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Abstract: Problem statement: Classification accuracy assessment is the main stage of information 
extraction to evaluate the performance of a classifier. According to the output's classifiers (thematic 
map/fraction map), a properly strategy for accuracy assessment should be taken into consideration. 
Since pure pixels are used in traditional accuracy assessment of full pixel classifiers they are not 
suitable for assessment of sub-pixel classifiers. The objectives of this study were to find a standard 
sub-pixel accuracy assessment method for evaluation of the sub-pixel classifiers. For this purpose 
many efforts had been taken and recently some methods and measures such as entropy and cross-
entropy had been proposed for sub-pixel accuracy assessment. These methods had their own 
shortcomings which seriously a fuzzy ground truth data set was needed, the matter that is not available 
simply. Approach: In this study recently sub-pixel classifier accuracy assessment methods were 
explored and a new method based on correctness coefficient parameter for the sub-pixel accuracy 
assessment was introduced. In order to evaluate the CC method, a sub-image of the AVIRIS of hyper 
spectral data was taken over an agricultural area of California, USA in 1994. The study area consisted 
of 16 classes. Sub-pixel accuracy assessment methods were discussed. The experiment results using 
AVIRIS data demonstrated the ability of the new accuracy assessment method. Results: Indeed, in 
proposed method the matching rate of fraction maps with ground truth data was quantified as 
correctness coefficient parameters. As a result, flexibility and consistency of sub-pixel accuracy 
assessment certified by correctness coefficient regarding the type of available data and classification 
methods. The obtained overall CC over LSU method using 120 bands is about 84.9%. In contrast, the 
obtained results in terms of OA and Kappa coefficient over LSU method which were achieved by 
maximum value rule on the fraction maps are 86 and 84% respectively. The Kappa coefficient value is 
close to overall CC of LSU method. Conclusion: Hence, evaluation and experiments demonstrated 
that the CC method as an accuracy assessment parameter of a soft classifier can be substituted 
reasonably by traditional accuracy parameters. 
 
Key words: Accuracy assessment, fraction map, pixel based, sub-pixel classifier, endmember, MNF 
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INTRODUCTION 
 
 Remote sensing is an attractive source of data for 
land cover mapping applications. Classification 
traditionally is defined as a mapping function from the 
image apace into a nominal space which each pixel has 
one label. Usually the result of the classification is a 
thematic map which each pixel is allocated to a specific 
class. In some cases classification tries to delineate 
objects on the real world and this is done by pre-
processing the image (e.g., segmentation). In the other 

hand, some of the classification methods defines the per 
pixel fraction of each class and allow calculating the 
correct area estimation of the classes. 
 There are many classifiers that so far have been used 
and some of them exist in the state of the art soft wares 
like maximum likelihood (MLC), minimum distance and 
so on. Traditional classifiers often attempt to generate a 
thematic map but this leads to the incomplete area 
estimation of the classes. Because of the mismatching of 
the sensor grid and the real object boundaries, some 
mixed pixels (mixels) will appear in the image[4]. 
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  The grey value of such mixels is a composition of 
the radiometric properties of the several classes 
(objects) and therefore generates some confusion in 
classification procedures[14,15]. Traditional classifiers 
like MLC assign each pixel to only one class. 
Consequently the mixels usually are labelled 
erroneously. Such classifiers are inappropriate for mixels 
which contain two or more land cover classes. Hence, a 
sub-pixel classifier is required. After each classification 
the classified image must be investigated and its 
accuracy should be reported. In respect of the result type 
(Thematic map, fraction map...) we can choose an 
adequate strategy for accuracy assessment. At last, some 
parameters, tables and maps will be calculated and 
generated to show the accuracy of the result.  
 In this study we try to show some aspects of the 
sub-pixel accuracy assessment of the classified maps 
resulted from the sub-pixel classifiers. However a new 
method and a rectified version of traditional accuracy 
measures are proposed for using in accuracy assessment 
of the sub-pixel classifiers. 
 

