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Abstract. Freshness is an important index of egg quality. In this study, a 

synchronous fluorescence spectral technique was employed to determine 

the freshness of an intact egg. Synchronous fluorescence spectra of intact 

eggs were acquired using a fluorescence spectrometer supported by a 

laboratory fluorescence acquisition device and egg freshness (Haugh Unit) 

was obtained using destructive methods. Eggs feature fluorescence signals 

were mainly concentrated in two regions: A (excitation wavelength of 290 

nm over the emission wavelength range of 320-380 nm) and B (excitation 

wavelength range of 380-570 nm over the emission wavelength range of 

610-735 nm). The two regions were selected as regions of interest, which 

include 2581 Excitation-Emission (Ex-Em) wavelengths; stepwise 

discrimination analysis was performed on the 2581 Ex-Em wavelengths to 

choose optimal Ex-Em wavelength combinations. A Multiple Linear 

Regression (MLR) prediction model was built using fluorescence signals 

based on the optimal Ex-Em wavelength combinations. The results revealed 

that the freshness of an egg could be accurately predicted with Rp2 of 

0.8879 and a root mean square error estimated by validation (SEP) of 

6.2896. This work demonstrates that the synchronous fluorescence spectral 

technique has high potential for nondestructive sensing of egg freshness. 

 

Keywords: Synchronous Fluorescence Spectra, Eggs Freshness, Stepwise 
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Introduction 

Eggs contain many kinds of nutrients that the human 

body needs and are an important food for human beings. 

Freshness is an important index of egg quality; the 

freshness of eggs not only affects the taste of eggs and 

their products but also directly determines the absorption 

of protein and other nutrients. The Haugh unit is an 

important parameter for characterizing the freshness of 

eggs (Li, 2013) and is widely used for measuring egg 

freshness. however, it is a destructive method and cannot 

meet the requirements of modern rapid detection. In 

recent years, Near-Infrared (NIR) spectroscopy has been 

efficaciously used to quantify egg composition and as a 

tool for assessing freshness (Bamelis et al., 2003; 

Kemps et al., 2006; Zhao et al., 2010).  
Fluorescence spectroscopy, which depends on 

sensing the contents of naturally occurring fluorescent 

compounds, has shown potential for rapid analysis of 

the quality of food products (Schneider et al., 2005;  

Aït-Kaddou et al., 2011). In traditional fluorescence 

spectroscopy, a specific excitation wavelength of light 

irradiates the surface of a sample and the fluorophore of 

the specific excitation wavelength absorbs and emits 

energy in a fluorescent form. The amount of emitted 

energy and the wavelength at which the energy is emitted 

mainly depend on the fluorophore itself. Most foods, 

especially animal foods, contain a large number of 

quality-related fluorescent groups. Fluorescence spectra 

can provide information about the fluorescent groups in 

foods, such as proteins, amino acids, heterocyclic aromatic 

amines and so on (Aït-Kaddou et al., 2011; Brøndum et al., 

2000). Therefore, fluorescence spectra technology can be 

used in food quality and safety study. and it has been 

applied in cereal, oil (Li et al., 2015), fruit and vegetable, 

honey (Lenhardt et al., 2015) for quality analysis, variety 

identification and adulteration detection. In recent years, 

traditional fluorescence technology has been widely used 

in meat quality and safety testing. The classification, 

grading, chemical composition and rheological parameters 
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of beef tenderness (Bjørg et al., 2002; Sahar et al., 2009; 

Asylbek et al., 2012; Sahar and Dufour, 2015), lipid 

oxidation (Gatellier et al., 2009; Pouzo et al., 2016), 

microbial contamination and spoilage (Durek et al., 

2016), reproductive age and texture characteristics 

(Kulmyrzaev et al., 2012) have been studied by 

conventional fluorescence detection. In addition, the 

quality evaluation of pork, such as the water holding 

capacity (Li et al., 2015), freshness indicators, such as 

the protoporphyrin content (Durek et al., 2012), ATP, 

contents of its degradation products and surface bacteria 

number (Oto et al., 2013), have also been studied. A few 

studies have also reported freshness analyses for fish 

(Dufour et al., 2003) and lipid oxidation (Gatellier et al., 

2007) of chicken. While, traditional fluorescence 

spectroscopy relies on a few wavelengths of light to 

excite fluorescence spectra of a sample. A few excitation 

wavelengths are not enough to fully excite the 

fluorescence information of a sample (Mala et al., 2016). 

