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Abstract: Problem statement: Quantitative Reverse Transcription PCR (RT-qPCR) is often used to 
validate microarray data. Previous studies show different levels of correlation, without further 
investigation of influencing factors. Approach: We compared expression levels of 381 genes obtained 
from microarray hybridizations and from TaqMan based RT-qPCR assays. Correlation of expression 
levels was determined by comparing: (i) single genes across samples, (ii) all genes within a sample and 
(iii) the expression ratios of all genes in a sample using another sample as the reference. The influence 
of several parameters on the correlation was analyzed: (i) variation in transcript set targeted by the 
microarray probe and the PCR assay, (ii) variation in amplicon probe position relative to 3' end of 
transcript, (iii) variation in efficiency of the PCR reaction and (iv) normalization of the PCR data. 
Results: The 381 genes covered by RT-qPCR had 494 matching probes on the microarray. 397 probes 
with a matching transcript set were identified via a rigid sequence-based validation. Correlation was 
significantly higher among matching transcript sets and probes closer to the 3' end. Adjustments for 
different amplification efficiencies had either no influence or decreased correlation. Normalization of 
qPCR data consistently reduced correlation for all analysis approaches. Conclusion: Current clinical 
research uses microarrays to select genes of interest and evaluates these genes using qPCR. Therefore, 
it is important that expression levels measured by both techniques be highly correlated. High 
correlation can be achieved if the targeted transcript sets match, whereas normalization and efficiency 
correction can have a negative influence. 
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INTRODUCTION 

 
 Quantitative Reverse Transcription PCR (RT-
qPCR) is often used to validate gene expression 
measurements from DNA microarray experiments. 
Comparison with PCR is done primarily to underpin 
findings derived from microarray data, even as a 
requirement for publication (Rockett and Hellmann, 
2004). An additional application is molecular 
fingerprinting (Veer et al., 2002), where an unknown 
sample (in general a tumor specimen) is classified by 
RT-qPCR using a small subset of discriminating genes, 
which typically has been determined by microarray 

hybridizations of known samples. In both applications, 
it is very important to know what level of agreement can 
be expected between RT-qPCR and microarray data. For 
microarray data confirmation, agreement on the direction 
of fold-change could be enough (Rajeevan et al., 2001), 
whereas sample classification has much more stringent 
agreement requirements (Perreard et al., 2006). 
 Several studies comparing microarray and RT-
qPCR data have been published, which show differing 
levels of agreement between the platforms, ranging 
from negative correlation for some genes to almost 
perfect agreement for others (Zhang et al., 2000; 
Etienne et al., 2004; Abruzzo et al., 2005; Beckman et 
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al., 2004; Dallas et al., 2005; Walker et al., 2006; Wang 
et al., 2006; Canales et al., 2006). Only a few of these 
studies address potential factors influencing the correlation 
(Canales et al., 2006; Morey et al., 2006; Barbacioru et 
al., 2006). 
 Microarray and RT-qPCR techniques differ in 
many respects, including in the method for reverse 
transcription, in their reaction dynamics and in their 
dynamic range. Additionally, normalization methods 
applied vary considerably between the two methods, 
due to the up to 100-fold higher number of genes 
measured in a microarray experiment than in RT-qPCR. 
Systematic errors in RT-qPCR data are compensated 
for by the use of reference genes, which are assumed to 
show almost constant expression across samples and 
experimental conditionsc (Schmittgen and Livak, 2008; 
Vandesompele et al., 2002), In contrast, microarray 
normalization methods (Do and Choi, 2006) take into 
account all or a large subset of genes on the array to 
calculate correction factors. Additionally, the region 
targeted by the microarray probe and by the RT-qPCR 
primers, respectively, influences the correlation. 
Microarray probes are in general designed to hybridize 
to all splice variants of a gene and lay therefore 
completely within an exon. RT-qPCR primers, in 
contrast, are designed to span exons to avoid 
amplification of genomic DNA or unspliced mRNA 
and these primers target only a subset of the splice 
variants of a gene, depending on which exon boundary 
is spanned. Sequence-based validation of targeted 
transcripts has been applied for microarray platform 
comparisons (Ji et al., 2006; Carter et al., 2005; Mecham 
et al., 2004), but not yet applied for comparisons of 
microarray probes and RT-qPCR primers. 
 Validation of the microarray results can be done 
using three distinct approaches: 
 