MATERIALS AND METHODS 
 
Sub-pixel classification methods: The main problem 
and limitation of traditional hard (pixel based) image 
classification procedures is in the classification of 
mixed pixels. Mixed pixel classification is a process 
which tries to extract the proportions of the pure 
components of each mixed pixel. Sub-pixel 
classifications have been used to represent land cover 
when pixels may have multiple and partial class 
membership. To resolve the mixed pixel problem, there 
are different approaches. Some of the most important 
soft classification methods are: (i) Deterministic 
approaches; (ii) Fuzzy set theory based approaches[13]; 
(iii) Neural network based approaches[12,18]; (iv) Linear 
mixture modelling approach[3,11,17]. Among of these 
approaches we chose the linear mixture modelling 
approach to produce some (semi) fuzzy results and use 
them to test the accuracy assessment approaches. 
 There are two different mixture models for mixed 
pixel classification[3]: The nonlinear mixing and the 
linear mixture model. The nonlinear mixture model for 
unmixing analysis considers not only the pixel of 
interest, but also involving the neighbouring pixels i.e., 
each photon that reaches the sensor has interacted with 
multiple scattering between the different class types. In 
the linear mixture model, each pixel is modelled as a 
linear combination of a number of pure materials or 
endmembers. These mixture models are shown in the 
Fig. 1 and 2. The linear mixture model is known as the 
spectral unmixing. Spectral unmixing is a method which 
the user allowed to determine information on a sub-pixel 
level and to study decomposition of mixed pixels[9]. 

 

 
Fig. 1: Non-linear mixture model 
 

 
 
Fig. 2: The linear mixture model 
 
 In this research, the linear mixture model is 
concerned and linear unmixing model is used to classify 
a hyperspectral image. This linear mixture model can 
be mathematically described as a set of linear vector-
matrix equations: 
 

n
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DN (E .f ) or DN Ef
=

= + ε = + ε∑  (1) 

 
Where: 
i = 1,…,m (m is the number of bands) 
j = 1,…,n (n is the number of endmembers or 

classes) 
DNi = The i×1 hyperspectral vector of each pixel  
Eij = The j×i endmembers spectrum matrix and it is 

the weighting fraction of each endmember. 
Each column in Eij matrix is the spectrum of 
one endmember 

f j = The j×1 fraction vector of each endmember for 
the pixel and εi is the error term of 
mathematical model 

 
 This model can be described as in the matrix form: 
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 Solving the Eq. 1 results the unconstrained 
unmixing using no constrain. The resulting fractions 
may have negative values and are not constrained to 
sum to unity. In order to avoid this, the sum to unit 
constraint is added to the equations of the unmixing 
process. Applying the condition that all the resulting 
fractions must sum to unit is referred to partially 
constrain unmixing. However, fraction values which are 
negative or greater than one are still possible[16]. Fully 
constrained unmixing implies an additional condition in 
that all determined endmember fractions must be 
between 0-1. It should be noted that the final results of 
unmixing algorithm depend to the type and number of 
endmembers. Therefore, any changes applied to the 
reference endmembers will cause changes on the 
fraction map results[3]. 
 A solution for the linear unmixing problem 
requires that; the sum of the coefficients equals one, 
because ensure the whole pixel area is represented in 
the model and also each of the fraction coefficients be 
nonnegative to avoid negative sub-pixel areas. The first 
requirement can be modelled by a constraint equation, 
for the second requirement, the coefficients need to be 
constrained by: 
 

N

n n
n 1

f 0, f 1
=

≥ =∑  (3) 

 
 Together, the mixing equations and the constraints 
describe a model that must be solved for each pixel 
which should be decomposed, i.e., given DN and E, we 
have to determine f and ε in Eq. 1[9]. We will have some 
fraction maps (f) which hopefully shows the real 
fraction of each class for pixels as the output. 
 
