutionary computations, can
typically initialize a pool of particles with randobird
positions (called agent) in two-dimensional sface
where each is represented by a point in the X-Y
coordinates and the velocity is similarly defin&itd
flocking is assumed to optimize a certain fitness
function. Each agent knows its best value so fae¢p
and its current position. This information is aralmgy

of personal experience of an agent. Each agerst tivie
modify its position using the concept of velocifyhe

is constructed by series velocity of each agent can be updated by the foligw

cascading the Pl controllers with a neural networkequation:
structure as shown in Fig. 5 Throughout the network

the linear activation function is used in all nenso

Figure 5 shows the plant transfer functiog(sp
that has the cross coupling between process irgns
outputs. Because of interaction between procesises,
neural network structures will basically act as & d
coupler controller for minimizing the cross coupglin
effects via its connective weight adaptation.

In contrast to the PID-NN, the manipulated I, andrl, =

variable signals injected into the plant for thdotig PI-
NN is obtained as:

U, =0, (10)
where we have:
o, = Z, W0,
and
0,=> W0

The net output Oon the other hand, comes from

Eg. 9 which yield toO, = G;, (S)E (s

Particles swar m optimization:

Overview of the PSO: PSO is a method for optimizing
hard numerical function on metaphor of social bérav
of flocks of birds and schools of fish. This teajum
has been widely used :
application such as in communication, biomedicat

Lpik+1 = Wik + nlrl(pbeSI - Qik )+ r]2r2 (gbeS't’ Qik (11)
Where:
. = The velocity of agent i at iteration k
® = Weighting function
n,andn, = Weighting factors

The cognitive and social learning

parameters which generated randomly
between 0 and 1

QF = The current position of agent i at
iteration k

Pbesti = The pestOf agent i

Obest = The best value so far in the group among

the pestsOf all agents

The following weighting function is normally used
in Eq. 11:

W= Wy — [wm,ax _ wm'"} xiter (12)
iter, ..

Where:

W, = The initial weight

w

. — 1he final weight
iter .. = The maximum iteration number

iter = The current iteration number

in across wide range of

Using the previous equation, a certain velocity,

also has, very recently, emerges as an importawhich gradually brings the agent close to pbest and

combinatorial metaheuristic technique for
continuous-time and discrete-time optimizationphst

bothgbest, can be calculated. The current positionr¢sea

point in the solution space) can be modified by the

several years, PSO algorithms have been successfullollowing equation:
672



Am. J. Engg. & Applied i, 2 (4): 669-675, 2009

QI =QF + Pk (13)  Step 2. Evaluate the fitness function values yct)
assigning eacR' as the neural network weights and the

At some iteration, the position of the agent base&ontrollers parameters.
on Eqg. 13 might be flying-off from the initial limi
Hence, a fly-back algorithm is implemented to bring
back the agent to within the limit. The fly-baclepslo-
code used in the program is presented below:

Step 3: Assign the global and local best positions: Set
the local best position for each particle usingghseQ’
and compare the evaluated fitness values and fiad t
global best position gbést Q', for some & J< N, such

that f (Q)) <f (Q) forl =1, 2...N.
If  Q*less tharQ, (@) =1()

Q ik+1: Qmin+(Qmax'Qmin)Xr and
else ifQ ***more tharQ.,
Q"= Quin+(Qar Qrin)X 1 and « Update the particle velocitidd' according to
end Eq. 11
+ Update all position€' using formula (13). Check
all positions to ensure that, <Q;<Q_.. If any

of the components of the position vectors go out of
bounds, they can be called back using the fly-back

Step 4: Search for minimum value of f

M odel reference adaptive tuning using PSO: In both
PID-NN and hybrid PI-NN control systems; the aim of
the controllers’ algorithm is to minimize the foling
fitness function }:

algorithm
n 1o m , » Evaluatef(Q) (1=1,2,...,N)
f, :;Ek :ag{;[{e R K@) ~H(@)] a4 . Update the local best position:fi{Q') <f (pbest )
Then pbest = Q'
Where: * Update the global best position gbest, by letting
R« = The desired set-points and gbest = Qi, for some 1< J < N such that

Hy = The outputs of the system as shown in Fig. 45and f.(Q) <f(Q) for (1=1,2,...,N)

Meanwhile, q (=1,2,...,n) is the serial numbef.; G
is the first order model reference transfer functamd
is represented as:

Step 5. Repeat Step. 4 until a goal is reached or the
number of iterations is surpassed.