• Calculating the correlation for each gene 

individually across all samples (Dallas et al., 
2005) 

• calculating the correlation for all genes within a 
sample 

• calculating the correlation of expression ratios of 
all genes within a sample using an arbitrary 
reference sample (Wang et al., 2006) 

 
 For this reason, we compared for the first time the 
agreement of both measurements using the three 
approaches mentioned above and investigated the 
influence of the mRNA region targeted by probes and 
primers, normalization and efficiency correction. 
 The presented comparison of mRNA expression 
measurements from DNA microarray and RT-qPCR 
experiments was part of a project which aimed to detect 

circulating tumor cells in the peripheral blood of 
patients suffering from gynecological cancers 
(Obermayr et al., 2010). To identify genes differentially 
expressed in tumor cells compared to peripheral blood 
cells, microarray analysis of 38 tumor cell lines and of 
PBMC from 12 healthy female volunteers was 
performed. The resulting gene expression levels 
obtained by the microarray analysis were validated with 
RT-qPCR for a subset of 381 genes. 
 

MATERIALS AND METHODS 
 
RNA samples: Total RNA was extracted from 38 
cancer cell lines and from 12 PBMC samples taken 
from healthy female donors using the Total RNA 
Isolation Mini Kit (Agilent Technologies, Waldbronn, 
Germany). The quality and integrity of the total RNA 
was assessed on the Agilent 2100 Bioanalyzer and the 
same samples were divided into individual aliquots for 
the gene expression analysis on the microarray platform 
and for the TaqManbased RT-qPCR analysis. All RNAs 
used in the present study were of high quality and un-
degraded (Supplemental Data Table 1). All peri-
pheral blood was collected with the patients’ written 
consent. The study was approved by the Ethics 
Committee of the Medical University of Vienna, 
Austria (Obermayr et al., 2010). 
 
Gene expression array analysis: Gene expression 
profiles from the tumor cell lines and from the PBMC 
samples were generated using the AB Human Genome 
Survey Microarray Hs v1. Kits and reagents were used 
according to the manufacturer’s protocols. Image 
acquisition and analysis were performed using the AB 
1700 Chemiluminescent Analyzer Software (version 
1.0.0.3). Signals from the autogridded images were 
background corrected and normalized first by feature, 
then by spatial effects for each slide and finally by 
global normalization across slides. The Assay 
Normalized Signal (ANS) and the Signal to Noise ratio 
of the measurements (S/N) were used during further 
analysis. No additional normalization was applied. 
Filtering data with a flag of greater than 5000 indicating 
a low quality spot and with a S/N ≤ 3 (Wang et al., 
2006) excluded 1290 measurements leaving 6075 for 
the comparisons to the RT-qPCR data. Finally, we 
identified genes with differential expression levels in 
each group of tumor cell lines and in part of the tumour 
cell lines, respectively, compared to the healthy control 
group using the maxT test on log transformed 
expression values from the R (RDCT, 2010) “multtest” 
package (Ge et al., 2003) and the 50% one-sided 
trimmed maxT-test (Gleiss et al., 2011). 
 Thus, 377 genes were selected for RT-qPCR-based 
validation and further investigation. 
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TaqMan gene expression assay based RT-qPCR: 
Microarray data was validated in 15 cancer cell lines 
using the AB TaqMan Low Density Array (TLDA) 
format 384, which allows the analysis of 380 gene 
targets in single reactions and of one mandatory 
endogenous control gene (GAPDH) in a quadruplicate 
reaction. Matching TaqMan Gene Expression Assays 
were selected according to a mapping of microarray 
probe IDs to assay IDs provided by AB. Additionally, 
three TaqMan Endogenous Controls (B2M, TBP and 
PGK1) were analyzed. Template cDNA was generated 
using M-MLV Reverse Transcriptase, RNase H Minus 
(Promega, Madison WI, USA) and random hexamers 
as primers. The Low Density Arrays were loaded with 
the sample specific mix containing the cDNA and 
TaqMan Universal PCR Master Mix, No AmpErase 

