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Abstract: This study consisted to determine a discreet order by sliding method that was applied on a 
regulation procedure of a formed level by communicating reservoirs. The model that represents the 
system is determined by parametric identification based on the algorithm of the recursive least square 
with forgetfulness factor. Problem statement: The purpose is to develop a robust order that assuring 
the stability of the system autonomously of his initial state or of his environment. Approach: The first 
step consist to model the process, afterward, we developed the order. Results: We developed a 
command which permit to conduct the system towards a desired state (chosen state, an equilibrium 
point in our case) and ensured its stability in this zone whatever the conditions on the system. 
Conclusions: the hardiness of the order has been proved as a result of the introduction of an external 
perturbation on the process. But this order will be able again to improve also the non-controllable 
defects. 
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INTRODUCTION 

 
 The majority of the industrial systems are a non 
linear system, the classical order laws (for example a PI 
type) can be insufficient for they are not robust, 
especially when the requirements on precision and 
other dynamic characteristics of the system are harsh. 
One must call upon order laws insensitive to the 
variations of parameters, to disruptions and to the non-
linearity.  
 The order by sliding mode possesses this 
robustness.  
 In this study, we present the model of the 
procedure as well as chosen algorithm for the 
estimation of the parameters. Next we develop the order 
law by sliding method.  
 We evaluate experimentally the performances of 
this order technique and its reaction after an external 
disruption applied to the procedure. 
 
Presentation of the level regulation procedure: The 
studied procedure is a system of level regulation which 
is constituted of: 
 
• Three reservoirs R1, R2 and R3 coupled by 

solenoid valves all or nothing 

 
• Two analogical solenoid valves allowing to adjust 

both debits of the reservoirs supply 
• Three ultrasound VEGASON61 sensors which are 

installed in the top of every reservoir 
• Every reservoir is provided with a solenoid valve 

for evacuation 
 
 The system is described by the Fig. 1. 
 Reservoir R1 and R3 are identical. The central 
reservoir R2 has a bigger section. 
 Two solenoid valves all or nothing allow the 
reservoirs R1 and R3 to connect to reservoir R2. 
 A motor-pump immersed in a big reservoir Rv 
allows to feed reservoirs R1 and R3 by adjusting the 
debits of their analogical valves.  
  
Identification of the process: 
Principle of the identification: This method is based 
on a criterion minimizing an error of prediction, which 
represents the distance between the release of the 
process and that predicted by the adjustable model. This 
minimization is made by means of an algorithm of 
optimization based on the Recursive Least Squares 
(RLS) technique and which allows obtaining an 
estimation of the parameter values. 
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Fig. 1: Descriptive scheme of process 
 

 
 
Fig. 2: Principle of the parametric adaptation 
 
 The principal plan of identification by the method 
of the error of prediction is the Fig. 2. 
 
Model of the process: By leaving the model adopted 
by[1,2] we have: 
 
  ( ) ( ) ( ) ( ) ( )11A q Y k B q U k E k−− = +  (1) 
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and E(k) is a discreet white noise of useless average. 
 Matrices A (q-1) and B (q-1) are defined by: 
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With:  
 
  ( )1 1 niiA q 1 a q ... a qii ii iin1 ii

− − −= + + +   

  ( )1 1 2 nA q a q a q ... a q ijij ij ij ijn1 2 ij

− − − −= + + +  

  ( )1 d 1 mij ijB q q (b q ... b q )ij ij ijm1 ij
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 So, this can allow to writing the out yi (k) under the 
following form: 
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For i = 1, 2, 3 
 To estimate the complexity of a model, that is 
determining its order, some shape: 
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 Using a matrix of instrumental variables ( )n̂Z  
whose elements are correlated with the best measures, 
but less or not correlated with noise. 
 The criterion used for the estimation of the 
complexity 





 += d̂Bn̂,An̂maxn̂ [3]: 

 

 ( ) ( ) ( )
2 ˆ1 2n log Nˆˆ ˆCJ n, N min Y N Z nIV ˆ N N

= − θ +
θ

 

 
Where 
 
   ( )ˆ ˆn min CJ nIVn̂=  (4) 

 
With: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( )
ˆZ n [U k L 1 , U k 1 ,U k L 2 ,

ˆ ˆU k 2 , ,U k L n , U k n ]

= − − − − −
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 (5) 

 
( ) ( ) ( )TU k u k ,u k 1 ,  = − L  
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( ) ( ) ( )TY N y N ,N N 1 ,  = − K  N is the data number. 
 
