
American J. of Engineering and Applied Sciences 2 (2): 488-493, 2009
ISSN 1941-7020
© 2009 Science Publications

Corresponding Author: Mohammad Bagher, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz,
Iran

488

Implementing a Vector Controller Using 68k Processors

Mohammad Bagher, Bannae Sharifian, Mohammad Reza Feyzi,

Seyed Hossein Hosseini and Reza Valinia
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Abstract: Problem statement: This study described the design of a 3-phase AC Induction Motor
(ACIM) vector control drive with position encoder coupled to the motor shaft. Approach: It was
based on free scale’s (Motorola's) 68k micro processor devices. Although the free scale 56F80x
(56800 core) and 56F8300 (56800E core) families were well-suited for digital motor control and
offer all things was needed, but we decided to realize a complete vector controller with a powerful
68k processor. Results: Obviously all 680X0 and many 683XX can overcome this task very easily,
but we decided 68332 for time consuming because it combines high-performance data manipulation
capabilities with powerful peripheral subsystems. All software and hardware was based on Peter J.
Pinewski's nice research from Motorola. Conclusion: In this study the overall software algorithm and
in two fellow papers the hardware schematics and performance will be described respectively.

Key word: Vector control, ACIM, PI, hi-time, MC68332, induction motor

INTRODUCTION

 Traditional control methods, such as the Volts-
Hertz control method, control the frequency and
amplitude of the motor drive voltage. In contrast, vector
control methods control the frequency, amplitude and
phase of the motor drive voltage. The key to vector
control is to generate a 3-phase voltage as a phasor to
control the 3-phase stator current as a phasor that
controls the rotor flux vector and finally the rotor
current phasor.
 Ultimately, the components of the rotor current
need to be controlled. The rotor current cannot be
measured because the rotor is a steel cage and there are
no direct electrical connections. Since the rotor currents
cannot be measured directly, the application program
calculates these parameters indirectly using parameters
that can be directly measured.
 The technique described in this paper is indirect
vector control because there is no direct access to the
rotor currents. Indirect vector control of the rotor
currents is accomplished using the following data:

• Instantaneous stator phase currents, ia, ib and ic
• Rotor mechanical velocity
• Rotor electrical time constant

 The motor must be equipped with sensors to
monitor the 3-phase stator currents and a rotor velocity
feedback device.

 By mapping the measured three phase stator
currents as a vector onto a two axis (d-q) coordinate
system, the stator current is broken into two component,
id and iq, which are orthogonal to each other and are
used to control the rotor flux and torque current
respectively. From a practical point of view, the flux
and torque currents are controlled through the motor
voltages and slip frequency. How these are controlled is
based on calculations made on the measured phase
currents and speed. The hardware requires speed
sensing and current sensing in addition to the six
PWMs necessary to drive the inverter. Figure 1
illustrates a system which utilizes a MC68332 to
implement a simple vector controller. The system uses
the on-chip timer to implement the center-aligned
PWMs and for the speed sensing input. A jointed
MC145050 and QSPI are used by the algorithm to
sense the phase currents and the torque (throttle) input.
The control algorithm is executed in software and is a
large factor in determining performance. Therefore,
successful implementation is dependent upon how the
software executes the control algorithm.

Implementing the algorithm: The critical loop of the
vector control system is implemented as an interrupt
service routine. This loop performs the current
measurement and transformation, the speed sensing and
calculation, the PI controller, slip calculation,
modulation strategy, and any fault checking[1,2].