Accuracy assessment methods of the classifiers: 
Pixel based accuracy assessment methods: Accuracy 
assessment is an essential post classification stage. 
Accuracy of the results is expressed in various forms 
relative to the classification results and method. The 
result of the common classification methods (e.g., 
MLC) is in the form of land cover/use map and usually 
the accuracy of it is assessed by comparing it to a 
ground truth map. The ground truth or reference map is 
usually stored in the digital form and defines well 
known land cover types for some pixels of the scene. 
Pixel by pixel comparison of these two maps results an 
error (or confusion) matrix. 
 From the error matrix some error and accuracy 
measurements are derived which each of them show 
some error or accuracy aspects of the final results. One 
of the most popular parameter calculated on the basis of 
the error matrix is overall accuracy. This parameter 

equals the ratio of sum of the diagonal elements of the 
error matrix on the number of pixels which have been 
correctly classified. For each category (class), an 
accuracy parameter is also defined. In each row, the 
ratio of the diagonal component (for each class) on the 
sum of pixels of that row is called user's accuracy. 
Analogously this ratio is calculated for each column 
and is called producer's accuracy. 
 Based on the error matrix another measure for 
accuracy is defined which is called Kappa coefficient. 
This accuracy criterion is calculated by Richards[10]: 
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In which:  
N = Total number of test pixels 

i ij
j

x x+ =∑  (i.e., sum of the elements for row i) 

j ij
i

x x+ =∑  (i.e., sum of the elements for column j) 

 
 Commission error is defined as the ratio of the 
sum of the off diagonal components in each row to the 
number of pixels of that row. Omission is a similar 
error measurement for columns. Hence for each row we 
can calculate commission and user's accuracy and for 
each column omission and producer's accuracy are 
calculated. These factors need ground truth data and 
comparing thematic map and ground truth which results 
an error matrix. As Congleton and Green[2] have 
mentioned, error matrix is recommended only for 
identifying sources of confusion (i.e., differences 
between the remotely sensed map and the reference 
data) and not just error in the remotely sensed 
classification and this fact would be considered more 
important in the sub-pixel accuracy assessment. 
 Also, generating a thematic map in sub-pixel 
classification results are not straight forward and some 
other post-processing (e.g., thresholding) must be 
applied. For this reason, accuracy assessment of the 
sub-pixel classification results is not similar to the 
common accuracy assessment methods. If we want to 
use the traditional accuracy assessment (e.g., confusion 
matrix) we have to generate a thematic map and then 
compare it with a ground truth map.  
 
Sub-pixel accuracy assessment methods: In respect to 
the result’s type (thematic map/fraction map), an 
adequate strategy for accuracy assessment of the 
classification results must be chosen. Traditional 
methods of accuracy assessment for conventional pixel-
based classification are not perfect for sub-pixel 
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classification accuracy assessment. Because, training 
data and ground truth are pixel-based and we can not 
use directly any pixel based method for accuracy 
assessment of the sub-pixel classification results. 
Although in some cases the only way to compute the 
accuracy of a sub-pixel classifier is to harden its[5].  
 On the basis of the sub-pixel classification results, 
some methods have been proposed to estimate the 
accuracy of such a classification method. Foody[5] has 
an excellent review on the available sub-pixel accuracy 
assessment techniques. The most of the methods that he 
mentioned need to a fuzzy ground truth map the matter 
that is not available simply[2]. Avoiding the dependency 
to the ground truth data, entropy is defined. Entropy 
measures the uncertainty in a single value of a 
statistical variable and is defined as the information 
content of a piece of information that would reveal this 
value with perfect accuracy. This quantity is weighted 
by the probability that value occurs and summed overall 
values, which gives[7]: 
 

N

p i p 2 i p
i 0

E(x ) P(c / x ) log (P(c / x ))
=

= −∑  (5) 