Algorithm of estimation parameters: We are going to 
use a recursive algorithm to identify the parameters of 
our process. The formulation of this algorithm of 
identification uses the quadratic criterion to minimize 
the prediction error and the Recursive Least Squares 
technique to calculate the estimation parameters. Thus 
the name: the Recursive Least Squares identification 
algorithm (RLS). 
 The steps of the RLS are the following[4]: 
 
• Calculation of the recursive estimation  
 
 ( ) ( ) ( ) ( ) ( )i i i i i

ˆ ˆk k 1 P k k e kθ = θ − + Φ  
 
• Update the gain of adaptation 
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• Calculation of the error of prediction 
 
 ( ) ( ) ( ) ( )T

i i i i
ˆe k y k k 1 k= − θ − Φ  

 
Remark1: To give more weight to the new 
observations and ignore progressively the former 
information, we introduce ponderation λ1 (k) and λ2 (k) 
in the updating equation of adaptation matrix gain Pi 
(k)[4]. 
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We chose a factor of time-varying oversight. We set  
 
 λ2 (k) = 1and the factor of oversight is given by: 
 
 λ1 (k) = λ0λ1 (k-1)+(1-λ0)  
 
 λ1 (0) = λ1 (0.95...0.99) and λ0 (0.95...0.99)  
 
Principle of the sliding mode command: The 
command by sliding mode consists in transporting the 
states of the system in a suitably selected region, then to 
conceive a command capable to maintain the system in 
this region. In general the conception of a command by 
sliding mode requires mainly three steps[5,6]:  

 
 
Fig. 3: Various modes for the trajectory 
 
• Determination of a space state region such as the 

system has the wished behavior 
• The convergence conditions are realized to force 

the representative points of the trajectory to 
converge on the sliding surfaces[7] 

• Research a law of order which drives the system up 
to this space state region then toward its 
equilibrium point by maintaining the condition of 
existence of the sliding mode. 

 
The sliding modes: The command by sliding mode 
creates three phases[8]: 
 
• The Reaching mode: it consists in returning the 

state of the system since its initial position x (0) = 
x0 to the surface of gliding at finished time 

• The Sliding mode: the state towards the point of 
balance with a dynamics defined by the surface of 
sliding consists in making tighten asymptotic 

• The mode of permanent regime: consists in 
studying the behavior of the system around the 
equilibrium point (Fig. 3). 

 
Sliding surfaces: The choice of the sliding surface 
concerns not only the necessary number of surfaces, but 
equally their form and this in function of the application 
and the aimed at objective. Thus, the surface S(x) 
represents -itself- the desired dynamic behaviour of the 
system. Slotine[9] proposes a form of a general equation 
to determine the sliding surface assuring the 
convergence of a variable towards its desired value. 
 

   ( ) ( )
n 1

S x e x
t

−
∂ = +λ ∂ 

 (6) 

 
Where: 
e (x) = Various of the variable to regulate ( ) xxxe d −=  
λ = Positive constant which interprets the passing 

and of the desired control  
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n = Relative degree, which equals the number of 
times that should be derived the exit to make 
the command appear 

 
Discreet command by sliding mode: Once the 
problem of existence is resolved by fixing the dynamics 
wished by the system in sliding mode and it by the 
choice of a sliding surface (matrix S) stable, we pass in 
the second stage which consists in the synthesis of non-
linear laws of command u = f (x) leading the trajectory 
of state on the sliding surface at time finished and 
forcing her to stay on this surface. 
 Generally, the law of command consists of two 
parts[10,11]: 
 
• A linear component by return of state of the shape 

u L (x) = K x 
• A non linear component of the command u N (x) 

introducing a discontinuous element 
 
 Let us consider the following discreet linear 
variable multi-system: 
 
   ( ) ( ) ( )x k 1 A x k B u k+ = +  (7) 
 
Where:  
 

T n
1 2 nx x x ... x  = ∈ℜ  The state vector  

T m
1 2 mu u u ... u  = ∈ ℜ  The input vector  

 
 A and B are constant matrices with the appropriate 
dimensions. 
 By using the transformations T and T2 such as  
 y = Tx and z = T2 y 
 
   n m
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Then the system spells under the following shape: 
 
  ( ) ( ) ( )1 1 1 2 2z zz k 1 k k+ = +∑ ∑  (8) 
  

 ( ) ( ) ( ) ( )2 3 1 4 2 2z zz k 1 k k B u k+ = + +∑ ∑  
 
 The linear constituent of the command is spelled 
out: 
 
 ( ) 1

L 2 2
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Where  

 
 
Fig. 4: Schematic bloc of the order   
 
  1

0 3 2
*K B T T4 4−       

= − −∑ ∑∑  

 
∑*4 is an m×m matrix that all the appropriate values of 
which are inside the unity circle. In particular, we can 
choose: 
 
  { }i i

* diag , i 1...m / 14= λ = λ <∑  (10) 
 
 Consider the Lyapunov function  
 
  ( ) ( ) t

2 2 2 2 2
1 1V z z P z z P z
2 2

= =  (11) 

 
with P a symmetric matrix defined positive which 
verifies: 
 
  

m

T* *P P I44 − = −∑ ∑  
 
For the non-linear constituent we take: 
 
  ( )

1
2 2

N 2
2

B P zu z if z 0
Pz

−

= −ρ ≠  (13) 

  ( ) 02zifzNu =ρ≤  
 
p>0 is a parameter of synthesis 
 
The command u (Fig. 4) is equal to: 
 
