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Abstract: Problem statement: Classification accuracy assessment is the maire stagnformation
extraction to evaluate the performance of a clessifccording to the output's classifiers (themati
map/fraction map), a properly strategy for accurasgessment should be taken into consideration.
Since pure pixels are used in traditional accurasyessment of full pixel classifiers they are not
suitable for assessment of sub-pixel classifietg& ®bjectives of this study were to find a standard
sub-pixel accuracy assessment method for evaluatioihe sub-pixel classifiers. For this purpose
many efforts had been taken and recently some method measures such as entropy and cross-
entropy had been proposed for sub-pixel accuragesasment. These methods had their own
shortcomings which seriously a fuzzy ground truttadset was needed, the matter that is not availabl
simply. Approach: In this study recently sub-pixel classifier acayraassessment methods were
explored and a new method based on correctnes§icometf parameter for the sub-pixel accuracy
assessment was introducéa.order to evaluate the CC method, a sub-imagbaefAVIRIS of hyper
spectral data was taken over an agricultural afézabfornia, USA in 1994. The study area consisted
of 16 classes. Sub-pixel accuracy assessment neetheck discussed. The experiment results using
AVIRIS data demonstrated the ability of the newuwmacy assessment methdgesults. Indeed, in
proposed method the matching rate of fraction mafih ground truth data was quantified as
correctness coefficient parameters. As a resuilllity and consistency of sub-pixel accuracy
assessment certified by correctness coefficierdarokag the type of available data and classificatio
methods. The obtained overall CC over LSU methadgu$20 bands is about 84.9%. In contrast, the
obtained results in terms of OA and Kappa coeffitiever LSU method which were achieved by
maximum value rule on the fraction maps are 868&#t% respectively. The Kappa coefficient value is
close to overall CC of LSU metho@onclusion: Hence, evaluation and experiments demonstrated
that the CC method as an accuracy assessment paraofiea soft classifier can be substituted
reasonably by traditional accuracy parameters.

Key words: Accuracy assessmerftaction map, pixel based, sub-pixel classifierdmember, MNF
transformation, Linear Spectral Unmixing (LSU)

INTRODUCTION hand, some of the classification methods defineg#r
pixel fraction of each class and allow calculatiihg
Remote sensing is an attractive source of data forzorrect area estimation of the classes.

land cover mapping applications. Classification There are many classifiers that so far have beed u
traditionally is defined as a mapping function fréine = and some of them exist in the state of the artwafes
image apace into a nhominal space which each pal h like maximum likelihood (MLC), minimum distance and
one label. Usually the result of the classificatisna  so on. Traditional classifiers often attempt to egate a
thematic map which each pixel is allocated to aige thematic map but this leads to the incomplete area
class. In some cases classification tries to daiee estimation of the classes. Because of the misnmajabfi
objects on the real world and this is done by prethe sensor grid and the real object boundaries,esom
processing the image (e.g., segmentation). In thero mixed pixels (mixels) will appear in the imate
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The grey value of such mixels is a composition of
the radiometric properties of the several classes
(objects) and therefore generates some confusion in
classification procedurB$™®. Traditional classifiers
like MLC assign each pixel to only one class.
Consequently the mixels usually are labelled
erroneously. Such classifiers are inappropriatarfiocels
which contain two or more land cover classes. Heace
sub-pixel classifier is required. After each clfsation
the classified image must be investigated and its
accuracy should be reported. In respect of thdtrggqe
(Thematic map, fraction map...) we can choose an
adequate strategy for accuracy assessment. Astase
parameters, tables and maps will be calculated and
generated to show the accuracy of the result.

In this study we try to show some aspects of the
sub-pixel accuracy assessment of the classifiedsmap
resulted from the sub-pixel classifiers. Howevereav
method and a rectified version of traditional aecyr
measures are proposed for using in accuracy aseessm

of the sub-pixel classifiers. In
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Fig. 2: The linear mixture model

this research, the linear mixture model is

concerned and linear unmixing model is used tosdias

MATERIALSAND METHODS

Sub-pixel classification methods: The main problem
and limitation of traditional hard (pixel based)dge
classification procedures is in the classificatioh

mixed pixels. Mixed pixel classification is a prese DN, =Zn:(Eu' f)+g orDN=Ef+¢
j=1

