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Abstract: Problem statement: While experimental ascertainment of haplotype kddo the genome-
scale case-control studies is expensive, accukatguatational phasing is still a daunting task for
bioinformatics approaches. We used a statisticathate to determine differences, potentially
associated with a certain disease, in linkage diibum block boundaries in whole-genome Single
Nucleotide Polymorphisms (SNPs) datqproach: We utilized a Bayesian model for calculating the
posterior probabilities of the block boundaries the SNPs data and used Metropolis-Hastings
algorithm to sample from that posterior distribnti®ur method was applied to search for haplotype-
block boundary differences associated with two iautoune diseases: Type | Diabetes (T1D) and
Rheumatoid Arthritis (RA).Results:. We located the regions on chromosome 6 with Sicanit
control-case difference in haplotype blocks aroth@elSNPs and genes that were previously known to
be associated with T1D and RA (in the HLA compleg well as around genes whose association with
the autoimmune diseases should be further explardure studiesConclusion/Recommendations:

The statistical approach explored in this studyviges an efficient and accurate way to study
connection of haplotype-block differences to mudtipnportant diseases.

Key words: Linkage disequilibrium, autoimmune diseases, HLAmptex, type 1 diabetes,
rheumatoid arthritis

INTRODUCTION be thought of as “tiny typos” in the genome witheon
base being replaced by another. While some SNPs
Satistical approaches in genetics. Even though it has directly contribute to the disease, others canitieedl
been a decade since researchers first sequenced tioethe genes that do (Carmichael, 2010). However,
human genome, obvious links between the genes armbmplications arise when we try to analyze sucla,dat
specific diseases have been much slower to appaar t due to the fact that the number of possible inteyac
originally expected by everybody. Because originalcombinations among genotype markers is humongous
approach based on simple correlation analysis was nfor a large size genetic association study and ke a
successful, now many researchers believe that neumterested in finding very few disease-related
advances in genomics will come from a richinteractions (Zhang and Liu, 2007). Additionallgnse
statistical understanding of complex interactioris o nearby SNPs are highly correlated due to linkage
our genetic code (Bansetlal., 2010; Zhang and Liu, disequilibrium (Zhanget al., 2011b), which further
2007; Svoboda, 2010). However, it is necessary t@omplicates statistical analysis aiming at deteimgin
perform statistical analysis on a vast amount dhda disease related interactions.
consisting out of the sequences including milliefis Importance of linkage disequilibrium: Linkage
genomes in order to completely understand how oubisequilibrium (LD) describes the phenomenon when
genetic code interacts with the environment to makehe genotypes at nearby markers are highly coewlat
us the way we are (Svoboda, 2010). (Zzhang et al., 2011a). This correlation arises due to
Whole-genome Single Nucleotide Polymorphismsshared ancestry of contemporary chromosomes (The
(SNPs) data from individuals in the case-controtigs  International HapMap Consortium, 2005). LD patterns
has potential to help us understand complex interax  have many important applications in biology and
among multiple genes (Zhamgjal., 2011a). SNPs can genetics. These patterns can be used for infething

Corresponding Author: Jing Zhang, Department of Statistics, Faculty dsAand Science¥ale University, New Haven, CT, USA
20



Am. J. of Bioinformatics 1 (1): 20-29, 2012

distribution of cross-over events at short scaléscv  descriptions of RA and T1D genetic landscapes t@te s
are hard to study experimentally, studying genefar from being understood (Coenen and Gregersen,
conversion, about which there is only a very limite 2009; WTCCC, 2007). We chose to focus our study on
amount of experimental data, understanding thdRA and T1D at the same time because they are gread
evolutionary history of humans and detecting naturaknown to share common loci and are both autoimmune
selection (Wall and Pritchard, 2003). diseases (WTCCC, 2007).

