Original Research Paper

SSR Analysis of the Chloroplast and Mitochondrial Genomes of Cultivar Lines and Wild Types of the Sunflower (*Helianthus* L.)

¹Vladimir Arturovich Khachumov, ¹Alexander Vyacheslavovich Usatov, ¹Kirill Vitalievich Azarin, ¹Nikolay Victorovich Markin, ²Vera Alekseevna Gavrilova, ³Oleg Fedorovich Gorbachenko and ³Fedor Ivanovich Gorbachenko

¹Department of Genetics, Southern Federal University, Rostov-on-Don, Russia ²Department of Genetic Resources, N. I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia ³Donskaya Experimental Station of VNIIMK, Pustovoit All-Russian Research Institute of Oil Crops, Pos. Oporny, Rostov Region, Russia

Article history Received: 24-01-2020 Revised: 09-02-2020 Accepted: 19-02-2020

Corresponding Author: Khachumov Vladimir Arturovich Department of Genetics, Southern Federal University, Rostov-on-Don, Russia Email: VladimirKhachumov@yandex.ru **Abstract:** SSR analysis of chloroplast and mitochondrial genomes of cultivar lines and wild species of sunflower (*Helianthus* L.) were completed. The polymorphism of 18 microsatellite loci of the chloroplast and mitochondrial genomes was investigated. Based on the obtained data was constructed dendrogram showing the genetic diversity of chloroplast and mitochondrial genomes of sunflowers. The studied species were clustered into annual and perennial. This set of novel polymorphic SSR markers can be useful for breeders and molecular biologists for the genetic diversity analysis, lines identification and improve breeding.

Keywords: Chloroplast Genome, Mitochondrial Genome, SSR Markers, Polymorphism, Sunflower

Introduction

Sunflower is a valuable crop cultivated all over the world. To intensify the crops selection, carry out investigation of DNA polymorphism inbred lines and wild sources plants (Usatov et al., 2014; Kaur et al., 2019). Modern research methods allow the most effective study of the genetic diversity of organisms and use it in population and breeding studies (Song et al., 2018). Molecular markers are among the pre-requisites to accelerate the crop breeding program through genomics assisted breeding (Bohra et al., 2017). Furthermore, plant breeding still rely heavily on the inner genetic resources, which are essential to accurately identify genotypes and to delineate the various genetic relationships between available accessions in germplasm collections. These resources can be utilized effectively to preserve and develop the species and to enhance its applications (Mornkham et al., 2016).

SSR markers are widespread tool in crop selection and plant systematics area (Zong *et al.*, 2015). Plastids and mitochondria are usually uniparentally inherited, typically maternally. As genomes of chloroplasts and mitochondria do not undergo sexual recombination are a good tool for studying accumulated differences at them. The contribution of the cytoplasm to the adaptive potential of plants to environmental factors has a greater impact than previously thought (Mashkina *et al.*, 2010; Usatov *et al.*, 2016; Sobanski *et al.*, 2019). Generally, for cultivar lines characterized lower level of polymorphism of the chloroplast genome relative wild type forms (Wills *et al.*, 2005; Singh *et al.*, 2015).

The objective of the current research was to estimate the genetic diversity and Polymorphic Information Contents (PIC) among in the Sunflowers (*Helianthus* L.) species using PCR-based SSR markers.

Materials and Methods

Plant Materials

The study was carried out on the sunflower (*Helianthus* L.) from the collection of the All-Russian plant genetic resources named N.I. Vavilov. The samples was represented by *H. decapetalus*, *H. divaricatus*, *H. grosseserratus*, *H. hirsutus*, *H. microcephalus*, *H. occidentalis*, *H. rigidus*, *H. salicifolius*, *H. strumosus*, *H. tuberosus*, *H. argophyllus*, *H. bolanderi*, *H. debilis*, *H.*

© 2020 Vladimir Arturovich Khachumov, Alexander Vyacheslavovich Usatov, Kirill Vitalievich Azarin, Nikolay Victorovich Markin, Vera Alekseevna Gavrilova, Oleg Fedorovich Gorbachenko and Fedor Ivanovich Gorbachenko. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. *neglectus*, *H. praecox*, *H. petiolaris*, *H. annuus* (15 different numbers of introductions) and 16 cultivar lines.

DNA Isolation

The total DNA was isolated from the first pair of true leaves of sunflower seedlings according to Boom *et al.* (1990) with our modification.

