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Abstract: Problem statement: Diesel particulate filters are fast becoming integral parts of diesel 
engines, light and heavy duty, due to their potential in the reduction of particulate matter from exhaust 
gases and their noise muffling property. Consequently, several researchers are developing mathematical 
models for the study of fluid flow through the filter substrate and in the aiding of filter systems design. 
Recently, some researchers developed a mathematical model known as the Multiple Orifice Mathematical 
(MOM) model for determining pressure gradients of gelcast ceramic foams. The MOM model was 
calibrated using fluid flow data from cellular foam filter structure similar to ceramic foams. However, 
there was need to improve on the method of calibrating the model. Approach: Following the conceptual 
model employed in the development of the MOM model, a physical scale model was designed using a 
CAD package and manufactured for the purpose of measuring pressure drops across the connecting 
windows of the cells. A new fluid flow rig was also designed from a CAD package and fabricated to 
adapt to the physical scale model. Applying the conservation theory, the flow rates across the windows 
were calculated and equated to the flow rate determined from an orifice meter, where the correction 
coefficients for the calibration of the MOM model were calculated. Results: A number of correction 
coefficients were calculated from the data collected from the experimental rig. The average correction 
coefficient which was used for the calibration of the MOM model was found to be 2.24. 
Conclusion/Recommendations: The result obtained from the new method of model calibration 
corroborated the value determined by earlier researchers. This new method reduced the computational 
time of calibrating the MOM model and eliminates the use of graphs and graph fitting. The new fluid 
flow rig and the physical scale model can be used in the study of fluid flow in other types of filter 
substrates. 
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INTRODUCTION 
 
 While diesel engines have many advantages 
including low emission of carbon dioxide, fuel 
tolerance, robustness, low cost and high low-speed 
torque, they have the disadvantage of emitting 
significant amounts of Particulate Matter (PM) and 
oxides of nitrogen NOx[1]. Diesel exhaust emissions are 
reported to affect human health, contribute to acid rain 
and reduced visibility[2-10]. Consequently, governments 
of the United States, Japan and many European 
countries are enforcing stringent diesel emissions 
standards. 
 Although engine manufacturers have made a 
substantial reduction in emissions through improved 
engine design[11,12], studies show that Diesel Particulate 
Filters (DPFs) are a potential exhaust after treatment 
technology for the reduction of PM emissions. DPFs 

consist of a filter designed to collect the PM in the 
exhaust stream of the diesel engine, while allowing the 
exhaust gases to pass through the system. In practical 
application, most DPFs can reduce the amount of 
particulates from diesel engine exhaust gas by at least 
90% by mass across the whole range of particulates 
sizes[12-14].  
 The choice of a filter material depends on many 
factors including filtration efficiency, pressure drop, 
durability and cost effectiveness and mathematical 
modeling is increasingly becoming an engineering tool 
to understand, predict and control these parameters in 
DPF systems. Consequently, several researchers[15] 
have proposed some models for predicting pressure 
drop across wall flow filters and filtration efficiency. 
 Considering the many advantages of Ceramic 
Foam (CF) filters, including their use as substrate in 
diesel particulate trap systems and Gelcast Ceramic 
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Foam (GCF) in particular, some researchers[16] reported 
the development of a mathematical model referred to as 
“Multiple Orifice Mathematical (MOM) model” for 
understanding fluid flow through the filters and an aid for 
filter design. This mathematical model was developed by 
applying the fluid flow theory on a simplified conceptual 
model, where the ceramic foam is represented with rows 
of cells across the filter, connected by openings called 
the windows. The resultant mathematical model was 
calibrated by fixing the viscous correction coefficient to 
determine the kinetic correction coefficient β, by “graph 
fitting” the mathematical model on a graph developed 
from experimental data of fluid flow on a physical scale 
foam model filter. 
 This report presents the calibration of the MOM 
model applying a direct experimental method of 
determining β by using data of fluid flow experiment 
on a new physical scale model similar to the conceptual 
model used in developing the MOM model. 
 