 
In which: 
N  = Number of classes  
P(xi/ci) = The posteriori probability of the class Ci in 

the pixel xp  
 
 Thus entropy is calculated per pixel.  
 The entropy parameter has several limits and 
disadvantages. One of the limitations of the entropy is 
that it can't show how much the classification accuracy 
is reasonable[8]. Since the mixed pixels have high 
entropy it can not demonstrates classification accuracy. 
Therefore, in the presence of mixed pixels the high 
entropy always indicates the best classification 
accuracy. Other limitation of entropy is that it can not 
show how much the classification accuracy is best or 
poor. Therefore, entropy parameter can not be used to 
compare the accuracy of two classification procedures. 
Therefore, Foody[5] propose that we can use of cross-
entropy for sub-pixel classification accuracy, if a sub-
pixel or fuzzy ground truth map exist. Cross-entropy 
parameter is determined as the following equation: 
 

c p p 2 p

p 2 p

E (x ) P(x ). log p(x )

P(x ). log p '(x )

= −
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∑
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 (6) 

 
p(xp) = The posterior probability of the classification 

result in pixel xp  
p'(xp) = The posterior probability of the pixel xp in 

ground truth map  

 Cross-entropy is calculated from the probability 
distributions of class membership derived from the 
remotely sensed and ground data sets. The use of cross-
entropy as an indicator of classification accuracy was 
investigated with reference to land cover classifications 
of two contrasting test sites. Thus cross-entropy is 
calculated for each pixel and defined as the expected 
information content of a piece of information that 
would reveal its true class. The major problem of this 
method is that it needs the fuzzy ground truth map; the 
matter which often is hard to be available. 
 One of the accuracy assessment methods is 
comparative evaluation between area of ground truth 
and area estimation via classifiers[1]. In this method the 
area of each class is obtained by the appropriate fraction 
map. These values are compared with the same other 
areas which obtain from reliable sources (e.g., Old 
maps, database or other classifications)[3]; More similar 
values the more accurate classifications. This approach 
uses the fraction maps to calculate the area covered by 
each class. In this approach we just sum the fractions of 
each class ignoring the spatial distribution of the errors. 
The nonsite-specific nature of this approach is, 
however, a major limitation as a map could easily 
display the classes in the correct proportions but in the 
incorrect locations[6]. 
 Additionally result of this method give any 
accuracy parameter that can be used at the comparing 
two or more classifications. Logically the closeness of 
the estimated and true area is the basic criterion for 
accuracy of the classification. Thus relatively we can 
just say "this classification is more accurate than the 
other one". 
 
Correctness coefficient as a new accuracy method: 
As mentioned previously, we can not use traditional 
accuracy assessment procedures for sub-pixel accuracy 
assessment. For accuracy assessment of this kind of 
classification results we have to use fraction maps as 
the main results of the sub-pixel classification.  
 In the first steps a parameter which expresses the 
matching rate of the results (fraction maps) with the 
ground truth data is needed. For this purpose, we 
introduce the Correctness Coefficient (CC) parameter. 
In order to obtain correctness Coefficient, a binary map 
for each class is generated from the ground truth data. 
The binary maps of classes are determined as the 
following expression: 
 

j,k j,kBi if (G Li,1, 0)= =  

 

j,k i j,k j,kif (G L ) then Bi 1 else Bi 0∈ = =  (7) 
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i = 1...N (N is number of classes) 
j = 1…r (r is number of rows) 
k = 1…c (c is number of columns) 
 
In which:  
Bi = Binary map of class i 
G = Ground truth map 
Li = Label of class i 
 
 After this step, each binary map is multiplied with 
the corresponding fraction map pixel by pixel: 
 

j,k j,k j,kAMi Bi Fi= ×  (8) 

 
i = 1...N (N is number of classes) 
j = 1…r (r is number of rows)  
k = 1…c (c is number of columns) 
 