   ( ) ( ) ( )L Nu x u x u x= +  (14) 
 

MATERIALS AND METHODS 
 
 We proceeded to the verification and the test of the 
developed  order  in  experimentation  to  the  system of  
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Fig. 5: General view of the used equipment 
 
coupled reservoirs (Fig. 5). The command is established 
using a PC Pentium III to 800MHZ equipped of a card 
PCIDAS -1002 and software Matlab 5.3.0 with 
Simulink 3.0.1 
 The idea consist in to realize an instantaneous 
acquisition of the level regulation in the middle 
reservoir using the ultrasonic sensors and to compare at 
the value that represents the zone of the stability of the 
system. If this value is not attained again, they 
analogical solenoid valves, set up on the extremities of 
the other reservoirs, release of an automatic manner in 
order to compensate this difference. Once the surface of 
stability is attained, we injects an external perturbation 
on the system by the opening the solenoid valve for 
evacuation that exists at the bottom of the central 
reservoir, the order must react again of such sort that 
she must be able to maintain the same zone of stability.  
 The sliding order law, is able to vary according to 
the need the debit of they analogical solenoid valves 
and to release them of an automatic manners whenever 
she necessary. She was developed while using the 
Simulink 3.0.1 tool of Matlab and she was established 
using the card PCIDAS-1002. 
 

RESULTS  
 

 We have choice to apply two excitement signals in 
the process, that is given by its following real output 
(Fig. 6), to realize the identification:  
 
• Pseudorandom Binary Sequence (PRBS), signal 

rich in frequency which guarantees a good 
estimation of the parameters (Fig. 7). 

• Periodic signal (Fig. 8), inciting the process 
constantly and allowing to produce by combining it 
with the previous signal every possible zones of 
excitement. These two signals are respectively 
represented in (Fig. 4 and 5). 
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Fig. 6: Real answers 
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Fig. 7: PRBS signal 
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Fig. 8: Periodic signal 
 
 We have realized two essays. During every try we 
applied the PRBS to a proportional solenoid valve and a 
periodic signal on the other one. The real obtained 
answers (the heights in three reservoirs H1, H2 and H3) 
during the first essay are represented below: 
 By applying the Recursive Least Squares algorithm 
(RLS), we can so determine the coefficients of the 
model of the process. 
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Fig. 9: Real and estimated answers to H1 
 
 The curves of the real answers and the estimated 
answers, as well as the error of prediction, obtained 
during the identification are: 
 The representation of state of the considered 
system is the following: 
 
  ( ) ( ) ( )x k 1 A x k Bu k+ = +  (15) 
  ( ) ( )y k C x k=  
With 
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 This system is commendable and observable. The 
matrix of orthogonal transformation T is the following 
one: 
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We have obtained m = 2 
 So the return state matrix of the reduced system F. 
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Fig. 10: Error of prediction 
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Fig. 11: Real and estimated answers to H2 
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Fig. 12: Error of prediction 
 
 The matrix which defines the hyper surface of 
sliding is given by: 
 

  118.76 32.47 19.45 42.58
S

80.46 20.35 9.15 26.85
− − 

=  − − 
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Fig. 13: Real and estimated answers to H3 
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Fig. 14: Error of prediction 
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Fig. 15: Evolution of the system releases 
 
 The obtained releases are the following ones: 
 The commands applied to the system are drawn in 
(Fig. 16). 
 The evolution of the switching functions is given 
by (Fig. 17). 
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Fig. 16: Commands applied to the entry of the system 

 

 
 
Fig. 17: Evolution of the switching surface 
 

DISCUSSION 
 

   In the first party we proceeded to modelling and 
identified the system, the Fig. (9, 11, 13) show well the 
robustness of RLS algorithm, in view of the fact that 
the difference between the real and the estimated 
answers is on the order of 0.01 (Fig. 10, 12, 14). 
   In the second party, we was interested in order 
establishment by sliding mode of such sort that she 
must be capable to vary of an automatic manner the 
entry of the procedure, the two analogical solenoid 
valves debit, (Fig. 16) in order to ensure a level 
regulation around a equilibrium point in the stability 
zone (Fig. 15).  
 

CONCLUSION 
 
 In this research, we identified the process 
established by coupled reservoirs, around a point of 
functioning. 
 By using the Recursive Least Squares algorithm, 
we determined the coefficients of the model. 
 The experimental results show the good 
performance of this algorithm.  
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 So, the obtained models allowing to elaborate an 
order laws which we can apply to the process. 
 The order applied to the process is a discreet command 
by sliding mode. 
 By introducing an external perturbation this 
command proved a robustness, it permit to bring the 
state variable to the sliding surface, otherwise to the 
stability zone (Fig. 15).  
  According to the obtained results, the hardiness of 
the order has been proved as a result of the introduction 
of an external perturbation on the process. 
  So, the found results approved the experimental 
tests support the theoretical development. 
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