MATERIALS AND METHODS 
 
Physical scale model: A physical scale model was 
designed using a Computer Aided Design (CAD) 
package and manufactured by using stereolithography 
rapid manufacturing techniques. In order to produce 
significant number of experimental data, two generic 
multiple orifice structures of diameter 60 mm and 
length 100 mm were produced with four rows of cells 
each. The rows of cells were of various cell/window 
ratios, providing enough variation for comparison. 
Figure 1 is a CAD drawing of the generic multiple 
orifice structure showing the rows of cells. Several sets 
of tapings were made along the length of the foam 
model as shown on the CAD drawing for the purpose of 
reading the pressure drop across the windows. The 
study of each row of cells and windows is a direct 
application of the conceptual model used for the 
development of the MOM model[16].  
 
Experimental set up: Two options for the 
measurement of the pressure difference across the 
windows were considered. The first option was to 
mount the generic structure directly in a filter holder of 
60 mm, where air flow is directed through a single row 
of cells by blocking the other three rows. However, it 
can be recalled that the change of the fluid flow diameter 
from 60-8-10 mm would be significant and the fluid flow 
through a row will not be fully developed when taking 
the readings across the windows. Hence, the second 
option was employed, which involved the reduction of 
the fluid flow diameter away from the entry to the row of 
cells to allow the fluid to be fully developed before the 
measurement of the pressure drops. 

 
 
Fig. 1: Drawing of generic multiple orifice physical 

scale model designed using a computer assisted 
design package, where each row of cells 
corresponds to a given ratio of window to cell 
diameter 

 
 Consequently, a sample holder was designed and 
produced such that the air flow could be directed to a 
given row of cells and it (i.e., the holder) could be fitted 
to a flange on the pipe after an orifice flow meter. The 
length  of  the pipe that leads to the row of cells was 
>50 times the diameters of the cells to allow the fluid to 
be fully developed before the rows of cells. Figure 2 is 
a schematic of the multiple orifice physical scale model 
flow rig. The reducer pipe or connecting pipe of 
internal diameter 4.2 mm and length 450 mm is 
mounted after the orifice plate, then the sample was 
mounted on the other end such that reading can be 
taken from each given row of cells.  
 Steel tubes of external diameter 5 mm were 
inserted into the pressure tapping holes in the row of 
cells from which they were connected to flexible hose 
from the digital pressure gauges (Fig. 3). Soap solution 
was used to check for air leakage after using sealants. 
 The pressure drops across the windows were read 
from  digital   pressure gauges   with   ranges from 0-
700 Pa. The readings were taken simultaneously with 
that of the flow meter mounted before the physical 
model. The temperatures of the air were also read 
simultaneously to calculate the air densities. 
 The air flow through the rig was generated by a 
“Leister Robust” blower. The air flow rate was 
measured with an orifice plate meter. Specifications for 
the production of the orifice plate flow meter used in 
this research study are reported in the British Standards-
ISO 5167[17]. Between the blower and the flow meter 
was installed a flow conditioner, to straighten the 
swirling air flow and reduce the pulsation of the 
pressure across the orifice plate. The distance from the 
conditioner to the orifice plate was more than ten times 
the pipe diameter to allow the full development of the 
fluid flow before the orifice plate. 



Am. J. Engg. & Applied Sci., 2 (2): 360-364, 2009 
 

362 

 
 
Fig. 2: Schematic of multiple orifice physical scale model flow rig 
 

 
 
Fig. 3: Picture of the mounted sample of the multiple 

orifice scale model with the inserted steel tubes, 
sealed with sealant 

 
 Air with a known flow rate was directed through 
each of the rows of cells at a time and the pressure 
difference across the windows was measured from the 
pressure tapings.  
 