UNG. The RT-qPCR was run on the AB 7900HT Fast 
Real-time PCR System using default conditions (1 
cycle of 2 min., 50°C; 1 cycle of 10 min. 95°C; 50 
cycles of 15 s, 95°C; 1 min., 60°C). Raw data were 
analyzed with the AB7900 Sequence Detection 
Software version 2.2.2 using automatic baseline 
correction and manual cycle threshold setting. 
 
Calculation of RT-qPCR efficiencies: The 
amplification efficiencies of 95 differentially expressed 
genes were assessed using the TLDA format 96A, 
which allows the amplification of 95 gene targets and 
of one mandatory endogenous control gene (GAPDH) 
in duplicate reactions. Equal cDNA amounts from eight 
cancer cell lines were pooled and fourfold serially 
diluted. Each template dilution was amplified in two 
TLDAs to compensate for experimental variations. 
Amplification and data analysis were performed as 
described above. The efficiencies were estimated both 
from the slope of log input template amount versus Cq-
value (Eg = 10(-1/k=slop)-1) and directly from the raw 
fluorescence intensities as proposed by (Zhao and 
Fernald, 2005). The resulting efficiencies were 
averaged across samples, assuming inhibition and 
amplification as being very similar in the cell lines. 
 
Filtering and normalization of RT-qPCR data: Cq-
values ≥ 35 were considered unreliable and filtered as 
described in Wang et al. (2006). Of the 5760 RT-qPCR 
measurements, 414 were below the detection limit and 
an additional 87 were removed according to the Cq-
value quality criteria. The remaining 5214 Cq-values 
were converted to relative quantities (RQs) on a linear 
scale as follows: RQg = (1+Eg)

(Cq
max

-Cqg) where g 
denotes the gene and Cqmax is the maximum Cq-value 
over all 15 TLDAs. Eg is the efficiency of the PCR 
reaction for gene g ranging from 0 (no amplification) 
to 1 (perfect amplification). 
 Genes suitable for normalization of the RT-qPCR 
data were selected using NormFinder (Andersen et al., 

2004) based on the ANS. The 10 most stable genes 
across the 15 cell lines were verified with geNorm 
(Vandesompele et al., 2002). This list was further 
reduced to three genes (CENPA, CDCA5 and 
CRYZL1) which were detected in all 15 cell lines by 
RT-qPCR and had a validated probe-assay pair 
(Supplemental Data Table 2). 
 Normalization to the geometric mean of these 
reference genes was performed as suggested by 
Vandesompele et al. (2002). 
 First, Cq-values of the reference gene h and the 
assay a were individually normalized across assays 
using the equation NQha= (1+Eh)

(Cq
min

-Cq
ha

), where 
Cqhmin denotes the minimum Cq-value of the reference 
gene h across all assays a. The normalization factor for 
an assay a (NFa) is the geometric mean of all n NQha of 

assay a: 
n

n
a ha

h 1

NF NQ
=

= ∏ The normalized relative 

quantity (Norm_RQ) of a gene g in assay a is finally 
calculated by Norm_RQga = RQga/NFa In the following, 
the abbreviation RQ is used for relative quantities 
calculated with a constant efficiency of 1 and ERQ for 
relative quantities derived with a gene specific 
efficiency. Additionally, normalization was performed 
with every gene available on the TLDA, to check 
whether there is any gene, which improves the 
correlation of microarray and RT-qPCR data. 
 