Compared with traditional fluorescence spectroscopy, 

Synchronous Fluorescence Spectroscopy (SFS) could 

obtain spectral information for excitation and emission 

by successively projecting a continuous excitation light 

wave onto a sample over a certain range of wavelengths, 

which can be used to obtain fluorescence information for 

various fluorescent groups at the same time, has great 

potential to be used in the detection of complex samples 

such as meat and eggs. SFS technology has been applied 

in meat quality analyses, such as total bacterial count, 

fatty acid composition (Aït-Kaddour et al., 2016), 

discriminating between different cooking conditions 

(Sahar et al., 2016), adulteration (Aït-Kaddour, et al., 

2018), bacterial contamination, fresh pork ATP and its 

degradable compounds (Shirai et al., 2016), aquatic 

product freshness (Masry et al., 2015; 2016) and chicken 

bacterial contamination (Sahar et al., 2011). These 

studies have been shown to be better than traditional 

fluorescence spectroscopy technology.  

At present, the fluorescence spectrometer is limited by 

the structure and can not be used to obtain the synchronous 

fluorescence signal of intact eggs directly. there are few 

reports on nondestructive detection of egg freshness via 

SFS technology. Thus, the development of detection 

methods based on fluorescent signals related to eggs 

freshness is practical. In this study, the potential of SFS 

techniques was exploited to predict the freshness of intact 

eggs. The specific objectives of this study are to use a 

laboratorial SFS device to collect synchronous fluorescence 

spectra from intact eggs and to predict egg freshness. 

Materials and Methods 

Egg samples 

In this study, fresh eggs were purchased from a local 

chicken farm for investigation. The eggs were divided 

into 5 groups and stored at 25C for 1, 4, 7, 10 and 15 

days to obtain different levels of freshness of the egg 

samples. At the end of storage, synchronous 

fluorescence spectra of the samples were collected. 

Collection of Synchronous Fluorescence Spectra  

In this study, Synchronous fluorescence spectra were 

acquired using a fluorescence spectrometer F98 

(Shanghai Lengguang Technology Co., Ltd, China) 

supported by a laboratory SFS acquisition device (Fig. 

1). Via this device, the intact egg sample’s synchronous 

fluorescence spectrum could be measured directly. The 

process of measuring the fluorescence spectrum of eggs 

is shown in Fig. 1, the intact egg sample was positioned 

in a ring cage made of rubber. The excited light emitted 

by the xenon lamp source of the fluorescence 

spectrometer passes through the monochromatic exciter 

and the continuous monochromatic light wave is 

projected vertically onto the surface of the eggs through 

a quartz window by the excited optical fiber. Then, a 15 

mm spot was formed on the surface of the sample. The 

fluorescence emitted from the sample was received by a 

transmitting optical receiving fiber, which was arranged 

at angle of 45° below the quartz window. During the test, 

the sample was covered with a light-shielding cover to 

avoid interference from extraneous light.  

For every sample, the SFS was obtained by 

measuring the emission spectra from 260 to 800 nm at 1 

nm intervals, with excitation at every 10 nm from 260 to 

800 nm. The method of measuring a samples SFS 

spectrum is to excite the sample with a certain 

wavelength, detect the emitted light in a certain 

wavelength range, then change the excitation 

wavelength and record the emission at all wavelengths 

and so on. Therefore, the excitation wavelength is first 

fixed at 260 nm and the emitted light is captured at 

intervals of 1 nm at all wavelengths in the range of 

260-800 nm. Next, the excitation wavelength is set to 

10 nm larger than the previous wave and the emission 

is registered at all wavelengths. For both excitation and 

emission, the slit width was adjusted to 10 nm and the 

scanning speed was 6000 nm/min. 

Freshness Measurement 

After acquisition of the SFS, the egg freshness, as 

expressed by the Haugh Unit (HU) (standard method for 

measuring egg freshness), was immediately obtained 

using destructive method according to Li's description 

(Li, 2013), All samples were randomly divided into two 

groups. One group accounted for 3/4 of the samples, 

which was used for model calibration and the other 

group accounted for 1/4 of the samples, which was used 

for model validation. 
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Preprocessing of SFS Data  

Determination of the Useful Fluorescence Signal 

Region 

A typical averaged feature fluorescence image is shown 

in Fig. 2. SFS technique measuring several emission spectra 

at different excitation wavelengths created an Excitation–

Emission Matrix (EEM). The vertical axis represents the 

excitation wavelengths; the horizontal axis represents the 

emission wavelengths. Each horizontal line taken from the 

image represents an emission fluorescent spectrum for a 

particular excitation wavelength and the point of each 

excitation–emission matrix is the fluorescence intensity at 

the point of measurement. 