which tries to extract the proportions of the pure
components of each mixed pixel. Sub-pixel
classifications have been used to represent langrco Where:
when pixels may have multiple and partial class'
membership. To resolve the mixed pixel problemrethe |
are different approaches. Some of the most impbrtan
soft classificaton methods are: (i) Deterministic DNi
approaches; (ii) Fuzzy set theory based approfthes Ej
(iii) Neural network based approach&®®: (iv) Linear
mixture modelling approaéhi™'” Among of these
approaches we chose the linear mixture modelling
approach to produce some (semi) fuzzy results aed u f;
them to test the accuracy assessment approaches.
There are two different mixture models for mixed
pixel classificatioff: The nonlinear mixing and the
linear mixture model. The nonlinear mixture modal f
unmixing analysis considers not only the pixel of

a hyperspectral image. This linear mixture model ca
be mathematically described as a set of linearovect
matrix equations:

1)

]

= 1,...,m (mis the number of bands)

1,....,n (n is the number of endmembers or
classes)

= The K1 hyperspectral vector of each pixel
= The Kxi endmembers spectrum matrix and it is

the weighting fraction of each endmember.
Each column in [ matrix is the spectrum of
one endmember

The K1 fraction vector of each endmember for
the pixel and g is the error term of
mathematical model

This model can be described as in the matrix form:

interest, but also involving the neighbouring pixek., DN, En Ep Eun

each photon that reaches the sensor has interadted DN, E,, E, E,,

multiple scattering between the different classegypn PN = E=

the linear mixture model, each pixel is modelledaas

linear combination of a number of pure materials or DN, B En Eom )
endmembers. These mixture models are shown in the f, €

Fig. 1 and 2. The linear mixture model is knownttzes £ €

spectral unmixing. Spectral unmixing is a methodcwh ~ f =| g=| *

the user allowed to determine information on a et

level and to study decomposition of mixed piXéls At €
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Solving the EqQ. 1 results the unconstrainedequals the ratio of sum of the diagonal elementhef
unmixing using no constrain. The resulting fracton error matrix on the number of pixels which haverbee
may have negative values and are not constrained torrectly classified. For each category (class), an
sum to unity. In order to avoid this, the sum tatun accuracy parameter is also defined. In each row, th
constraint is added to the equations of the unmixin ratio of the diagonal component (for each classjhen
process. Applying the condition that all the rasglt sum of pixels of that row is called user's accuracy
fractions must sum to unit is referred to partially Analogously this ratio is calculated for each cotum
constrain unmixing. However, fraction values whigck  and is called producer's accuracy.
negative or greater than one are still posSfilerully Based on the error matrix another measure for
constrained unmixing implies an additional condiitin  accuracy is defined which is called Kappa coeffitie
that all determined endmember fractions must bélhis accuracy criterion is calculated by Rich&flis
between 0-1. It should be noted that the final ltesaf
unmixing algorithm depend to the type and number of  NYxi-Yx.x
endmembers. Therefore, any changes applied to thgzm (4)
reference endmembers will cause changes on the ‘
fraction map resultd. .

A solution for the linear unmixing problem In which: .
requires that; the sum of the coefficients equails, o N = Total number of test pixels )
because ensure the whole pixel area is represémted Xi- =2.%; (i-€., sum of the elements for row i)
the model and also each of the fraction coefficidre :
nonnegative to avoid negative sub-pixel areas.firse
requirement can be modelled by a constraint equatio
for the second requirement, the coefficients neetet

X, =Zxii (i.e., sum of the elements for column j)

Commission error is defined as the ratio of the

constrained by: sum of the off diagonal components in each rowhe t
| number of pixels of that row. Omission is a similar
f,20,  f, =1 (3)  error measurement for columns. Hence for each rew w
i can calculate commission and user's accuracy and fo

each column omission and producer's accuracy are
Together, the mixing equations and the constraintsalculated. These factors need ground truth dath an
describe a model that must be solved for each pixedomparing thematic map and ground truth which tesul
which should be decomposed, i.e., given DN andé&, wan error matrix. As Congleton and GrBerhave
have to determine f arlin Eq. 1°. We will have some mentioned, error matrix is recommended only for
fraction maps (f) which hopefully shows the realidentifying sources of confusion (i.e., differences

fraction of each class for pixels as the output. between the remotely sensed map and the reference
» data) and not just error in the remotely sensed
Accuracy assessment methods of the classifiers: classification and this fact would be consideredreno