Sequence-based mappings of microarray probes to 
RT-qPCR assays: Sequences of the 60-mer 
oligonucleotide microarray probes were retrieved from 
the Panther homepage SRI International 2011. RT-
qPCR amplicon sequences were assembled by 
retrieving assay information consisting of accession 
number of targeted transcript, amplicon start position 
and amplicon length from the AB product homepage 
Applied Biosystems 2007. The corresponding mRNA 
sequence was retrieved either from GenBank (Benson 
et al., 2007) or the Panther homepage and the amplicon 
sequence was extracted based on the amplicon start 
position and length. Both sequence lists were subjected 
to a nucleotide BLAST (Benson et al., 2007) with high 
similarity against the Homo sapiens RefSeq database 
(Pruitt et al., 2005) Release 14 using the Comparative 
Transcriptomics Framework (Sturn, 2005). Only 
complete matches on the sense strand were accepted; 
hits to experimental sequences (XM_* and XR_*) were 
removed. An extended and annotated mapping between 
microarray probe and corresponding TaqMan assay was 
created by comparing the set of targeted transcripts. For 
identical transcript sets the respective probe-assay pair 
was added to the extended mapping list. 
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Table 1: Correlation coefficients (R) for single genes across samples for the different mapping sets. The P-value has been assessed by drawing 
random samples from the correlation coefficients of the initial mapping (n = 20000) and comparing the resulting distribution difference 
to the one observed for the set investigated 

Probe-assay pair N Probe-     Average cumulative P-value 
mapping set assay pairs Min R Median R Mean R Max R distribution difference for difference 
Initial mapping 494 0.6109 0.8657 0.7625 0.9999 NA NA 
Invalid pairs 93 0.5621 0.7809 0.6108 0.9903 -9.16 < 5.0e-05 
Validated pairs 397 0.6109 0.8759 0.7845 0.9999 1.33 7.5e-04 
Only probes closest 345 0.3576 0.8792 0.7936 0.9999 1.88 3.5e-04 
to 3’ end 
Pairs targeting only 264 0.1486 0.8833 0.8149 0.9999 3.16 < 5.0e-05 
a single transcript 
 
Table 2: Exon/intron structure and probe/assay location of three mRNAs showing no correlation. RefSeq mRNA (slate blue), microarray probe 

(dark blue) and assay amplicon (red) are shown. Solid bars indicate exons; thin lines intronic sequences. mRNA 3’ end is on the left 
side, exons are numbered starting from the right. (Images generated by the UCSD Genome Browser (Kuhn et al., 2007) 

mRNA exonic structure and probe and assay mapping Distance to 3’ end (bp) R 

 618 0.05 
 2 0.12 

 591 0.15 

 
Comparison of microarray and RT-qPCR data: 
Data were compared by calculating the Pearson’s 
correlation coefficient R (Pearson, 1896) of the probe-
assay pairs for (i) single genes across samples, (ii) all 
genes within a sample and (iii) the expression ratios of 
all genes in a sample using another sample as the 
reference. In some instances the comparison was done 
based on the Spearman’s rank correlation coefficient 
(Spearman, 1904) or Kendall’s Tau-b (Kendall, 1938). 
Significance of correlation differences observed 
between the probe-assay mappings were determined by 
a one-sided Wilcoxon’s rank test. For the comparison 
of single genes across samples, the cumulative 
distribution of the correlation coefficients was used. 
The average difference between the distribution of the 
initial mapping and the derived mappings was 
calculated. The significance of the difference was 
assessed by a permutation test as follows: 20000 
random samples from the correlation coefficients of the 
initial mapping were drawn (without replacement, with 
the number correlation coefficients matching the size of 
the mapping set investigated) and the average 
distribution difference of this sample was calculated. 
The p-value is the proportion of samples with a higher 
difference than the original set. 
 