 

 
 
Fig. 1: Direct measurement of the fluorescence spectra of egg samples with a laboratory fluorescence acquisition device 

 

 

 
Fig. 2: Excitation-emission matrix spectrum for eggs 
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In the two-dimensional SFS spectrum, some areas 

were caused by Raman scattering and Rayleigh 

scattering, which did not carry any sample information 

and were not useful. These areas were useless for 

prediction model building. First, when excited light is 

incident on biological tissues, Raman scattering and 

first and second order Rayleigh scattering is produced; 

these scattering signals do not contain useful chemical 

information and do not have any effect on subsequent 

modeling; therefore, the areas affected by these 

scattering signals can be removed from the 

fluorescence spectrum, as shown in region A1 and A2, 

the first-order scattering influence region ridge center 

closes to the line λEx = λEm and the second-order 

scattering influence region ridge center closes to the 

line (λEm = 2λEx), respectively. Second, according to the 

Stokes shift, fluorescence does not occur in the region 

where the excitation wavelength is greater than the 

emission wavelength. As shown in region B in Fig. 2, 

the upper left corner region, where the excitation 

wavelength is greater than the emission wavelength, is 

useless as well. In addition, on both sides of the 

scattering line, as shown in region C1 and C2 in Fig. 2, 

two strong fluorescent signal regions are symmetrically 

distributed due to the stray light caused by the light 

source. Therefore, the useful fluorescence signal in this 

research is in region D.  

Extraction of the Ex-Em Spectrum from ROI 

Furthermore, the ROI chosen from the fluorescence 

image formed a 2D matrix (i excitations × j emissions). 

All samples were arranged to produce three-

dimensional data (K × i × j, K is sample number), 

which was difficult for analyze further using 

stoichiometry analyses; therefore, it was necessary to 

reduce the dimension. Each excitation-emission 

wavelength combination was treated as one variable 

and Ex-Em wavelength combinations were arranged in 

one dimension, yielding a data array of only one 

dimension X(i×j) in which any value Xij represents the 

fluorescence intensity in a sample measured at emission 

wavelength j at excitation wavelength i. Thus, the 

original 2D matrix data array for the ROI was unfolded 

into a one-dimensional array.  

Prediction Models for Egg Freshness 

Stepwise discrimination analysis is one of the most 

commonly used variable selection methods in multiple 

regression analysis. The basic concept of stepwise 

regression analysis is as follows: First, select some 

initial variable sets（Xi,1≤i≤m, m is the initial number 

of independent variables for multiple regression) from 

the initial variables; a variable that has the greatest 

influence on the dependent variable (Y) is introduced 

into the initial set from the other independent variables. 

Then, all variables that selected for multiple regression 

are used one by one for a significance test (F test). 

When the original introduced variable becomes less 

significant due to the introduction of a latter variable, it 

is eliminated. Introducing a variable or eliminating a 

variable is a step of stepwise discrimination and a 

significance test is performed at each step to ensure that 

every time a new variable is introduced, it is 

significant; only the variables that affect the 

significance of the dependent variable are included in 

the regression set. This process is repeated until no 

significant variable is introduced into the regression set 

and no significant variable is removed from the 

regression set (He and Liu, 2001).  

In this study, the stepwise discrimination method 

was performed on the Ex-Em spectrum to determine the 

discrete Ex-Em wavelength combination. The stepwise 

discrimination method is a standard procedure for 

variable selection that uses both backward elimination 

and forward addition to find pertinent variables. In this 

method, the number of predictors retained in the final 

model was determined by the levels of significance 

assumed for the inclusion and exclusion of predictors 

from the model. Stepwise discrimination was 

performed between Ex-Em fluorescent signals and used 

to analyze egg freshness (HU) to choose optimal Ex-

Em wavelength combinations. This test was conducted 

by Matlab 2014a in-house statistical software using a 

level of significance value of 0.05 for including 

variables, while variables were excluded from the 

model using a level of significance value of 0.10. After 

Stepwise discrimination analysis processing, a Multiple 

Linear Regression (MLR) prediction model was built 

using florescence signals for the optimal Ex-Em 

wavelength combinations: 

 

0 1 1 2 2 i iF f f a f a f a      (1)  

 

where, F is the egg HU value to be predicted; i = 1, 2, 

3,..... n; n is the total number of optimal Ex-Em 

wavelengths; a1, a2, ....ai are fluorescence intensities at 

the Ex-Em wavelengths; and f0, f1, f2, ....fi are regression 

coefficients. 