DNA Amplification

SSR analysis was carried out using 18 primer pairs, the forward of which (F) was labeled 5(6)carboxyfluorescein (FAM) by the 5'-terminal. Design of primers based on the reference plastid genome of the HA383 line (NC_007977.1) and the mitochondrial genome of *H. annuus* (NC_023337.1) from the NCBI database. A few important properties of these primers are provided in Table 1. The PCR protocol was conducted in 25 μ L of mixture according to manufacturer's instructions (Eurogen, Moscow, Russia). The PCR cycles with the following specification: initial denaturation for 5 min at 95°C, 30 cycles of 15 s at 95°C (denaturation), 25 s at 58°C, 1 min 72°C and a final elongation for 10 min at 72°C. Amplification was performed in a thermocycler C1000 (Bio-Rad, California, USA).

Data Analysis

The level of cpSSR and mtSSR loci polymorphism was assessed by the Polymorphism Information Content (PIC) index, which was calculated as follows: PIC = 1- \sum pi2, where pi is frequency of i-th allele detected in the analyzed sampling (Nei, 1973).

A binary matrix was constructed by converting the data of allele sizes into "1" (present) or "0" (absence). UPGMA cluster analysis was completed with the treecon 1.3 b software.

Table 1: Primers used in the SSR analysis

Ganama	No	Locus nomo	Sequence of flanking primers 5' 2'	Number	amplifications	DIC
Chloroplast	1	Locus name	Sequence of hanking primers 5 -5	of affeles	inaginents, op	PIC 0.070
	I	clpP, intron	F: TICAGCAATCCCAAAGTGGC	8	120-139	0,959
	•		R: AGICCAGIICAGCGICACAA	<i>.</i>	140 155	0.077
	2	atpB – rbcL		6	149-155	0,977
	2	1.0.1		2	106 100	0.027
	3	cipP, intron		3	180-188	0,937
	4	(D. (C		7	222 247	0.070
	4	trnk – trnG		/	223-247	0,979
	~			10	076 001	0.000
	5	trnM – atpE		10	276-291	0,989
	6	nahV nahI		5	202 204	0.072
	0	psdk – psdi		5	302-306	0,972
	7	mah C turn S		10	222 226	0.005
	/	psoc - irns		12	522-550	0,995
	0	alm D interne		12	250 279	0.004
	0	cipP, intron		15	550-578	0,994
	0	m Cl interes		5	286 200	0.077
	9	rpoC1, iniron		3	380-390	0,977
Mitochondrial	10	two F oorl		2	129 120	0 883
	10	IIII = COXI		5	126-150	0,005
	11	two S ach		10	159 160	0.001
	11	ims = cov		10	130-109	0,991
	12	rnl 16 matP		6	176 181	0.050
	12	<i>Tpi</i> 10 – <i>mai</i> K	P: GTTCGGGACGGCTGTATTT	0	170-101	0,950
	13	atnl comEn	E GCAATACGGAGAGAGGTAGAAAG	4	277_283	0.012
	15	upi – cemin	Ρ. CCATGCCTTCTAATCGGCTAAT	4	211-205	0,712
	14	atnl _ ccmEn	E CTCGTAGCTCCCGTTTGATAC	5	334-338	0.964
	17	upi cemin	R. TGTCCTTGATGACCAACCATAA	5	554-550	0,704
	15	trnS - coh	F. CTTGTTCCGTGCTATTGAGAGA	8	373-384	0 976
	15	11115 600	R. AATCGTAGGTCCCCTCGTC	0	575 504	0,770
	16	atn6 - trnK	F' GCTCGGCTAAATAGGCTCAAT	4	394-397	0.958
	10	uipo inni	$\mathbf{R} \cdot \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} T$	-	574 571	0,750
	17	rnl5 - trnD	F [·] AGTGGGAAGTAATGAGGCTAGT	4	432-435	0 964
	1,	. Pito inite	R: CCCATGACTTTCCGGACCAA	•	.52 155	0,204
	18	trnD – trnK	F: GCTGTACACCTGGGATTGTAG	4	460-464	0.921
			R: CGCTGACCGAATTCTGCTTC	•		0,721

Notation. F - forward primer, R - reverse primer, Polymorphism Information Content (PIC) - locus polymorphic information content index

Results and Discussion

In the present work, the polymorphism of 18 microsatellite loci of the chloroplast and mitochondrial genomes was investigated. The number of detectable alleles with use of the primers system ranged from 3 to 13 and averaged 6,5 for investigated samples. The greatest polymorphism was shown for 5, 7, 8, 11 primer pairs and was represented by 10, 12, 13, 10 allelic variants, respectively. Sizes of amplified fragments ranged from 120 to 465 bp. Locuses is characterized by high heterogeneity, which is confirmed by the high values of PIC which was from 0,883 to 0,995 Table 1. Most lines have their own unique patterns that different from each other.