RESULTS 
 
Sequence-based mappings of microarray probe to 
RT-qPCR assay: The 381 TaqMan assays 
corresponded to 491 unique microarray probes based on 
the annotation of the Human Genome Survey Array v1 
supplied by AB. Three assays mapped to multiple 
probes yielding an initial mapping of 494 probe-assay 

pairs. Ninety-three of these were excluded by the sequence 
based mapping validation due to inconsistent RefSeq 
transcript sets targeted by the probe and assay. For seven 
pairs the BLAST search did not yield any results for both 
the probe and the amplicon sequence. Three new pairs 
were added during this process resulting in 397 validated 
probe-assay pairs (Supplemental Data Table 3). Two 
additional probe-assay mapping sets were defined: 
 
• set (iii), where, for transcripts targeted by multiple 

probes, only the probe closest to the 3’ end of the 
transcript was retained and  

• set (iv), where all probe-assay pairs from set (iii) 
were removed which target multiple transcripts 

 
Set (iii) was defined to compensate for the bias 
introduced by the oligo (dT) primed reverse tran-
scription of mRNA for the microarray hybridizations. 
Sequences closer to the 3’ end of the mRNA are more 
likely transcribed into cDNA, because the probability 
that the mRNA transcription terminates prematurely 
increases with the distance to the 3’ end Applied 
Biosystems 2004. This bias is not present if random 
hexamer primers are used during reverse transcription 
for the RT-qPCR as transcription starts at random 
positions on the mRNA. With set (iv) differences in 
the detection of multiple transcripts by the two 
technologies were avoided (e.g., due to mRNA 
secondary structure). Therefore, four probe-assay 
sets were used in the subsequent comparison: 
 
• The initial mapping as supplied by the 

manufacturer (n = 494) 
• The mapping containing validated probe-assay 

pairs and new ones not present in the initial 
mapping (n = 397) 
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(a) 

 

 
(b) 

 
Fig. 1: Cumulative distribution of Pearson’s correlation 

coefficients for single gene comparisons. (A) 
Absolute distribution for five probe-assay sets. 
(B) Distribution deviation relative to the initial 
mapping from the manufacturer (black). The 
largest positive difference can be observed for 
the set targeting a single transcript only (light 
blue). The only negative difference results from 
the pairs which were excluded through the 
validation process (red) 

 
• The previous set, reduced to a single probe per 

transcript, where the probe with the least distance 
to the 3’ end of a transcript was retained (n = 365) 

• The previous set containing only probe-assay pairs 
targeting a single transcript (n = 264) 

 
 Correlation between the filtered microarray and 
RT-qPCR expression data was assessed using the three 
approaches mentioned previously: (i) across samples, 
(ii) within a sample and (iii) expression ratios within 
samples. Each approach was applied to the four probe-
assay mappings described above. 

Comparison of single genes across samples: The 
correlation coefficients (R) of the genes range from a 
minimum -0.61 and -0.14 (in the initial probe-assay set 
and in the set with probe-assay pairs targeting a single 
transcript only, respectively) to a maximum of almost 
1.0 in all sets (Table 1). To assess the quality of the 
agreement of a certain set, the cumulative distributions 
of the calculated correlation coefficients in a probe-
assay set were compared. The higher the number of 
correlation values close to 1, the better the agreement 
between the two technologies. All three subsets derived 
from the initial mapping showed an increased fraction 
of higher correlation coefficients. For the correlation 
value distribution of the excluded probe-assay pairs, a 
shift toward lower correlation coefficients could be 
observed (Fig. 1). The average distribution difference 
relative to the initial mapping was between -9.16 (for 
the excluded pairs) to 3.16 (for the pairs targeting a single 
transcript only). All differences were statistically 
significant (p<0.001).Using the normalized relative RT-
qPCR quantities with the three selected reference genes 
(Norm_RQ) in the comparison shifted the correlation 
coefficient distribution considerably toward smaller 
values (data not shown). 
 The same could be observed for all datasets 
normalized to a single reference gene. Although the 
correlation was already quite high, there were still 18 
probe-assay pairs with a correlation below 0.5. Three of 
these pairs targeting transcripts of the genes TLCD1, 
ANKRD9 and NT5DC2 were further investigated. 
 The distance to the 3’ end of the transcript, the 
exon-intron structure and the location of the probes and 
assays relative to the mRNA exonic structure are shown 
in Table 2. A scatter plot of the expression for the 
transcript of gene TLCD1 (Fig. 2A) reveals an outlying 
measurement on the microarray for the cell line BT-
549, indicating the existence of a TLDC1 splice variant 
without exon 1 in this cell line. Excluding this outlying 
measurement increased the correlation to 0.90. The 
measurements for the two other genes showed low 
expression in general, without obvious outliers (Fig. 2B 
for NT5DC2). The differing measurements are most 
likely explained by splice variants, which are not 
detected equally by primers and probes, as the exons 
targeted differ significantly. 