Am. J. Engg. & Applied Sci., 2 (2): 488-493, 2009

 489

Fig. 1: Simple vector controller hardware block diagram

Th
ro

ttl
e

A
/D Digital

filter
Torque control
profile tables

Flux
controller

°

°

PI
controller

PI
controller

Slip
calculation

° 1/s
cos°�
sin°�

2-3 phase
transformations

dq to abc

3-2 phase
transformations

abc to dq

Speed
calculation

Pulse
cunter

V
o

lta
g

e
to

hi

g
ht

im
e

Current
normalize

Current
normalize A/D

A/D

H
ig

ht
im

e
to

 P
W

M

°�PWM
inverter

IQ*

ID*

+

-

-

+

VQ

VD

Va

Vb

Vc

A_top
A_bot
B_top
B_bot
C_top
C_bot

Speed sensing

ia

ib

ia

ibID

IQ

+

+

f e

fs

f r

°

MCU

Tr.ID
IQ

sω =

Tr=rotor time constant
Tr.ID2
IQ

sf π=

Fig. 2: Vector controller block diagram

The vector control loop is shown in Fig. 2. This system
executes the interrupt service routine every 240 µs,
which is two PWM period. The outer loop is used to
implement the torque and flux controller, which are
simple normalized lookup tables based on the A/D and
speed readings, respectively. Transport and calculation
delays are minimized by organizing the software so that
the software code which does not depend on A/D
reading is executed while the A/D conversions are
taking place. Fig. 3 shows a flow diagram of the
interrupt service routine.

Slip frequency calculator: The slip frequency
calculator is the critical block which ensures correct

field orientation between rotor flux and torque current.
This is based on the IQ and ID currents as well as the
rotor open circuit time constant (Lr/Rr). The equation
for the slip calculator is given below:

s
r

1 IQ
f

2 T ID
=

π
 (1)

where, Tr

 = Lr/Rr is rotor time constant.
 If the correct value of Lr/Rr is not known or is not
achieved the vector control algorithm will operate in a
“de-tuned” manner. This means that the flux and torque
currents are improperly aligned with the rotor flux
and that they are not truly de-coupled. In other words,

Am. J. Engg. & Applied Sci., 2 (2): 488-493, 2009

 490

Start A /D
conversions

G et ID* and IQ*

C alcu late slip and speed
Integerate

D etermine cos÷ and sin÷

R ead A/D
(currents+ throttl e)

C urrent
normal izati on

3-2 phase
transformation

PI control ler

2-3 phase
transformation

Voltage to PW M

Update PW Ms

PW M interrupt

Exit interrupt
routine

A
lg

or
ith

m
 e

xe
cu

tio
n

tim
e

Fig. 3: Program flow diagram

a change in torque current would cause a change in
rotor flux. The result is that instantaneous torque
control is not achieved. This may be acceptable in
applications such as an electric vehicle traction drive
where the torque response is not critical and it is not
worth the effort to implement more complicated
techniques such as rotor temperature compensation or
adaptive techniques.

Speed measurement/calculator: Speed measurement
is one of the requirements for the vector controller.
Hardware speed sensing can be accomplished with a
toothed disk on the rotor shaft. The amount of teeth on
the disk determines the resolution (the more teeth, the
better the resolution). Speed measurement can be
accomplished by a pulse type counter where the number
of edges per time can be counted to give rotations per
minute. Rotor frequency can be calculated by:

r

rpm p
f

120
×= (2)

 where p is the number of poles.
 In the example system, 200 tooth disk per
revolution at a sample time of 5 ms equates to one
measured edge ($0001) equaling 1 Hz rotor frequency.
The precision of the speed sensor in the example
system is 1 Hz.

Integrator: The integrator takes the frequency value
and converts it to an angle for determining cosθ and
sinθ. The integrator is a simple addition function of the
form:

θ = Old_theta + frequency × interrupt_rate × 2Number-of-bit

 In the example system, for a 16-bit angle variable
and interrupt_rate = 244 µs, the above equation can be
simplified to yield:

θ = Old_theta + frequency (that is shifted left by four)

 Also the frequency resolution is 0.0625 Hz as
calculated here:

Frequency resolution = 1/(2Bits × interrupt_rate)

cosè and sine: Both the vector rotators in the 2-3 phase
transformation and the 3-2 phase transformations
require cosè and sinè. In a microcontroller, there is no
sine or cosine function. A way around this is through
sine and cosine lookup tables. In actuality, only one
table needs to be created since the cosine function is a
90 degree shift of the sine function. The lookup table
itself is best constructed with a limited number of
samples equaling a power of two (i.e., 256 point sine
Table) and linearly interpolating between the sample
points to produce a much larger effective table. As an
example, the 332 vector controller utilizes a 16-bit
angle variable. With a sine table of 256 points: 8 bits of
the angle variable is used to index into the table and
8 bits are used for interpolation.