In which: 
AMi = Accuracy map of class i 
Fi = Fraction map of class i 
 
  In fact by this multiplication, for each pixel with 
value 1, the calculated fraction remains and zero 
components of the binary map dismiss the other 
fractions which have no any corresponding ground truth 
data. So, in this approach for each ground truth pixel of 
a particular class, the relevant fraction value will be 
remained. As a result, it make possible to calculate the 
correspondence of the resulted fraction with the ground 
truth data. After this step, correctness coefficient of 
each class, Si, is estimated as follows: 
 

r c

i j,k
j 1 k 1

S Ami
= =

=∑∑  (9) 

 
i = 1...N (N is number of classes)  
j = 1…r (r is number of rows)  
k = 1…c (c is number of columns)  
 
 Then: 
 

N

i
i 1

S
CC

Ng
−=
∑

 (10) 

 
where, Ng is the number of known pixels in the ground 
truth map. CC also can be computed for each class 
individually: 
 

i
i

i

S
CC

NP
=  (11) 

 Where NPi is the number of known pixels for ith 
class in the ground truth map. Correctness coefficient is 
expressed as the percentage and resembles the overall 
accuracy in the traditional error matrices and it can be 
used as an overall accuracy measure for the sub-pixel 
results. 
 In addition to the accuracy parameters, some error 
measures can also be derived to express the contained 
errors in the results. Since the commission and 
omission error are defined in the traditional accuracy 
assessment, we introduce these parameters on the basis 
of the ground truth binary maps and classification 
resulted fraction maps. In a traditional error matrix, 
commission errors define the percentage of those pixels 
that have been labelled as a particular class but in 
ground truth are in a different category. Analogously 
omission defines the percentage of pixels from a 
particular class which have been labelled as the other 
classes. By this concept we can calculate omission and 
commission errors for each class using sub-pixel 
classification results. Firstly we subtract each fraction 
map from the binary map for each class individually: 
 

j,k j,k j,kDi Bi Fi= −  (12) 

 
i = 1...N (N is number of classes) 
j = 1…r (r is number of rows)  
k = 1…c (c is number of columns)  
 
In which:  
Di = Difference value map for class i 
Bi = Binary ground truth map of class i 
Fi = Fraction map of class i 
 
 The resulted map has some positive and negative 
values. Positive values are for those pixels which have 
the value 1 in the corresponding binary map. Therefore, 
the negative values are the result of the subtraction of 
the zero values from the fraction values. In fact the 
positive values are the values which have been 
allocated to other classes. This resembles the omission 
error in the traditional error matrices. Considering the 
same concept we can define the commission error using 
the negative values: 
 
if Dj, k>0 
 

r c

j,k
j 1 k 1

Di

OEi
NPi

= ==
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 (13) 

 
r = The number of rows  
c = The number of columns 
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if Dj,k<0 
 

r c

j,k
j 1 k 1

i

Di

CE
Ng

= ==
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and 
 

N

j,k
i 1

Bi 1
=

=∑  

 
Ng = The numbers of known pixels in the ground truth 

map 
NPi = Numbers of pixels of class i in the ground truth 

map 
N = Number of the classes 
j = 1…r; k = 1…c; i = 1…N 
OEi = The omission error for class i 
CEi = The commission error for class i 
 
 These error measures are defined per class and can 
explain the error rate of the resulted fraction map. The 
conducted evaluation and experiments pertains to these 
concepts and shows only one case study using the real 
data. 
 

RESULTS 
 
Evaluation and experiments: In order to evaluate the 
CC method, a sub-image of the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) of 
hyper spectral data was taken over an agricultural area 
of California, USA in 1994. This data has 220 spectral 
bands about 10 nm apart in the spectral region from 
0.4-2.45 µm with a spatial resolution of 20 m. The 
image has a size of 145 rows by 145 columns. Figure 3 
and 4 show the colour composite of the study area and 
its ground truth map respectively.  
 The study area consists of 16 classes. Since, there 
is only12 classes in the reality regarding the radiometric 
overlap between classes some of the (spectrally) similar 
classes are merged. As a result, 12 distinct spectral 
classes remain for experiments. This study can not 
affect to the obtained results.  
 Table 1 shows the number of pixels for each class 
in the ground truth map. In addition, ENVI and Matlab 
software’s were used for implementing and evaluating 
the algorithm.  
 The basic assumption of the Linear Spectral 
Unmixing (LSU) is that the most of pixels are mixtures 
of objects. Once all the end members are found in an 
image (using the mean Regions Of Interest (ROIs) 
procedure), all the remaining pixels are considered to 
be linear combinations of these endmember pixels. 