Patterns of linkage disequilibrium are unpredittab
and very noisy (Wall and Pritchard, 2003). Addiatn Goals of the project: The goal of this project was
extent of LD defers from one genomic region tousing as a starting point a highly successful aggrdo
another. Population history, fine-scale heteroggnei  classification problems with discrete covariatelsg@get
recombination rates and population genetic modils aal., 2011b) specifically used for determining bloased
contribute to noisy appearance of spatial structfre epistasis associations, to develop a statisticaleinto
LD. However, this complex reality is described by asearch for disease associated differences in LBkblo
simple model known as haplotype-block model (Wallstructure between control and case groups. We
and Pritchard, 2003). According to this model, determined haplotype-block structure for controfsl a
genotype data is divided into discrete blocks withcases independently and used this information rid fi
highly correlated SNPs within each block andregions with genetic variants that could potentidie
adjacent blocks are separated by recombinatioassociated with the disease. Our methods wereeaptoli
events (Zhanget al., 2011b; 2004; Dinget al., the actual large data sets consisting of whole-geno
2005a; 2005b). Even though described model issingle nucleotide polymorphisms data from chromasom
simple, experimental data confirms its validity (Wa 6 (chr6) for T1D and RA patients and control groups
and Pritchard, 2003; The International HapMap
Consortium, 2005). MATERIALSAND METHODS

Background on type 1 diabetes and rheumatoid Our problem of using haplotype-block structure for
arthritis: Type 1 Diabetes (T1D) affects 0.5% of the whole-genome chr6 SNPs data from patients and
world population and 1.4 million US people (Bottati  controls to determine regions of genetic variaiiast t
al., 2004). It is a chronic disease that occurs win@n increase susceptibility to the disease can be @ividto
enough insulin is produces to control the sugaellein  two smaller sub-problems. First, since there is no
blood. It can occur at any age but most frequeihly ~ complete experimental data on spatial structuré®f
diagnosed in children and young adults (Deverelra for our regions of interest, we determined LD bloéhr

al., 2004). Even though the exact cause of the désisas controls and cases using computational statistical
unknown, most researchers suspect that there i® sormethods and then extracted the disease relevant
sort of trigger (environmental or viral) that casisen  information hidden in the background noise. Each of
immune reaction in genetically susceptible group ofthese steps used different modeling and data asalys
people. As of right now, no cure is available ahd t techniques that are described in detail below.

outcome for people with this type of diabetes \arie

(Devendreet al., 2004). Previous studies have validatedSatistical model for determining block boundaries

the hypothesis that common genetic variants playlue to linkage disequilibrium: The observations

important role in the disease formation (Bottahial.,  consist of genotypes of L SNP markers observed on N
2004; Polychronakos and Li, 2011; Zhamy al., patients, combined into final data set D. Each mark
2011a). can have one of three values. The goal is to pamtit

Like T1D, Rheumatoid Arthritis (RA) has a L markers into blocks in such a way that the
significant genetic contribution to its developmémtt  correlations between SNPs in different blocks are
the detailed heritability is still not known (Newt@t  close to zero, yet the number of observed genotype
al., 2004). RA is a chronic disease that is accongghni combinations of SNPs within each block is small.
by severe pain that arises from destruction of theBelow we describe a method that uses a Bayesian
synovial joints (WTCCC, 2007). Even though recentmodel and a Monte Carlo algorithm to determine
advances in the Genome-Wide Association Studieblock structure for the given SNPs data set.

(GWAS) are starting to show the directions for new

therapies and advancement of understanding th&eneral overview: Let B be the block partition
complex relationships between different autoimmunevariable which has a form of L binary indicatorses
disorders and their genetic causes, complet@alue of one (1) corresponds to the start of thet ne
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block. Using multiplication law for conditional
probability, we can calculate combined probabitity
the Data (D) and Block structure (B) to be Eqg. 1:

P(D,B)=P(B|D)P(D) )

Therefore, we find the posterior probability oeth
block boundaries given by Eq. 2:
_P({D.B)
PBID) =0 @)

particular diplotype. We model the diplotype coubys
the multinomial distribution with its frequency
parameters following a Dirichlet prior distributioR[]

Dirichlet(a,&,...,&”, where Dirichlet density
function is given by (let K =% Eq. 6:
(p8) =[] #* (6)

" B@) rj

and the normalizing constanB(a)is specified by

K
D I'(a
i=1 (a“)wherel' is the gamma function andis the

Let's consider numerator and denominator of the K
\ . e rQ...a)
above equation separately. Using multiplication law

ones more, we can express the numerator as Eq. 3:

P(D,B)=P(D|B)P(B 3)

Observe that once we impose a prior P(B) on th
block boundary distribution, we can calculate P(D,B

explicitly. However, let's now move our attentianthe
denominator of the expression for the posterioBof
Observe that Eq. 4:

ol

P()=Y POIB)PE: @)

vector of Dirichlet parameters. Letaenote the number
of counts of a specific diplotype i out of K in théock
under consideration. The joint probability ofjs [,
which denotes the subset of full data for a paldicu
glock under consideration anglis given by Eq. 7:

P, D)= PO, PP ]
= P(D,,, [P)Dirichlet(a) ()

Since we imposed a Dirichlet prior on diplotype
counts. Therefore, substituting for the Dirichlendity,
we have Eq. 8:

where, we sum over all possible block boundary

configurations. For our data we have=L30, 000.