 
Comparison of all genes within a sample: For this 
comparison the Pearson’s correlation of log2 (ANS) vs. 
log2 (RQ) of all genes within a sample was calculated. The 
correlation was low ranging between 0.44 and 0.59 (for 
the initial mapping) and between 0.47 and 0.63 (for the 
mapping including pairs targeting a single transcript only). 
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Table 3: Summary of the pearson’s correlation coefficients for the comparison of all genes within a sample for all mapping sets. For each 
mapping 15 correlations were calculated corresponding to the 15 different samples. P-values are based on a wilcoxon’s signed rank test 
of the correlations of a mapping compared to these of the initial mapping 

 Probe-assay     Average correlation P-value of 
Probe-assay pair mapping set pairs Min R Median R Mean R Max R difference difference 
Initial mapping 494 0.44 0.50 0.51 0.59 0.000 1.0000 
Validated pairs 397 0.43 0.50 0.51 0.59 -0.007 0.0603 
Only probes closest to 3’ end 345 0.43 0.50 0.50 0.59 0.003 0.6807 
Pairs targeting a single transcript only 264 0.47 0.56 0.55 0.63 -0.047 0.0006 
 
Table 4: Summary of the correlation coefficients using the averaged values of all samples as a reference for all mapping subset. The P-value is 

calculated using a one-sided Wilcoxon’s signed rank test between the results of the initial mapping and the results of the other subset (n = 15) 
Probe-assay pair mapping set Probe-assay pairs Min R Median R Mean R Max R P-value 
Initial mapping 494 0.63 0.79 0.78 0.88 1.0000 
Validated pairs 397 0.70 0.83 0.81 0.89 0.00623 
Only probes closest to 3’ end 345 0.68 0.83 0.81 0.89 0.00269 
Pairs targeting a single transcript only 264 0.77 0.84 0.83 0.90 0.00058 

 

 
(a) 

 

 
(b) 

 
Fig. 2: Scatterplot of microarray (ANS) vs. RT-qPCR 

(RQ) of transcripts with low correlation. (top) 
LOC116238 (TLDC1) shows an outlying 
microarray measurement for the breast cancer 
cell line BT-549. Correlation without this 
measurement increases to 0.90. (bottom) FLJ1244 
(NT5DC2) shows low expression (especially for 
RT-qPCR), but no striking outliers  

A significant difference in the correlation coefficients 
was observed only for the single transcript mapping 
(Table 3 and Supplemental Data Fig. 1). In a second 
analysis, the log2 of the Efficiency corrected Relative 
Quantities (ERQ) were compared to log2(ANS). 
Correlation coefficients were consistently lower 
compared to the uncorrected values (data not shown). 
Using the RQs normalized to the reference genes did 
not change the results, because the individual assays are 
corrected by a constant factor only. 
 
Comparison of the expression ratios of all genes of a 
sample: For all samples, the Ratios for the ANS 
(RANS) and the Ratio for the RQ (RRQ) were 
calculated using the averaged values of all samples as 
the reference and the correlation of log2 (RANS) and 
log2 (RRQ) was determined. For the initial mapping, 
values for R ranged between 0.63 and 0.88, for all other 
mapping subsets the minimum and maximum R 
increased up to 0.77 and 0.90, respectively (Table 4). 
The shift towards higher correlation coefficients 
compared to the initial mapping was statistically 
significant for all subsets (one-sided Wilcoxon’s signed 
rank test, p<0.01).Using the RQs normalized with the 
internal reference genes did not change the results, 
because the individual assays are corrected only by a 
constant factor. Efficiency corrected Relative Quantities 
(ERQ) produced the same results as the RQ values, 
because the different PCR efficiencies cancel each other 
out when the ratios are calculated (data not shown).  
 