Pixel based accuracy assessment methods: Accuracy  important in the sub-pixel accuracy assessment.
assessment is an essential post classificatiore.stag  Also, generating a thematic map in sub-pixel
Accuracy of the results is expressed in variousnfor classification results are not straight forward aothe
relative to the classification results and methdte  other post-processing (e.g., thresholding) must be
result of the common classification methods (e.g.applied. For this reason, accuracy assessmenteof th
MLC) is in the form of land cover/use map and usual sub-pixel classification results is not similar toe
the accuracy of it is assessed by comparing it to @ommon accuracy assessment methods. If we want to
ground truth map. The ground truth or reference map use the traditional accuracy assessment (e.g.usionf
usually stored in the digital form and defines well matrix) we have to generate a thematic map and then
known land cover types for some pixels of the scenecompare it with a ground truth map.
Pixel by pixel comparison of these two maps resats
error (or confusion) matrix. Sub-pixel accuracy assessment methods: In respect to
From the error matrix some error and accuracythe result's type (thematic map/fraction map), an
measurements are derived which each of them shoadequate strategy for accuracy assessment of the
some error or accuracy aspects of the final resOlte  classification results must be chosen. Traditional
of the most popular parameter calculated on theslodis methods of accuracy assessment for conventional-pix
the error matrix is overall accuracy. This parametebased classification are not perfect for sub-pixel
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classification accuracy assessment. Because, rigaini Cross-entropy is calculated from the probability
data and ground truth are pixel-based and we can ndistributions of class membership derived from the
use directly any pixel based method for accuracyemotely sensed and ground data sets. The usess-cr
assessment of the sub-pixel classification resultsentropy as an indicator of classification accura@s
Although in some cases the only way to compute thénvestigated with reference to land cover clasatfams
accuracy of a sub-pixel classifier is to hardef its of two contrasting test sites. Thus cross-entropy i
On the basis of the sub-pixel classification ressul calculated for each pixel and defined as the exwgect
some methods have been proposed to estimate tlieformation content of a piece of information that
accuracy of such a classification method. F&bdas  would reveal its true class. The major problemtas t
an excellent review on the available sub-pixel a@cy  method is that it needs the fuzzy ground truth ntlae;
assessment techniques. The most of the methodkeahat matter which often is hard to be available.
mentioned need to a fuzzy ground truth map theematt One of the accuracy assessment methods is
that is not available simpf. Avoiding the dependency comparative evaluation between area of ground truth
to the ground truth data, entropy is defined. Emgro and area estimation via classiffétsin this method the
measures the uncertainty in a single value of area of each class is obtainedliy appropriate fraction
statistical variable and is defined as the infoiorat map. These values are compared with the same other
content of a piece of information that would revéeé  areas which obtain from reliable sources (e.g., Old
value with perfect accuracy. This quantity is weégh maps, database or other classificatiBhdylore similar
by the probability that value occurs and summedallve values the more accurate classifications. This aur

values, which givé8: uses the fraction maps to calculate the area cdveye
each class. In this approach we just sum the @nastof
E(x ):‘ZN: PG /%,)log, (P(¢ /% ). (5) each class ignoring the spatial distribution of ¢heors.
P = ‘ The nonsite-specific nature of this approach is,
however, a major limitation as a map could easily
In which: display the classes in the correct proportionsithe
N = Number of classes incorrect locatiord.
P(x/c) = The posteriori probability of the class i@ Additionally result of this method give any
the pixel % accuracy parameter that can be used at the corgparin
) ) two or more classifications. Logically the closene$
Thus entropy is calculated per pixel. the estimated and true area is the basic critefoon

 The entropy parameter has several limits andyccyracy of the classification. Thus relatively oan
disadvantages. One of the limitations of the entrisp st say "this classification is more accurate thaa
that it can't show how much the classification aacy  4iner one.

is reasonabld. Since the mixed pixels have high
entropy it can not demonstrates classification ey Correctness coefficient as a new accuracy method:
Therefore, in the presence of mixed pixels the highA '