Therefore, calculating P(D) is not computationally

1

Py P) :%D giea 8

feasible and we have to resort to MCMC methods.

Using Monte Carlo methods we sample from P(B|D) to

obtain probability for each B(i) to be 1 (the staftthe
next block).

Details of the modd: For a prior distribution on B, we

assume that indicators are independent and idiytica

distributed Bernoulli random variables. Therefohe, total
probability of observing a particular B is givenbg. 5:

PB)=p" (1-pj™ (5)

Another important assumption in our model is that
as(
mutually
independent, which is a good approximation to teali

of SNPs
blocks are

genotype combinations
“diplotypes”) in different

(known

in biological data (Zhangt al., 2011a).

However, we are not interestedpn Thus, in order
to find the marginal probability of data for theobk,
we integrate oup Eq. 9:

P(D.y) =] P, P)E )

Then, the marginal probability of the data for the
block is given as Eq. 10:
P(D. 4 ['s.9 is one block) =

rda)
rQ.(n +a))

LI, +a) (10)

EINCY)

)

Consider a block of SNPs (s,...,b-1) with theWherea :%denotes the Dirichlet parameters for the

starting marker s and block end marker b-1. Sirzazh e
SNP can take one of three possible values, ther&ar

distribution on the frequency parameters for diyet
counts. Since according to one of our assumptithres,

QO_SSible diplotypes  in~ the  block. — Let giniotype counts in different blocks are indeperigere
P=(P.P,.-.R- be a vector with probabilities of & finq the total probability of data to be Eq. 11:
22
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P(D|B)= |b-| P(D, [Sb is one bloc (11) of genetic variants associated with the case stébus
all blocks each marker i we considered,Rs(B (i) = 1)-Pone (B
(i) = 1), which is the difference in the posterior
Using Eqg. 2 and 3, we find that the posteriorh& t probability of block start and the absolute valfiehat

block partition variable is proportional to Eq. 12: quantity. We employed various data analysis methods
described below to find the case status associated
P(BID)O P(D|B)P(B (12)  regions of genetic variants.
However, as was shown above, because it is RESULTS

computationally unfeasible to sum over all possible

block boundaries to determine the proportionality  General form of the data was already mentioned

constant we need to use Monte Carlo method to Empbreviously. Specifically, data used included gepety

from the posterior. Particularly, we use Metropolisqata for 2-allelic SNP markers giving for each neark

Hastings (MH) algorithm; see (Wai-Yuan and Tan,probabilites (g, p. ps) to observe a particular

2002; Liu, 2001) for details. We sample from RIB  combination of two alleles (ignoring the order).t®a

in order to obtain P (B (i) = 1) for each i = 1,.2L. e used consisted of one data set for 2000 patietits

using MH algorithm in the following way: Type | Diabetes (T1D data set), one data set f@919

patients with rheumatoid arthritis (RA data set)l &ano

+ Initialization step: initialize B by randomly data sets with control group data for a total 0080
assigning values to the block partition variable individuals (control data set). First, we filteredt

* Proposal step: given the current block partitionSNPs with number of patients with max,(pos,
state B generate the proposal block partition B'ofp;)<0.9 exceeding 3%. After we filtered out such
the data by randomly choosing a block andSNPs simultaneously for both controls and T1D
performing one of the following moves: (1). split patients 29,483 good SNPs were left for final
the block into two at the chosen index position; (2 analysis  from  original  31,470.  Similarly,
merge two sequential blocks together at the chosesimultaneous filtering of RA and controls data

index; or (3). shift the block boundary resulted in 29,468 good SNPs for farther analysis.