Modeling of fluid flow rate across the windows: The 
objective of the experimentation is to measure the 
pressure drop across the windows of a given row of 
cells for a known fluid flow rate. Hence, each row of 
cells consists of 4 sets of pressure tapings to enable the 
measurement of the pressure drop across four windows 
at a time. Using the same principle for the development 
of the MOM model, a relationship was made between 
the pressure drop across the windows and the flow 
rates. From the conservation theory, the flow rate across 
the windows was equated to the flow rate calculated 
from the orifice meter. 
 The flow rate from the orifice plate was calculated 
from using the equation below derived from the 
Bernoulli equation: 
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Where:  
Q = The flow rate (m3 sec−1)  
CD = The orifice plate discharge coefficient 
DO = The orifice diameter (m) 
 Ρ = The fluid density (kg m−3)  
D1 = The pipe diameter 
∆P = The pressure drop across the orifice plate  
 
 A number of discharge coefficient equations are 
used in different standards. The equation used in this 
study is recommended by the British Standards-ISO 
5167[17], which is the Reader-Harris/Galagher 
equation. 
 Using a similar approach for the calculation of 
fluid flow rate across the orifice plate, the relationship 
between the pressure drop across the filter and the flow 
rate was developed, Eq. 2: 
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Where: 
Qrow = The flow rate across the window 
Β = The kinetic correction coefficient  
∆p = The pressure drop across a window  
w  = The window diameter 
do = The equivalent diameter  
 
 Therefore, equating Eq. 1 and 2 the kinetic 
correction coefficient can be expressed as: 
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 The equivalent diameter was derived such that the 
volume of a tube of length L and diameter do was equal 
to the total volume of all the cells VTCELL in a row of 
length L. That is: 
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 The total volume of the cell was calculated by 
adding up the volumes of the entire spherical cell on a 
row and subtracting the overlapping volumes that 
created the windows. That is: 
 

TCELL CELLV MV=  

 
Where: 
VCELL = A cell volume  
M  = The number of orifices in the row of cells 

across the filter, given by: 
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Where:  
B = 21 1 k− −  
k = w/d 
 
 Hence, for a known flow rate and the pressure drop 
across the windows the kinetic correction coefficients 
could be calculated using Eq. 1-5. 
 

RESULTS 
 
 Using the experimental data from the multiple 
orifice physical scale model, correction coefficient β 
was calculated, by applying Eq. 1-5, for each window 
fitted with pressure tapings. The experimental data and 
the calculated coefficients are shown in Table 1. 

Table 1: Kinetic correction coefficients from the multiple orifice 
physical scale model at windows 1, 2 3 and 4, i.e., β1, β2, 
β3, β4 

Cell Window Fluid flow Kinetic correction coefficients 
diameter, diameter rates Q --------------------------------------- 
d (mm) w (mm) (m3 sec−1) β1 β2 β3 β4 
10 6.00 1.17E-03 2.2 2.2 2.2 2.2 
10 6.00 1.15E-03 2.2 2.2 2.2 2.2 
8 6.00 1.08E-03 3.0 2.1 2.1 2.0 
8 6.00 1.14E-03 2.8 2.1 2.1 2.0 
8 4.66 1.01E-03 2.8 3.0 2.9 3.5 
8 4.66 1.07E-03 2.9 3.1 3.0 3.5 
9 5.66 1.20E-03 2.2 2.6 2.2 2.5 
9 5.66 1.26E-03 2.3 2.7 2.3 2.5 
11 6.00 1.21E-03 2.1 2.1 2.1 2.1 
11 6.00 1.26E-03 2.1 2.0 2.0 2.1 
11 4.70 1.11E-03 2.7 2.7 2.7 2.8 
11 4.70 1.17E-03 2.9 3.0 2.7 2.9 

 
DISCUSSION 

 
 The results from analysis show that the kinetic 
correction coefficients calculated from the experimental 
data varied from 2.1-3.6. The modal class was found to 
be between 2-2.4 with an average kinetic correction 
coefficient of 2.24. This value for the kinetic correction 
coefficient determined from the multiple orifice 
physical scale model corroborates the result offered by 
Adigio et al.[16]. This implied that the MOM model can 
be calibrated without the use of graphs and graph 
fitting. 
 

CONCLUSION 
 
 This study has established a new method for the 
determination of the kinetic correction coefficient of the 
MOM model. The kinetic correction coefficient of the 
MOM model has been determined by directly applying 
physical scale model similar to the conceptual model. 
The conceptual model used for the development of the 
MOM model was in this case designed and 
manufactured for the first time to generate the data for 
this research study. 
 This method of model calibration has reduced the 
computational time of calibrating the mathematical 
model, eliminating the use of graphs and “graph fitting” 
to solve such problems. 
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