DISCUSSION 
 
 Results from gene expression profiling with DNA 
microarrays are often validated by RT-qPCR. The level 
of agreement reported varies significantly between as 
well as within studies (Etienne et al., 2004; Abruzzo et 
al., 2005; Beckman et al., 2004; Dallas et al., 2005; 
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Walker et al., 2006; Wang et al., 2006; Canales et al., 
2006). Here we have studied several parameters 
influencing the agreement and have shown that the 
correlation of the two technologies is significantly 
increased when microarray probes and RT-qPCR 
primers target the same set of transcripts. To this end, 
we have used a rigorous validation approach to exclude 
probes-assay pairs with a discordant set of targeted 
transcripts. The identification of valid probe-assay pair 
is based (i) on alignment of the probe and amplicon 
sequence against the human transcripts in RefSeq and 
(ii) on probe distance to 3’ end and (iii) on the number 
of transcripts targeted. With the resulting four probe-
assay pair sets, measurements of microarray and RT-
qPCR experiments were compared for individual genes 
across samples, all genes within a sample and for 
expression ratios within a sample. In all three 
comparisons, sets with validated and bias avoiding 
probe-assay pairs showed a significantly higher 
correlation than the initial set derived from the 
microarray annotation supplied by the manufacturer. 
 Specifically, the correlation of the technologies for 
single genes across samples was greater than 0.70 for 
80% of the genes for probe assay pairs targeting single 
transcripts. The correlation of the measurements for all 
genes of a sample was low, with a maximum of 0.63. 
Nevertheless, it was possible to observe a significant 
positive effect of the rigorous validation of the probe-
assay pairs. Platform differences (especially different 
RT-qPCR efficiencies) have a pronounced influence on 
the results in these types of comparisons. 
 When assessing the correlation of the expression 
ratios of the genes in a sample with the average values 
of all samples as the reference, the median R was 
between 0.79 and 0.84. By calculating ratios to assess 
the correlation, differences in technologies (like RT-
qPCR efficiencies or microarray hybridization 
dynamics) cancel out largely. The results achieved here 
are at the same level as those reported from Wang et al. 
(2006), where the same microarray and RT-qPCR 
platforms have been utilized. In Wang’s study, the 
comparison was performed with robust linear 
regression fitting using bisquare weights, which 
resulted in slightly higher correlation coefficients due to 
down-weighing of outliers. 
 Both microarray and PCR technologies are subject 
to handling inaccuracies (pipetting, reaction 
conditions), which have to be compensated for by 
normalization methods. However, correlation decreased 
significantly when normalized data was used in the 
calculations instead of the raw data. This applied both 
to normalized data in the genes across samples 
correlation as well as efficiency corrected data in the 
within sample correlation. 

 Although the use of the correlation coefficient as a 
measure of agreement between the two technologies 
may not be optimal for low expressing genes and genes 
with a low variance in expression across samples 
(Abruzzo et al., 2005), it has been applied successfully 
in this study. Other means to assess the agreement like 
the concordance correlation coefficient (Lin, 2000), 
which was used by Miron et al. (2006) or measurement 
of agreement by direct comparison of expression values 
as suggested by Bland and Altman (2010) are not 
applicable as they yield poor correlation or agreement 
in presence of offsets and scaling factors between the 
measurements. The scale especially differs 
considerably, because the dynamic range is 4 orders of 
magnitude for the AB 1700 platform (Stefano et al., 
2005) and up to 8 orders of magnitude for the TLDAs 
(Canales et al., 2006; Yang et al., 2004). 
 

CONCLUSION 
 
 For a reliable validation of microarray 
measurements by RT-qPCR, it is of utmost importance 
that microarray probes and RT-qPCR primers target 
both the same exon of the mRNA. To avoid possible 
bias introduced by the secondary structure of the 
cDNA, the same region of the exon should be targeted. 
Special care has also to be directed to the selection of 
the internal references and normalization methods, 
because they can influence the results significantly. 
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