Current normalization: Current is sampled with the
A/D converter. Many A/Ds, such as MC145050, are
unipolar. This means they only accept a positive
voltage level and the conversion result is unsigned. The
currents, however, are sinusoidal in nature and have
both positive and negative values. Because of this, the
hardware must do some level shifting and amplifying to
get the currents to be unipolar and to reach full scale of
the A/D converter. The software must then convert the
unipolar A/D readings into positive and negative values
for use in the algorithm. This requires a simple
subtraction of the zero current reading from the present
phase current reading. The zero current reading can be
obtained from initial startup before the drive is enabled.
Another aspect of the A/D converter is that the
converter may have a smaller bit size than the data size.
The A/D readings should be left shifted such that full
scale of the A/D is full scale of the data size. This is
important for formatting the data into signed fractional
numbers.

Am. J. Engg. & Applied Sci., 2 (2): 488-493, 2009

 491

� � Kp

Ki
s

I - cmd

I -act

error V - out +

+

+

-

Fig. 4: Standard PI controller

3-2 Phase transformation: The three to two phase
transformation is used to convert the measured AC
phase currents, ia and ib, into the two DC current
components, IQ and ID. The conversion is comprised of
the a-b-c to d-q transformation and a vector rotator as
defined as:

abc to dq transformation vector rotator

iqs = ia IQ = iqs × cosθ – ids × sinθ

ids = –
1
3

ia –
2
3

ib ID = iqs × sinθ + ids × cosθ

 The above equations can be combined and
simplified to yield:

IQ = ia × cosθ + (0.57735 × ia + 1.1547 × ib) × sinθ
ID = ia × sinθ – (0.57735 × ia + 1.1547 × ib) × cosθ

PI current controllers: The two PI regulators control
the current components, IQ* and ID*, defined by the
torque and flux controllers. These are standard PI
controllers of the form that is depicted in Fig. 4:
 The output voltage is the control variable which is
adjusted to ensure zero error in actual and commanded
current. In terms of the MCU, the PI controller is
defined as a difference equation. Using s = l-z−1, the
difference equations for the PI controllers become:

VQ = VQ × z−1 + kp(IQ_err – IQ_err × z−1) + ki × IQ_err
VD = VD × z−1 + kp(ID_err – ID_err × z−1) + ki × ID_err

where, z−1 is a delay operator. Therefore, (V×z−1) and
(error×z−1) are previous values of the voltage and error
respectively.

2-3 Phase transformation: The 2-3 phase
transformation is used to convert the stator voltages,
VQ and VD, into phase voltages va, vb, and vc. The
conversion is comprised of the reverse vector rotator
and the dq to abc transformation which are defined as:

Vector rotator dq-abc transformation
vqs = VQ × cosθ + VD × sinθ va = vqs

vds = VD × cosθ – VQ × sinθ vb = –
1

2
vqs –

3

2
vds

 vc = –(va + vb)

Fig. 5: Resulted line-line voltage

Fig. 6: Overall drive system

 These equations can be combined and simplified to
yield the equations:

va = VQ × cosθ + VD × sinθ
vb = –0.5va – 0.8660254 × (VD × cosθ – VQ × sinθ)
vc = –(va + vb)

High time calculations: Output of the 2-3 phase
transformation block are the voltages for va, vb and vc.
The final step is to convert these voltages into PWM
duty cycles. The PWM duty cycles can range from 0-
100% where 0% represents the negative peak of the
sinewave and 100% represents the positive peak. This
means the zero crossovers is at 50% duty cycle. The
equations to convert the phase voltages to PWM duty
cycles are given below:

A-HIGH = va × Period/2 + Period/2
B-HIGH = vb × Period/2 + Period/2
C-HIGH = vc × Period/2 + Period/2 (2)

 From practical point of view, the resulted line-line
voltage may be similar to Fig. 5.