» Evaluation step: let q(BB’) represent the We already outlined the general approach to amalyz
probability of changing from B to B’, then the the output results of the MH algorithm used to siemp
acceptance probability is given by Eq. 13: from the posterior P(B|D). We considered differenize

posterior probabilities for haplotype-block boundsatart
P(B'| D)q(B'- B)} (13) between controls and cases at specific SNPs |osatio
P(B|D)q(B- B order to determine SNP markers and genes on chr6
associated with T1D and RA, we analyzed the
distribution of the markers for which difference in
probability of the block start between controls aades
was larger than 0.5, implying that the specific kear
was determined with high probability to signify the
beginning of the next haplotype block only for eith
. . . controls or cases (but not both). Figure 1 anddvsthe
Afte_r the iterations f|n|sheq,_ we calculate focka histograms of the positions of the markers witthstigh
marker i = 1, 2,...L the probability of the bloctas at  ,qterior probability difference for T1D-controlsich
that position P (B (i) = 1). For this calculatiorewse pa_controls data sets, correspondingly. The data is
only the portion of th_e _Sa”.‘p'es after the Chalnplotted for various bin widths, starting with 5kimda
converged to the target distribution. ending with 5Mb bins. Observe that in plots A-B Fig.

1 and 2, the spread of the determined diseaseedelat

Additional methods of data analysisused: The output  haplotype-block differences across the short arrthef
of the procedure described above is the probalfdity chromosome 6 is very noisy and roughly uniform over
each marker to be the beginning of the next bIEck  the whole region for small bin widths (5 and 5O0kin)
() = 1), for each i =1, 2,..,.L. Since the MH aifom  RA and T1D alike. Similarly, looking at the Fig. Jdhd
was performed on both controls and case®D we conclude that for bin width equal to 5Mb the
independently, we obtainedRs(B (i) = 1) and B pattern of the LD differences is smoothed out, bsea
(B (i) = 1) for each marker i. In order to find thegions  we are effectively averaging over many marker iocet

23

r =min{1,

* Movement step: generatélwniform (0, 1); accept
B’ if u < r and keep B otherwise

» Stop if the number of iterations of the algorithsn i
> N and go to step 2 otherwise
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Fig. 1: T1D associated LD-block boundary differemeeross the short arm of the chromosome 6. Hestogrlots

of the type | diabetes associated haplotype-blaffkrdnces on chromosome 6 (position <60Mb) forivas
bin widths: 5kb (A), 50kb (B), 500kb (C) and 5Mb)(Drhe block boundaries are considered distinct for
controls and T1D patients at a specific SNP mal&eation if the difference in the determined paster

probability of block start at that positions isdar than 0.5.

Table 1: Regions with the largest number of bloifferences between T1D and control groups. Thifetabmmarizes locations of regions (bin

width = 500 kb) on the short part of chromosomedsition < 60 Mb) with the number of determineckéige disequilibrium block
boundary differences between type 1 diabetes gatsrd controls larger than or equal to 20 (topdians out of 118 total). We also
note whether the regions have been previouslyifitmhto be connected with the type 1 diabetes

Location (Mb) # of diff. Known T1D loéi RefSeq genés

7.0-7.5 20 None CAGE1, DSP, RIOK1, RREB1, SSR1
11.5-12.0 25 None TMEM170B, ADTRP

15.5-16.0 31 None DTNBP1, JARID2

18.5-19.0 20 None MIR548A1, RNF144B

31.0-31.5 24 MHC; HLA-B Multiplé

32.5-33.0 21 MHC; HLA-DRB1; BAT1 Multipfe

51.5-52.0 28 PKHD1,; rs9296661 PKHD1

a Either single or two-SNP strong association WitlD previously determined in (WTCCC, 2007; Zhamal., 2011bY: RefSeq genes from the
UCSC genomic database (genome.ucsc.eddpmplete list of the known RefSeq genes in tiggorein chromosomal order: VARS2, SFTA2,
DPCR1, MUC21, MUC22, HCG22, C6orfl5, CDSN, PSORS1B3$ORS1C2, CCHCR1, TCF19, POU5F1, PSORS1C3, HCBRA;C,
HLA-B, MICA. % Complete list of the known RefSeq genes in thggorein chromosomal order: HLA-DRA, HLA-DRB5, HLA®RB6, HLA-
DRB1, HLA-DQA1, HLA-DQB1, HLA-DQA2, HLA-DQB2, HLA-DOB, TAP2, PSMBS8, LOC100507463, TAP1, PSMB9, LOC1®O15
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Fig. 2: RA associated LD-block boundary differenaesoss the short arm of the chromosome 6. Histognlats of
the rheumatoid arthritis associated haplotype-bldifferences on chromosome 6 (position < 60Mb) for
various bin widths: 5kb (A), 50kb (B), 500kb (C)dadbMb (D). The block boundaries are considered
different for controls and RA patients at a spec8NP marker location if the difference in the deteed
posterior probability of block start at that pasits is larger than 0.5