A | indicat the best classificati s mentioned previously, we can not use traditional
entropy ~aiways indicates € Dbest classilica Ionaccuracy assessment procedures for sub-pixel agcura
accuracy. Other limitation of entropy is that itnhcaot

e ) assessment. For accuracy assessment of this kind of
show how much the classification accuracy is best o

classification results we have to use fraction mags
poor. Therefore, entropy parameter can not be tsed the main results of the sub-pixel classification.
compare the ac(;:uracy of two classification proceslur In the first steps a parameter which expresses the
Therefore, Foo ? propose_t_hat_ we can use qf CrOSS'matching rate of the results (fraction maps) witle t
entropy for sub-pixel classification accuracy, ifab-

el f d truth st C ground truth data is needed. For this purpose, we
pixel or fuzzy ground truth map exist. Cross-emrop ..o qice the Correctness Coefficient (CC) paramete
parameter is determined as the following equation:

In order to obtain correctness Coefficient, a bimaap

E.(x,) ==Y P(x,). log, p(x,) for each class is generated from the ground trath.d
ere p)1092 PU%, (6) The binary maps of classes are determined as the

+> P(x,).log,p'(x,) following expression:

p(x,) = The posterior probability of the classification Bi,, =if (G, =Li,10)
result in pixel ¥ ’ ’
p'(%x) = The posterior probability of the pixel, »n

ground truth map if(G, OL)) then Bi,, =1 else Bj, = ( (7)
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i =1...N (N is number of classes) Where NPRis the number of known pixels for ith

j=1...r (ris number of rows) class in the ground truth map. Correctness coefficis

k=1...c (c is number of columns) expressed as the percentage and resembles thdl overa
. accuracy in the traditional error matrices andaih de

In which: used as an overall accuracy measure for the sugh-pix

Bi = Binary map of class i results.

G = Ground truth map In addition to the accuracy parameters, some error

Li = Label of class i measures can also be derived to express the cedtain

errors in the results. Since the commission and
omission error are defined in the traditional aacyr
assessment, we introduce these parameters ondte ba
AMi , =Bi  xFi_ 8) of the ground truth binary maps and classification
: b b resulted fraction maps. In a traditional error rixatr
commission errors define the percentage of thosalgi
that have been labelled as a particular class ibut i
ground truth are in a different category. Analodpus
omission defines the percentage of pixels from a
particular class which have been labelled as therot

After this step, each binary map is multiplied hwit
the corresponding fraction map pixel by pixel:

i =1..N (N is number of classes)
j =1...r (ris number of rows)
k = 1...c (cis number of columns)

In V\,’h'Ch: ) classes. By this concept we can calculate omissimh
AMi = Accuracy map of class i commission errors for each class using sub-pixel
Fi = Fraction map of class i

classification results. Firstly we subtract eachcfion

) o . . map from the binary map for each class individually
In fact by this multiplication, for each pixel thi

value 1, the calculated fraction remains and zeroy; _gi _gi (12)
components of the binary map dismiss the other '

fractions which have no any corresponding grounthtr _

data. So, in this approach for each ground trutelmf | = 1---N (N is number of classes)

a particular class, the relevant fraction valuel wi¢ | = 1...T ( is number of rows)
remained. As a result, it make possible to caleutae K = 1.--C (C is number of columns)
correspondence of the resulted fraction with theugd
truth data. After this step, correctness coefficieh
each class,;Sis estimated as follows:

In which:

= Difference value map for class i
Bi = Binary ground truth map of class i
Fi = Fraction map of class i

S= Zr“zc: Ami;, 9)

e The resulted map has some positive and negative
values. Positive values are for those pixels wihiate
i =1..N (N is number of classes) the value 1 in the corresponding binary map. Tloeegf
j =1...r (ris number of rows) the negative values are the result of the subtnaaif
k = 1...c (cis number of columns) the zero values from the fraction values. In fdw t
positive values are the values which have been
Then: allocated to other classes. This resembles thesionis
error in the traditional error matrices. Considgrihe
N same concept we can define the commission erragusi
ZS the negative values:
CC:ﬁ (20)
g if Dj, k>0
where, Ng is the number of known pixels in the gibu roe
truth map. CC also can be computed for each class Z;,Z;D'
S ) =
individually: OEi = NS (13)
cC - S (11) r = The number of rows
NP ¢ = The number of columns
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if Dj,k<0
;; Di, |
CE = NG
and