RESULTSAND DISCUSSION

1
(15)
1s+1 The parameters of the coupled tank system are
taken as follows:

where, T the time constant for shaping the output

Gref (S) =

transient responses to be as desired. Cross sectional area of tank 1and 2, A = 66.25)(cm
The connective weights of PID-NN and hybrid PI- Height of each tank H =18.5 (cm)
NN as well as the Pl parameters are changed an@rea of the coupling orifice, a =0.1963 (m

optimized on each iteration k of the PSO. BeforeValve ratio at the outlet of tank f; = 0.35903
beginning the optimization, a population size (i.e. Valve ratio at the outlet of tank @; = 0.345848
number of particles) N and a maximum number ofValve ration of the outlet between

iterations itegax are chosen. The computation flow of tank 1 and 2B, =0.38705
PSO technique can be described in the followingsste ~ Gravitational rate g =981 cm S&tc

Step 1: Randomly initialize the population: select the ~ 1he liquid levels of the coupled tank system are

. ) PR PN ; required to follow step responses within the ranfe
(normalized) particle positions' =[ @)@, ] and 0~300 cm (0-100%). System responses namely the

velocities W' =[lv‘1,lvi2,--~,w‘N] (i = 1,2,...,N) from liquid level for both tank 1 and 2 are observede Th
minimum and maximum values of the controlled

unllform distributions - with Q! TH{Qy, Qo and manipulated variables are capped tg, & 0 volt and
W0{0,0.1(Q = Quin)} 1 = 1,2,..,NL Umax=5 V.

673



Am. J. Engg. & Applied i, 2 (4): 669-675, 2009

In the training stage, initialize the parametefs oIn the mean time, PID-NN produces settling time and
PSO as following. rise of 209 and 24 sec whereas the hybrid PI-NN
For hybrid PI-NN, there are additionapKand K produces settling time and rise time of 39.7 an@ 22c
for the Pl controllers. Population size = 20, ifgert for the liquid level in tank 2. It shows that théDFNN
weight factor o is set according to (20) where results in a slower response as compared to hytirid
®max = 0.9 ando,;, = 0.1. Cognitive and social learning NN. It can be said that with higher number of cartive
constants arg, =", =1.4. The value in every position weights of neural network structure, the complexiy
can be clamped to the rande,., Q..] using fly- compute the required manipulated variables wiliease

back algorithm to reduce the likelihood of particle and affect the speed of the response.

. . In term of integral square error for liquid leval
!eaymg thf search space. The -~ number of titera tank 1, the hybrid PI-NN results in twice less 8Elas
is iterhax = 200. The time constant for the model

reference is chosen as 20s. Cogngagzifgs the PI?.'N:\I vgth _;chel vfalule_ Ofdll'M?s.
Figure 6 and 7 shows the liquid level responses O‘?;nk 2 the IgI}ES%?‘Cr:VEr)i/d Fl’rln;\la;\rl yar?é Iglulg-N?\Yew::re
coupled tank system using PID-NN and hybrid PI-NN ' Y

controllers for tank 1 and 2, respectively. It gad that obtained as 1.2040° and 2.56%10, respectlve_ly. The
both controllers can track the step responses @i comparative assessment of both controllers is shawn

. Table 2
However, the hybrid PI-NN shows a better perforneanc Figure 8 and 9 shows the liquid level responses in
in terms of time response specifications and istegr

tank 1 and 2, respectively, with a step disturkaot
square error as compared to the PID-NN controfier. 40 cm injected into the process variable of tamtufing

the time response performance of the liquid level i he steady-state response. Noted that the PID-NN
tank 1, the PID-NN produces settling time and tis®  controller produced maximum percentage overshobts o
of 207 and 15.7 sec, whereas the hybrid PI-NN35 and 41% for liquid level in tank 1 and 2 whereas
produces settling time and rise time of 28.3 and&x2 hybrid PI-NN produces 27 and 18%, respectively.
Furthermore, it could be seen that hybrid PI-NNdpice
_______ e minimum oscillation as compared to PID-NN in resgmn
m— 0 S to disturbance injection. It is proven that the fig/iPI-
e 1 NN controller results in faster settling time anghimum
overshoot. Besides that hybrid PI-NN also exhigisd
robustness in minimizing the cross-coupling effect
1 between two tanks.
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Fig. 6: Simulated response of the liquid levelank 1 2 \J \
200 g‘
"""" Set Point 5 50
L — — PID-NN H ]
£ 160} /'\ hybrid PI-NN = ; H
L A A —_——“" e -] P ‘ |
& 140} e R R 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
E 120} i Time (sec)
“S 100} . . L .
= Fig. 8: Simulated response of the liquid levelank 1
=~ BOF . .
2 with disturbance
Z— 40k Table 2: Performance comparison of liquid leveank 1 and 2
- 20} " Settling time Rise time Overshoot ISE
0 n ) . . ‘ ) ] (sec) (sec) (%) x(L.0%)
0 100 200 300 400 500 600 700 800
Time (sec) Controller Tank1 Tank2 Tankl Tank2 Tank1l Tankrank1l Tank 2
PID-NN 207 209.0 15.7 24.0 17.78 15.41 2.391 2.567
) ) o ) Hybrid 383 39.7 220 222 0.00 0.067 1.145 1.209
Fig. 7: Simulated response of the liquid leveldank 2 PI-NN
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Fig. 9: Simulated response of the liquid levelank 2
with disturbance at tank 1

Q

CONCLUSION

This study introduces an improved hybrid PI-NN
controller for the coupled system. The NN weights
connective and controller parameters are optimizgd
utilizing the PSO algorithm via model reference
adaptation. The proposed method provides a better
performance with respect to PID-NN controller even
under disturbance injection. The simulations fothbo
PID-NN and hybrid PI-NN controllers are also
performed and compared. Based on the resultspibea

concluded that hybrid PI-NN is more robust and can

provide more stable responses than PID-NN.
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