Table 2: Regions with the largest number of bloiffecences between RA and control groups. Thisetaimmarizes locations of regions (bin
width = 500 kb) on the short part of chromosomeésition < 60 Mb) with the number of determinedkéige disequilibrium block
boundary differences between rheumatoid arthriisepts and controls larger than or equal to 2p ftaegions out of 117 total). We
also note whether the regions have been previddeiitified to be connected with the rheumatoidrétith

Location (Mb) # of diff. Known RA lodi RefSeq gends

4.0-45 24 None C6orf146, C6orf201, ECI2, PRPF4B
6.0-6.5 31 None F13A1, LY86-AS1

11.5-12.0 30 None TMEM170B, ADTRP

18.5-19.0 27 None MIR548A1, RNF144B

24.5-25.0 20 None Multipfe

29.5-30.0 32 MHC; rs1233400 Multiﬂle

30.5-31.0 20 MHC,; rs1075496 Multigle

2 Either strong or moderate single SNP associatitin RA previously determined in (WTCCC, 20G7RefSeq genes from the UCSC genomic
database (genome.ucsc.eduComplete list of the known RefSeq genes in thgiore ACOT13, ALDH5A1, C6orf62, FAM65B, GMNN,
GPLD1, KIAA0319, MRS2, TDP2%: Complete list of the known RefSeq genes in thgore GABBR1, HCG4, HLA-F, HLA-F-AS1, HLA-G,
HLA-H, IFITM4P, LOC100507362, LOC554223, MAS1L, MOGR10C1, OR11A1, OR2H1, OR2H2, SNORD32B, UBD, ZFP5Complete
list of the known RefSeq genes in the region: ABCKIAT1, C60rf136, DDR1, DHX16, FLOT1, GNL1, GTF2H#LA-E, IER3, MDC1,
MIR4640, MIR877, MRPS18B, NRM, PPP1R10, PPP1R1IRPRUBB, VARS2
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Fig. 3: Positions of T1D associated block differemon
the specific genes in the 31.0-31.5 Mb region.
Plots of the known RefSeq genes in the part O'i:ig
the MHC region (A), used SNPs locations (B),
posterior probabilities of the block boundary
start for T1D patients (C) and controls (D), as
well as the difference in the posterior
probabilities between the case and control data
sets (E). For plots A-E the common x-axis
(location) is shown at the bottom of plot E. In
plot A the strand is marked with “+” or “-”
below the gene name. Positions of the RefSeq
genes were obtained from the UCSC genomic
data base (genome.ucsc.edu). Table 1 for a
complete list of RefSeq genes in the region in
their chromosomal order

Thus, most of our further analysis concentratecthen
data for bin width of 500kb for both T1D-controlada
RA -controls data sets. It is noticeable that pois Fig.
1 and 2 for such bins show interesting substrudtutke
distribution of the haplotype-block differences ey
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. 4: Positions of T1D associated block differemion

the specific genes in the 32.5-33.0 Mb region.
Plots of the known RefSeq genes in the part of
the MHC region (A), used SNPs locations (B),
posterior probabilities of the block boundary
start for T1D patients (C) and controls (D), as
well as the difference in the posterior
probabilities between the case and control data
sets (E). For plots A-E the common x-axis
(location) is shown at the bottom of plot E. In
plot A the strand is marked with “+” or “”
below the gene name. Positions of the RefSeq
genes were obtained from the UCSC genomic
data base (genome.ucsc.edu). To avoid
overlapping names, genes TAP1l and
LOC100507463 were not labeled in the plot A.
Table 1 for a complete list of RefSeq genes in
the region in their chromosomal order

Previous studies (WTCCC, 2007) indicated that

chromosome 6 that was further explored in detaibecause of their autoimmune background, both T1dD an
(independently for both T1D and RA associations). RA are known to share same disease loci in thengeno
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Fig. 5: Distribution characteristics for the detered haplotype-block differences in the 0.5Mb biraphical
summary of the LD-block difference distributionsr fd 1D-controls and RA-controls data sets using
histograms (A-B), empirical cumulative distributidonctions (C-D) and boxplots (E-F) for evaluating
central location, dispersion and outliers in theada