Based on the obtained data was constructed UPGMA-dendrogram showing the genetic diversity of chloroplast, mitochondrial genomes and citoplasmons in generally of sunflowers.

The dendrogram constructed for the chloroplast genomes includes three major clusters Fig. 1. The first cluster includes cultivar lines of sunflower. The second cluster is represented by annual sunflower species: *H. argophyllus*, *H. bolanderi*, *H. debilis*, *H. neglectus*, *H. praecox*, *H. petiolaris* and 15 different numbers of introductions of *H. annuus*. The third cluster consists of perennial sunflower species: *H. decapetalus*, *H. divaricatus*, *H. grosseserratus*, *H. hirsutus*, *H. microcephalus*, *H. occidentalis*, *H. rigidus*, *H. salicifolius*, *H. strumosus*, *H. tuberosus*.

Fig. 1: The dendrogram of genetic diversity of sunflower, based on the results of SSR-analysis of cpDNA

Vladimir Arturovich Khachumov et al. / American Journal of Biochemistry and Biotechnology 2020, 16 (1): 70.75 DOI: 10.3844/ajbbsp.2020.70.75

Fig. 2: The dendrogram of genetic diversity of sunflower, based on the results of SSR-analysis of mtDNA

The dendrogram constructed for the mitochondrial genomes includes three major clusters too Fig. 2. However, the cluster of wild annual forms sunflower includes cultivar lines such as HA-89 A (CMS), VIR 110 A (CMS), VIR 151 A (CMS), VIR 435 B, HA-336, SW-514 A (CMS).

The complete dendrogram constructed for the chloroplast and mitochondrial genomes includes three main clusters too but shows better detailzation than individual ones Fig. 3.

Differentiation into annual and perennial species is probably due to the accumulation of mutations in the genome over time. These mutations are localized in intergenic regions and do not receive the pressure of natural selection (Singh *et al.*, 2015). It is known that the selection process leads to the appearance of many homozygotes and, as a result, to a reduction in genetic diversity (Markin *et al.*, 2015). This explains the separation of cultural lines from annual wild species. The investigated markers are suitable for certification of a linear material and searching of genetic raw materials for selection.

Molecular markers can be used for genetic variation analysis if it has high polymorphism, codominance and specific characteristics and wide distribution (Aristya *et al.*, 2019).

Vladimir Arturovich Khachumov et al. / American Journal of Biochemistry and Biotechnology 2020, 16 (1): 70.75 DOI: 10.3844/ajbbsp.2020.70.75

Fig. 3: The dendrogram of genetic diversity of sunflower, based on the results of SSR-analysis of cpDNA and mtDNA

Conclusion

The 18 polymorphic SSR markers developed here proved useful in the evaluation of the genetic diversity of sunflowers. All 18 SSR markers showed high polymorphic information content index for annual and perennial species. Based on the obtained data was constructed UPGMA-dendrogram showing the genetic diversity of chloroplast and mitochondrial genomes of sunflowers. This set of novel polymorphic SSR markers can be useful for breeders and molecular biologists for the genetic diversity analysis, lines identification and improve breeding.

Acknowledgement

This research was supported by a project of the Ministry Education and Science of Russia, no. 6.929.2017/4.6.

Funding Information

The funders of this manuscript were the Ministry Education and Science of Russia, no. 6.929.2017/4.6.

Author's Contributions

Vladimir Arturovich Khachumov: Wrote the first draft of the manuscript, designed experiments participated

in the laboratory study, participated in the collected and data analysis, read and approved the final manuscript.

Alexander Vyacheslavovich Usatov: Designed experiments, read and approved the final manuscript.

Kirill Vitalievich Azarin: Designed experiments, data analysis. Author read and approved the final manuscript.

Nikolay Victorovich Markin: Participated in the laboratory study, data analysis, read and approved the final manuscript.

Vera Alekseevna Gavrilova: Collected and analyzed data. Author read and approved the final manuscript.

Oleg Fedorovich Gorbachenko and Fedor Ivanovich Gorbachenko: Designed experiments, read and approved the final manuscript.

Ethics

The authors state that this article conforms to the ethical standards specified by the American Journal of Biochemistry and Biotechnology.