Experimental aspects: Because of the paper limitation,
it is not possible to overcome evaluation of all
schematic hardware and experimental results. In two
follow papers, the schematic hardware and overall
system performance will be described. But for a
perspective, Fig. 6-8 show the overall evaluated system
and its performance after gains adjusting.

Am. J. Engg. & Applied Sci., 2 (2): 488-493, 2009

 492

Fig. 7: Motor speed ripple in control mode

Fig. 8: Motor running during steady state

 Gains adjusting are almost a hard work. The kp
gain determine overall system performance and the ki
gain is used to zeroes the error in steady state. At the
first time these gain may set to zero. Then the kp gain
increase until the response become as fast as possible
with no overshoot. Then the ki will be set to a small
number.
 To verify the speed regulation and response time, it
is better we examine the system in speed control mode
rather than torque mode.
 We use a simple frequency to voltage converter
using lm331. The output of shaft encoder is fed to this
simple circuit, so by using a storage oscilloscope we
can analyze the speed tuning and response time for
adjust ki, kp gains respectively (Fig. 7).

MATERIALS AND MATHODS

 In general, this system consist of one processor
board, one auxiliary board and a 3-phase induction
motor. The processor board consist of a MC68332 as
main processor and it’s peripherals such as RAM, A/D
converter, buffers and others. 16 bit data bus is
constructed by two 32k*8 bit SRAMs. memory back-up
circuitry that is combined of two Ultra-capacitor and
MAX691 is sufficient for three month, so the needing

for any EPROM, EEPROM or FLASH is removed.
MC145050 is used for A/D conversion. This chip is
well suited for MC68332 processor in 10 bit resolution.
The auxiliary board consist of some logic ICs and OP-
AMPs for pulse and analog-signal conditioning
respectively. It also has a insulation-barrier to
completely insolate the controller-board from power-
stage. Two CSNE151-100 hall-effect-sensor is used in
this board for phase current sensing. The power-stage,
also, is present in this board that itself consist of three
IR2113 as gate-drivers, IRF840 as power switches,
RCD Snubbers, over-current-protection circuitry and
some others.
 The induction Motor is a 3-phase, 220V/380V,
120W, two pole type, that a 200 pulse/rev shaft-encoder
is coupled to it’s shaft.

RESULTS

 This study propose a basic vector control algorithm
and it’s implementation for induction motor control. It
show that the control schema consist of several
functional blocks. These blocks is discussed in some
details and a few application tips for implementation of
these blocks into hardware is offered. At last,
experimental results show the validation of the
proposed algorithm and it’s implementation.

DISCUSSION

 Today, there is a wide variety of DSPs and
algorithms those are optimized for Motion-control. If
our goal was only the vector control of the induction
motor, then it was better that we choose other type of
processors, and off-course, a great optimization in cost
and developmental-time would be achieved. But our
final goal was to design and construction of a very
powerful Single-Board-Computer (SBC) using
MC68040 that can be used for any processes. So we
decided to choose one 68k family processor like 68332,
because it is well suited for motion control tasks and off
course the CPU32 has a great compatibility with 68040
processors.

CONCLUSION

 Vector control systems, for the most part, are
comprised of the same control blocks. However, some
systems implement more precise calculation methods
for determining and controlling rotor flux. In the next
design we will use the very powerful MC68040 for this
art. The proposed system in this study can be

Am. J. Engg. & Applied Sci., 2 (2): 488-493, 2009

 493

foundation to implementing more advanced and precise
techniques using 68040.

ACKNOWLEDGEMENT

 We thanks research center of the University of
Tabriz for laboratory and material supports and
foundations.
 We also thank P. Pinewski and R. Valentine. from
freescale (motorla) because all system hardware and
software of the proposed system example are based on
their nice works.

REFERENCES

1. Peter J. Pinewski, 1997. Implementing a simple

vector controller. Proceeding of the American
Control Conference, June 4-6, IEEE Xplore Press,
NM., USA., pp: 262-266. DOI:
10.1109/ACC.1997.611798

2. Valentine, R., 1998. Motor Control Electronic
Hand Book. McGraw Hill, New York, USA.,
ISBN: 0070668108, pp: 704.