 
 
Fig. 3: Colour composite of the study area 
 

 
 
Fig. 4: Ground truth of the study area 
 
Table 1: numbers of pixels per class on the ground truth 
Class No. Classes No. of pixel (NPi) 
C1 Hay windowed  489 
C2 Com min 834 
C3 Com no till 1434 
C4 com  614 
C5 Grass pasture moved 2494 
C6 Soybeans clean  614 
C7 Grass Trees 747 
C8 Grass pasture 497 
C9 Soybeans no till 968 
C10 Wood  1294 
C11 Alfalfa 149 
C12 Oats 212 
 
Some of the hyperspectral image bands are the subject 
of absorption and they contain only little signal and 
more noise. Analysis of the original spectral bands not 
only is inefficient but also tends to create poor results[3]. 
The correlation and noisy bands are removed from the 
original bands by performing Minimum Noise Fraction 
(MNF) transformation. Moreover, the bands are sorted 
according to their variances. The output results show 
that almost 99% of total variance is presented in the 25 
first components. The cut off band number was 
determined by checking the MNF eigenvalues plot that 
is shown in Fig. 5. 
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Fig. 5: The MNF eigenvalues plot 
 

 
 
Fig. 6a: MNF (1, 2 and 3) 
 

 

 
Fig. 6b: MNF (193, 194 and 195) bands 
 
 Having MNF transform, the data space can be 
divided into two parts: one part associated with large 
eigenvalues and corresponding eigenimages and the 
other part having near-unity eigenvalues are noise 
dominated images. Visual assessments of images show 
that the bands numbered greater than 150 consist of data 
which dominated by noise. Figure 6a shows the first 
three bands (1, 2 and 3) of MNF images which have 
large eigenvalues and corresponding eigenimages. Also, 
Fig. 6b shows the last three bands (193, 194 and 195) of 
MNF images which are dominated by noise. 
 In the bands with a large variance, the features can 
be distinguished from each other in a better mode, 
therefore classification accuracy increased sensibly. Also, 
performing MNF transformation on the hyperspectral 
images reduces the dimensionality of hyperspectral image 
data for the next processing steps. Hence, this method 
was applied upon MNF images which lead to the better 
results than the case which uses the original bands[3]. 
Table 2 shows that the RMS error of each pixel in the 
model is decreased by increasing the number of bands. 

Table 2: RMS error means unmixing 

  LSU  
No. of RMS error ------------------------------------- 
bands εI Original images MNF 

20 Mean error 1.992245 0.118545 
50 Mean error 2.647923 0.128302 
87 mean error 2.453670 0.128193 
120 Mean error 2.340894 0.126726 
155 Mean error 2.133099 0.124806 
175 Mean error 2.031512 0.123393 
195 Mean error 1.938037 0.122026 