> Bi;, =1

i=1

Fig. 3: Colour composite of the study area
Ng = The numbers of known pixels in the groundhtrut J P y

map . L background
NP, = Numbers of pixels of class i in the ground truth | l Als¥a
map W Connotd
N = Number of the classes i E“’"”‘“
. . —_ e - om
i = 1...r,k—_1._..c,|—1...N _ BB i
OEi = The omission error for class i B Geoss/Trees
CEi = The commission error for class i B Grsse/pasture-mowed
B Haywindiowed
These error measures are defined per class and ca- B o
explain the error rate of the resulted fraction niipe : 2::’“‘"“’"

. . . SNE-man
conducted evaluation and experiments pertainseseth B Sobesciasn
concepts and shows only one case study using #te re B Whea
data. ==il B Wood:

Bidg-Grass-Tree Dirves
RESLJLTS — Stone-steel lowers

Evaluation and experiments: In order to evaluate the Fig- 4: Ground truth of the study area
CC method, a sub- Image of the Airborne Table 1: numbers of pixels per class on the graunt

Visible/Infrared Imaging Spectrometer (AVIRIS) of iass No. Classes No. of pixel (NP
hyper spectral data was taken over an agriculamed 1 Hay windowed 289
of California, USA in 1994. This data has 220 smdct c2 Com min 834
bands about 10 nm apart in the spectral region frorf3 Com notill 1434
0.4-2.45 ith tial resolution of 20 m. The e com o
Jres Hm W' a spatial resolution o m'_ € cs Grass pasture moved 2494
image has a size of 145 rows by 145 columns. Figure ce Soybeans clean 614
and 4 show the colour composite of the study aneh a C7 Grass Trees 747
C8 Grass pasture 497
its ground truth map respectively. Soybeans no il 968
The study area consists of 16 classes. Sinceg theg10 Wood 1204
is only12 classes in the reality regarding theoawtric  c11 Alfalfa 149
overlap between classes some of the (spectraityijasi  c12 Oats 212

classes are merged. As a result, 12 distinct sgectr
classes remain for experiments. This study can ndbome of the hyperspectral image bands are the ®ubje
affect to the obtained results. of absorption and they contain only little signaida
Table 1 shows the number of pixels for each classnore noise. Analysis of the original spectral bands
in the ground truth map. In addition, ENVI and Nétl  only is inefficient but also tends to create paesuits’.
software’s were used for implementing and evalgatin The correlation and noisy bands are removed fraen th
the algorithm. original bands by performing Minimum Noise Fraction
The basic assumption of the Linear SpectralMNF) transformation. Moreover, the bands are sbrte
Unmixing (LSU) is that the most of pixels are mbads  according to their variances. The output resultswsh
of objects. Once all the end members are foundnin athat almost 99% of total variance is presentechn25
image (using the mean Regions Of Interest (ROIsjirst components. The cut off band number was
procedure), all the remaining pixels are considdred determined by checking the MNF eigenvalues plot tha
be linear combinations of these endmember pixels.  is shown in Fig. 5.
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Table 2: RMS error means unmixing
50 LSU
40 No. of RMS error
30 bands € Original images MNF
20 20 Mean error 1.992245 0.118545
10 1 50 Mean error 2.647923 0.128302
0 87 mean error 2.453670 0.128193
14 7 10 13 16 19 22 25 120 Mean error 2.340894 0.126726
155 Mean error 2.133099 0.124806
Fig. 5: The MNF eigenvalues plot 175 Mean error 2.031512 0.123393
195 Mean error 1.938037 0.122026

This decreasing of RMS error is obviously obserired
the MNF images. The linear unmixing method assumes
that the most of pixels are mixed. In the otherdchan
once all the endmembers are found in an imagéhall
remaining pixels are considered to be linear
combinations of these endmembers pixels. In this
procedure, 20, 50, 87, 120, 155, 175 and 195 bands
were contributed for classification. Figure7 shaosme
fraction images that obtained by LSU.