More specifically, it has been observed (WTCCC, In order to analyze the locations of the disease
2007; Johnson and O’Donnell, 2009; Zhadgal., associated regions on the short arm of the chromeso
2011a) that T1D and RA share same loci with thewe looked more closely at the 500kb regions plotted
strongest  association signals in the Majorthe Fig. 1C and 2C that were discriminated from the
Histocompatibility Complex (MHC, also known as rest by the large number of LD-block differences.
HLA) region on the chromosome 6. Thatis why reve Specifically, we looked at the regions for whicte th
though we determined the haplotype-block boundarieaumber of block differences per bin was larger tBan
for the whole chromosome 6, in the analysis part weg96th-quantile for both data sets).
focused our attention mainly on the short arm & th Table 1 summarizes the regions of interest
chromosome 6 (position <60Mb) that contained thedetermined for T1D-controls data set. Specificalsg
MHC and its surrounding regions. note whether the region found to have a large humbe
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of LD-block differences between T1D patients andmust be taken to differentiate the LD-block diffeces
controls has previosly been associated with the . T1Dcoming from the disease association against those
We observed that three such regions that standnout arising from the computational step of our approach
our study had previously been linked to T1D (Zhahg primarily from the convergence of the MCMC chaios t
al., 2011b; WTCCC, 2007) either through single orgifferent local modes of the distribution. Even ugh
two-SNP strong disease association. the chains converged to roughly the same finalgumst

In Table 1 we also note what specific RefSeq genegopapility of the data set, there were slightegihces
are present in all the regions with significantetiénces ;. e computationally determined block differences
in_ the LD-block boundaries_ identified [n this _study for example, in two MCMC chains for the controlsala
Figures 3 and 4 look in detail at the regions éériest there were 2,275 differences in the determinedKsloc

in the MHC complex that were known before to be .
connected to T1D. We showed the known genes in th(éUt of total of 29,483 SNPs in the chromosome & dat

regions (3A and 4A) and the locations of theset (7.7 percent differences). _One of the pqssible

determined block boundary differences (3E and 4E). solutions would be to employ smulated ann_eallng o
Table 2 summarizes the regions with the Iarges{ensure the convergence of the d|ff‘erent chalninwo_t

block boundary differences that are potentially9l0Pal mode using the concept of “temperature” {Liu

associated with the RA status of the patients. dfuhe 2001).

determined regions in this study posses the preiyou

known loci of RA, rs1233400 and rs1075496 (WTCCC, CONCLUSION

2007) and are located in the MHC region of the

chromosome 6. For the rest of the determined region [N conclusion, we proposed and explored a new
of high LD block differences we note the known method to determine disease associated differeimces

RefSeq genes located on those parts of th&aplotype-block boundar_ies based on the Bayesian
chromosome. model and Markov Chain Monte Carlo method. We
applied our method to the WTCCC data to search for
DISCUSSION block differences associated with the autoimmune
diseases (T1D and RA). Among the determined regions
It is important to note that in both instances weof high differences lie known loci of the RA and 11
located regions with high hyplotype-block differesc (HLA genes). Additionally, we point to the chromas®
for both RA and T1D on the HLA complex that is 6 regions that should be further tested for T1D BAd
associated with the autoimmunity and infectionsgTh associations. Over small spatial scales of 5 art 5@
International HapMap Consortium, 2005). Additiogall did not see any regions containing unusually large
two common regions outside of the MHC complexnumbers of block differences. However, on the apati
show high differences in the haplotype  blocksscales of 500kb we pointed out the regions of Hgpée
for both T1D and RA at the same time (Table 1 gnd 2 block differences that are potentially associatéth e
Even though we do not have a definite stochastiRA and T1D diseases. For example, common regians fo
model for the distribution of the LD-block differe@s, both diseases of high haplotype-block differences
plots in Fig. 5 reveal the structure of the datthen appeared around 11.5-12.0 Mb and 18.5-19.0 Mb and
strikingly. Despite the fact that there is a backmd of  their connections with the autoimmune disordersukho
the differences across the chromosome with theageer be further explored in future studies.
per 0.5Mb bin between 5 and 10, clearly a few negjio
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