References

- Aristya, G.R., R. Kasiamdari, M.F. Arif, F. Amalia and R.D. Pawestri, 2019. Comparison of molecular markers ISSR, SSR and RFLP to study the genetic variation of strawberry cultivars. Am. J. Agric. Biol. Sci., 14: 61-68. DOI: 10.3844/ajabssp.2019.61.68
- Bohra, A., R. Jha, G. Pandey, P.G. Patil and R.K. Saxena *et al.*, 2017. New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in Pigeonpea [*Cajanus cajan* (L.) Millspaugh]. Frontiers Plant Sci., 8: 1-15. DOI: 10.3389/fpls.2017.00377
- Boom, R.C.J.A., C.J. Sol, M.M. Salimans, C.L. Jansen and P.M. Wertheim-van Dillen *et al.*, 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol., 28: 495-503. DOI: 10.1128/JCM.28.3.495-503.1990
- Kaur, K., S.K. Dhillon, B.S. Gill and G. Kaur, 2019. Association of SSR based genetic distances with heterosis in sunflower. J. Environ. Biol., 40: 1102-1108. DOI: 10.22438/jeb/40/5/MRN-953
- Markin, N.V., A.V. Usatov, M.D. Logacheva, K.V. Azarin and O.F. Gorbachenko *et al.*, 2015. Study of chloroplast DNA polymorphism in the sunflower (*Helianthus* L.). Russian J. Genet., 51: 745-751. DOI: 10.1134/S1022795415060101
- Mashkina, E.V., A.V. Usatov and M.V. Skorina, 2010. Comparative analysis of thermotolerance of sunflower chlorophyll mutants. Russian J. Genet., 46: 178-184. DOI: 10.1134/S1022795410020079

- Mornkham, T., P.P. Wangsomnuk, X.C. Mo, F.O. Francisco and L.Z. Gao *et al.*, 2016. Development and characterization of novel EST-SSR markers and their application for genetic diversity analysis of Jerusalem artichoke (*Helianthus tuberosus* L.). Genet. Mol. Res., 15: 1-16. DOI: 10.4238/gmr15048857
- Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. National Acad. Sci., 70: 3321-3323. DOI: 10.1073/pnas.70.12.3321
- Singh, A.K., P.K. Singh, M. Arya, N.K. Singh and U.S. Singh, 2015. Molecular screening of blast resistance genes in Rice using SSR markers. Plant Pathol. J., 31: 12. DOI: 10.5423/PPJ.OA.06.2014.0054
- Sobanski, J., P. Giavalisco, A. Fischer, J.M. Kreiner and D. Walther *et al.*, 2019. Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proc. National Acad. Sci., 116: 5665-5674. DOI: 10.1073/pnas.1811661116
- Song, J.Y., G.A. Lee, M.S. Yoon, K.H. Ma and Y.M. Choi et al., 2018. Analysis of Genetic Diversity and Population Structure of Buckwheat (Fagopyrum esculentum Moench.) Landraces of Korea using SSR Markers. In: Buckwheat Germplasm in the World, Zhou, M., I. Kreft, G. Suvorova, Y. Tang and S.H. Woo (Eds.), Academic Press, ISBN-10: 978-0-12-811006-5 pp: 315-331.
- Usatov, A.V., A.I. Klimenko, K.V. Azarin, O.F. Gorbachenko and N.V. Markin *et al.*, 2014. The relationship between heterosis and genetic distances based on SSR markers in *Helianthus annuus*. Am. J. Agric. Biol. Sci., 9: 270-276. DOI: 10.3844/ajabssp.2014.270.276
- Usatov, A.V., P.I. Kostylev, K.V. Azarin, N.V. Markin and M.S. Makarenko *et al.*, 2016. Introgression of the rice blast resistance genes Pi1, Pi2 and Pi33 into Russian rice varieties by marker-assisted selection. Indian J. Genet. Plant Breed., 76: 18-23. DOI: 10.5958/0975-6906.2016.00003.1
- Wills, D.M., M.L. Hester, A. Liu and J.M. Burke, 2005. Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in *Helianthus annuus*. Theoretical Applied Genet., 110: 941-947. DOI: 10.1007/s00122-004-1914-3
- Zong, J.W., T.T. Zhao, Q.H. Ma, L.S. Liang and G.X. Wang, 2015. Assessment of genetic diversity and population genetic structure of *Corylus mandshurica* in China using SSR markers. Plos One, 10: 1-12. DOI: 10.1371/journal.pone.0137528