LSU classification does not give label directly to
any pixel. However, a classified map, which is zepi
based representation of classification, can be rgésc
by performing maximum value role on the fraction
images. In the other hand, by conducting this nare
the fraction maps, a thematic map is generatedhwhic
each pixel has a specific class label (hardentedulis
map can be used to compare the proposed sub-pidel a
traditional pixel based accuracy assessment methods
Hardening the LSU results can lead to some logbeof
Fig. 6b: MNF (193, 194 and 195) bands information and accuracy but this is one of the cwn

approaches to evaluate the accuracy of the sub-pixe

Having MNF transform, the data space can betlassification results and also we used it only tfoe
divided into two parts: one part associated wittyda comparison of the two methods.
eigenvalues and corresponding eigenimages and the Therefore, the mentioned accuracy measures for
other part having near-unity eigenvalues are nois¢he resulted fraction maps are computed using groun
dominated images. Visual assessments of images shdwith data (Fig. 4). The classification accuraayéased
that the bands numbered greater than 150 consikitaf by increasing the number of bands which are
which dominated by noise. Figure 6a shows the firstontributed in the classification algorithm.
three bands (1, 2 and 3) of MNF images which haveA binary map from the ground truth data is gereztdb
large eigenvalues and corresponding eigenimages, Al obtain CC parameter for each class. The numbers of
Fig. 6b shows the last three bands (193, 194 afjidf9 binary images are equal to the number of classesnar
MNF images which are dominated by noise. members. In this research, 12 binary images are

In the bands with a large variance, the featusgs ¢ Produced. The values of binary image are 0 or Irevhe
be distinguished from each other in a better modelumber 1 indicates that pixels belongs to the
therefore classification accuracy increased sansiiso, ~ corresponding class of binary image and number 0
performing MNF transformation on the hyperspectralindicates that pixels belong to other classes.
images reduces the dimensionality of hyperspeichade AMi is achieved by Pixel to pixel multiplying of
data for the next processing steps. Hence, thiwadet ground truth  binary image and corresponding
was applied upon MNF images which lead to the bettefraction map. For CC calculation, the sum of theepi
results than the case which uses the original Bands values in the AMi image is divided to the number of
Table 2 shows that the RMS error of each pixelhim t pixels in the land use for each fraction map. For
model is decreased by increasing the number ofthand LSU, the achieved results of CC are between 0 land
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c

Gras

o notll

Hay windrowsd

Fig. 7: some samples of the fraction maps restittad the LSU performed on the [120] MNF bands

Table 3: Sum of the CC for LSU on the MNF imagethwi20 bands Table 4: The Confusion matrix based on performingxivhum

Class No. of pixel No. of pixel Value Rule (MVR) on the fraction maps
No. Classes name (NP (FM)) Cl C2 C3 c4 C5 C6 C7 (C8 (C9 Cl0 C11 C12
C1 Hay windowed 489 453.36 489 0 1 0 0 0 46 0 0 6 O 0
c2 Com min 834 684.76 0 211 0 0 9 2 1 0 0 4 0 4
c3 Com no till 1434 1232.60 0 086 0 8 0 2 71 65 0 2 109

0 0 22 526 6 4 0 20 67 10 1 23
c4 corn 614 526.62

0 0 3 0 1205 7 0 1 0 1 0 1
C5 Grass pasture moved 2494 2131.30 0 0 10 15 5 519 0 26 41 13 9 17
C6 Soybeans clean 614 560.11 0 0 0 4 1 3 95 2 1 2 4 2
Cc7 Grass trees 747 705.65 0 0 59 5 3 1 2 1184 22 8 1 103
c8 Grass pasture 497 351.44 0 0 14 63 8 71 0 28 612 30 0 32
C9 Soybeans_noatill 968 1232.60 0 0 3 0 30 3 0 2 6 354 0 16
c10 Wood 1294 986.39 0 0 6 0 19 2 0 0 5 64 730 17
Cl1 Alfalfa 149 91.58 0 1 34 1 0 2 3 100 14 5 0 2144
C12 Oats 212 208.55

By applying of the values of Table 3 is estimated
If CC is equal to 1, it means that all pixels indause  oVverall accuracy for LSU method. The value of ollera

and fraction map have the same label. As a retgt, accuracy is 89.05%. _ . _
unmixing correctness becomes 100%. In contragCif Furthermore, the confusion matrix is achieved by
is equal to zero it means that pixel in land usd an@PPlying the Maximum Value Rule (MVR) on the
fraction map have not the same label. Hence, thifaction maps. Hence, users and product accuracees
unmixing correctness becomes 0%. computed and their results are shown in Table & Th
Intuitively, this parameter expresses the matchin A of LSU is 86% and the corresponding Kappa

N 0
rate of unmixing results with the ground truth ddta Oef_fllﬂiin:e'zezt:gﬁt;?eﬁ ts to introduce a new method
this research CC and total CC are obtained for each P

) . called Correctness Coefficient (CC) for accuracy
clgss and .LSU algorlthm.s respectively. The resofts assessment of the sub-pixel classifiers. Usingdmeept
this operation are shown in the Table 3.