 
This decreasing of RMS error is obviously observed in 
the MNF images. The linear unmixing method assumes 
that the most of pixels are mixed. In the other hand, 
once all the endmembers are found in an image, all the 
remaining pixels are considered to be linear 
combinations of these endmembers pixels. In this 
procedure, 20, 50, 87, 120, 155, 175 and 195 bands 
were contributed for classification. Figure7 shows some 
fraction images that obtained by LSU.  
 LSU classification does not give label directly to 
any pixel. However, a classified map, which is a pixel-
based representation of classification, can be generated 
by performing maximum value role on the fraction 
images. In the other hand, by conducting this rule on 
the fraction maps, a thematic map is generated which 
each pixel has a specific class label (harden result). This 
map can be used to compare the proposed sub-pixel and 
traditional pixel based accuracy assessment methods. 
Hardening the LSU results can lead to some lose of the 
information and accuracy but this is one of the common 
approaches to evaluate the accuracy of the sub-pixel 
classification results and also we used it only for the 
comparison of the two methods. 
 Therefore, the mentioned accuracy measures for 
the resulted fraction maps are computed using ground 
truth data (Fig. 4). The classification accuracy increased 
by increasing the number of bands which are 
contributed in the classification algorithm. 
 A binary map from the ground truth data is generated to 
obtain CC parameter for each class. The numbers of 
binary images are equal to the number of classes or end 
members. In this research, 12 binary images are 
produced. The values of binary image are 0 or 1 where 
number 1 indicates that pixels belongs to the 
corresponding class of binary image and number 0 
indicates that pixels belong to other classes. 
 AMi is achieved by Pixel to pixel multiplying of 
ground truth  binary  image and corresponding 
fraction map. For CC calculation, the sum of the pixel 
values in the AMi image is divided to the number of 
pixels  in  the land use for each fraction map. For 
LSU, the achieved results of CC  are between 0  and 1. 
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Fig. 7: some samples of the fraction maps resulted from the LSU performed on the [120] MNF bands 
 
Table 3: Sum of the CC for LSU on the MNF images with 120 bands 
Class  No. of pixel No. of pixel 
No. Classes name (NPi) (FMi) 
C1 Hay windowed  489 453.36 
C2 Com min 834 684.76 
C3 Com no till 1434 1232.60 
C4 corn  614 526.62 
C5 Grass pasture moved 2494 2131.30 
C6 Soybeans clean  614 560.11 
C7 Grass trees 747 705.65 
C8 Grass pasture 497 351.44 
C9 Soybeans_notill 968 1232.60 
C10 Wood  1294 986.39 
C11 Alfalfa 149 91.58 
C12 Oats 212 208.55 

 
If CC is equal to 1, it means that all pixels in land use 
and fraction map have the same label. As a result, the 
unmixing correctness becomes 100%. In contrast, if CC 
is equal to zero it means that pixel in land use and 
fraction map have not the same label. Hence, the 
unmixing correctness becomes 0%. 
 Intuitively, this parameter expresses the matching 
rate of unmixing results with the ground truth data. In 
this research CC and total CC are obtained for each 
class and LSU algorithms respectively. The results of 
this operation are shown in the Table 3. 
 In Table 3, (NPi) is number of pixels in ground 
truth and (FMi) is number of pixels which gathered 
from the CC parameters on the fraction maps. In the 
pixel based accuracy assessment methods, Overall 
accuracy is simply the sum of the correctly classified 
pixels or samples divided by the total number of 
pixels or samples in the ground truth. By using of this 
concept, we can estimate Overall Accuracy (OA) for 
LSU classification  and  sub-pixel   accuracy   method. 

Table 4: The Confusion matrix based on performing Maximum 
Value Rule (MVR) on the fraction maps  

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 
489 0 1 0 0 0 46 0 0 6 0 0 
0 211 0 0 9 2 1 0 0 4 0 4 
0 0 816 0 8 0 2 71 65 0 2 109 
0 0 22 526 6 4 0 20 67 10 1 23 
0 0 3 0 1205 7 0 1 0 1 0 1 
0 0 10 15 5 519 0 26 41 13 9 17 
0 0 0 4 1 3 95 2 1 2 4 2 
0 0 59 5 3 1 2 1184 22 8 1 103 
0 0 14 63 8 71 0 28 612 30 0 32 
0 0 3 0 30 3 0 2 6 354 0 16 
0 0 6 0 19 2 0 0 5 64 730 17 
0 1 34 1 0 2 3 100 14 5 0 2144 
 