In Table 3. (NB i b f pixels | q of matching rate between fraction maps and grorutt t
n Table 3, (NP is number of pixels in ground .2 "the overall CC and individual CCs have been
truth and (FM) is number of pixels which gathered

: computed. Also, these parameters are calculated via
fr_om the CC parameters on the fraction maps. In theqqsion matrix which is achieved by conducting
pixel based accuracy assessment methods, Overgffyyimum value rule on the fraction maps. The oktiin
accuracy is simply the sum of the correctly classif ,yera)l CC over LSU method using 120 bands is about
pixels or samples divided by the total number ofgg o5 Moreover, the obtained CCs for individual
pixels or samples in the ground truth. By usindle$  ¢|3sses and omission errors are shown in Table 5:
concept, we can estimate Overall Accuracy (OA) for
LSU classification and sub-pixel accuracy moet  OE(%) = 100-C@%) (14)
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Table 5: The individual CCs for LSU of the 120 MN&nds approaches can not certify desired flexibility and

Classes Classes CC for each class (%) consistency. Correctness coefficient, recommended b
C1 Hay windowed 98.4 the authors is one of the efforts to ensure thelfikty

C2 Oats 94.5 d ist f th b-pixel 4

C3 Soybeans no il 858 and consistency of the sub-pixel accuracy assedsmen
ca Soybeans clean 85.6 regarding the type of the available data and
C5 Wood 91.2 classification methods. Obtained results from theec

g? gl‘f’;'l‘fa 7%:‘-79 study show that correctness coefficient (soft) and
Cs Corn no till 82.1 overall accuracy gnd_kappa (hard) are approximately
co Corn min 86.1 the same or similar in value enough. The proposed
C10 Grass pasture 76.2 method for the accuracy assessment of the sub-pixel
Cl1 Grass Trees 92.7 classifiers make possible to inspect the classes
C12 Grass pasture-moved 82.4

individually (individual CCs). Furthermore, eaclass$
can be investigated individually in respect of the

DISCUSSION

classes such as alfalfa and grass pasture areesma
than other classes. This may due to the spectr
similarity between these classes with grass clatbeses
are shown in Table 4. In contrast, compared to thixe
classes like soybeans and corn classes some tlisti
classes such as Hay windowed and oats are classifi
with high accuracy. The obtained overall CC ovelJLS
method using 120 bands is about 84.9%. In contisest,
obtained results in terms of OA and Kappa coefficie
over LSU method which are achieved by MVR on the
fraction maps are 86 and 84% respectively. The Happ
coefficient value is close to overall CC of LSU hmzd.

It demonstrates that the CC method as an accuracy
assessment parameter of a soft classifier can be
substitutes reasonably by traditional accuracy
parameters. Despite the remarkable results of 1tB&J,

use of soft classifiers is still limited by the kaof well-
assessed and adequate methods for evaluating the
accuracy of their outputs. CC method uses theifnact
maps to extend the applicabilitf the traditional error 2.
matrix method to the evaluation of soft classifidrs

fact it is designed to deal with those situatiamsvhich
classification and/or reference data are expressed 3.
multimember ship form and intrinsically vague cksss

The experimental results show that CC of somﬁﬁ
I

1.

CONCLUSION

In this study, an innovative accuracy assessment
method for sub-pixel classifiers called CC is preguh 4.
Traditional accuracy assessment methods have been
designed on the basis of the hard classifiers and
therefore there is no straightforward approachsimit 5.
classifiers. In the other hand, ground truth dat are
inherently hard in nature force the accuracy assesst
to be hard.

Recently, few methods have been proposed for the
accuracy assessment of sub-pixel classifiers. These
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corresponding commission and omission errors.

Although in this approach we used hard ground

ruth data, but this is the common case and ther®i

ny fuzzy ground truth in the traditional image lggs.

Fowever, using the correctness coefficient paramete

and its family we can take into account the majds-s
ixel properties of such a classifiers and the cbffef

fie inherent limitation of the hard ground truthadean

%e reduced.
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