By applying of the values of Table 3 is estimated 
overall accuracy for LSU method. The value of overall 
accuracy is 89.05%.  
 Furthermore, the confusion matrix is achieved by 
applying the Maximum Value Rule (MVR) on the 
fraction maps. Hence, users and product accuracies are 
computed and their results are shown in Table 4. The 
OA of LSU is 86% and the corresponding Kappa 
coefficient is about 84%. 
 This research attempts to introduce a new method 
called Correctness Coefficient (CC) for accuracy 
assessment of the sub-pixel classifiers. Using the concept 
of matching rate between fraction maps and ground truth 
data the overall CC and individual CCs have been 
computed. Also, these parameters are calculated via 
confusion matrix which is achieved by conducting 
maximum value rule on the fraction maps. The obtained 
overall CC over LSU method using 120 bands is about 
84.9%. Moreover, the obtained CCs for individual 
classes and omission errors are shown in Table 5: 
 
OEi(%) = 100-CCi(%) (14) 
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Table 5: The individual CCs for LSU of the 120 MNF bands 
Classes Classes CC for each class (%) 
C1 Hay windowed 98.4 
C2 Oats 94.5 
C3 Soybeans no till 85.8 
C4 Soybeans clean  85.6 
C5 Wood 91.2 
C6 Corn 85.9 
C7 Alfalfa 70.7 
C8 Corn no till 82.1 
C9 Corn min 86.1 
C10 Grass pasture 76.2 
C11 Grass Trees 92.7 
C12 Grass pasture-moved 82.4 

 
DISCUSSION 

 
 The experimental results show that CC of some 
classes such as alfalfa and grass pasture are smaller 
than other classes. This may due to the spectral 
similarity between these classes with grass classes that 
are shown in Table 4. In contrast, compared to mixed 
classes like soybeans and corn classes some distinct 
classes such as Hay windowed and oats are classified 
with high accuracy. The obtained overall CC over LSU 
method using 120 bands is about 84.9%. In contrast, the 
obtained results in terms of OA and Kappa coefficient 
over LSU method which are achieved by MVR on the 
fraction maps are 86 and 84% respectively. The Kappa 
coefficient value is close to overall CC of LSU method. 
It demonstrates that the CC method as an accuracy 
assessment parameter of a soft classifier can be 
substitutes reasonably by traditional accuracy 
parameters. Despite the remarkable results of LSU, the 
use of soft classifiers is still limited by the lack of well-
assessed and adequate methods for evaluating the 
accuracy of their outputs. CC method uses the fraction 
maps to extend the applicability of the traditional error 
matrix method to the evaluation of soft classifiers. In 
fact it is designed to deal with those situations in which 
classification and/or reference data are expressed in 
multimember ship form and intrinsically vague classes. 
 

CONCLUSION 
 
 In this study, an innovative accuracy assessment 
method for sub-pixel classifiers called CC is proposed. 
Traditional accuracy assessment methods have been 
designed on the basis of the hard classifiers and 
therefore there is no straightforward approach for soft 
classifiers. In the other hand, ground truth data that are 
inherently hard in nature force the accuracy assessment 
to be hard. 
 Recently, few methods have been proposed for the 
accuracy assessment of sub-pixel classifiers. These 

approaches can not certify desired flexibility and 
consistency. Correctness coefficient, recommended by 
the authors is one of the efforts to ensure the flexibility 
and consistency of the sub-pixel accuracy assessment 
regarding the type of the available data and 
classification methods. Obtained results from the case 
study show that correctness coefficient (soft) and 
overall accuracy and kappa (hard) are approximately 
the same or similar in value enough. The proposed 
method for the accuracy assessment of the sub-pixel 
classifiers make possible to inspect the classes 
individually (individual CCs). Furthermore, each class 
can be investigated individually in respect of the 
corresponding commission and omission errors. 
 Although in this approach we used hard ground 
truth data, but this is the common case and there is no 
any fuzzy ground truth in the traditional image analysis. 
However, using the correctness coefficient parameter 
and its family we can take into account the major sub-
pixel properties of such a classifiers and the effect of 
the inherent limitation of the hard ground truth data can 
be reduced. 
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