Results and Analyses 

Assessment of Egg Freshness 

Table 1 shows the variance in the measured HU for 

the egg samples. In this work, the calibration group 

contained 54 samples and the validation group contained 

17 samples. 
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Table: 1 Measured Haugh units of the egg samples 

group number Range  mean SD 

Calibration group 54 34.89-101.69 66.34 14.93 

Validation group 17 42.32-100.57 65.88 15.36 

 

 
 

Fig. 3: Contour plot of the fluorescence intensities of eggs 

 

Determination of Regions of Interest (ROI)  

Figure 3 shows the contour plot for the fluorescence 
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samples examined in this study were characterized using 
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depended on the status of the samples. Through 

observation, we found that there were some prominent 

peaks, which were seen in the excitation wavelength of 

290 nm over the emission wavelength range of 320-380 

nm and also in the excitation wavelength range of 380-

570 nm over the emission wavelength range of 610-735 

nm. Especially, the contour plot for the fluorescence 

intensities explicitly demonstrated that all of the 

examined samples exhibited three different maxima for 

very high intensities centered at λEx: 290 nm/λEm: 345 

nm, λEx: 390 nm/λEm: 675 nm and λEx: 490 nm / λEm: 

675 nm. The intensity and shape of these fluorescence 

spectra were primarily dependent on the concentration 

of the major fluorophores in eggs, such as amino acids, 

proteins and pigments. Some other less intense peaks 

can be detected with different intensities, which varied 

with the freshness status of the samples, as highlighted 

in Fig 3. Both kinds of peaks permitted the 

determination of the approximate contents of the main 

fluorophores that were influenced during storage and 

affected by changes in freshness conditions.  

As mentioned above, eggs had fluorescence signals 
that mainly concentrated in two regions: A (excitation 
wavelength of 290 nm over the emission wavelength 
range of 320-380 nm) and B (excitation wavelength 

range of 380-570 nm over the emission wavelength 
range of 610-735 nm.). Egg is a complex organism, 
which contains a variety of fluorescence groups and its 
SFS signals were the comprehensive embodiment of a 
variety of group fluorescence signals related to its 
quality. Freshness is a comprehensive index of egg 

quality, Therefore, the two regions were selected as 
Regions Of Interest (ROI). 

Extraction of the Ex-Em Spectrum from the ROI 

Figure 4a shows the landscape of the ROI of B in 

the excitation wavelength range from 380-570 nm 

with an interval of 10 nm, which had 20 wavelengths 

and in the emission wavelength range of 610-735 nm 

with an interval of 1 nm, which had 126 wavelengths. 

The ROI for B yielded 2520 excitation-emission (Ex-

Em) wavelength combinations (20 excitations × 126 
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emissions) of which the fluorescence intensities were 

registered. All samples were arranged to produce 

three-dimensional data (K × i × j, K is sample 

number), which was difficult for performing further 

analysis using stoichiometry, so it was necessary to 

reduce the dimension. Typically, the ROI for B of 

every sample is a 2D matrix, with each excitation-

emission wavelength combination treated as one 

variable and Ex–Em wavelength combinations 

arranged as one dimension, yielding a data array of 

only one dimension X(i × j) (i.e., 2520), in which any 

value Xij represents the fluorescence intensity in a 

sample measured at emission wavelength j at 

excitation wavelength i. Thus, the original 2D matrix 

data array was unfolded into a one dimensional array, 

as shown in Fig. 4b.  
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(c) 

 

 
(d) 

 
Fig. 4: Extraction of the Ex-Em spectrum; (a) The landscape of the ROI B; (b) One dimension Ex-Em fluorescence spectrum 

unfolded from ROI B; (c) One dimension Ex-Em fluorescence spectrum of ROI A; (d) One dimension Ex-Em fluorescence 

spectrum unfolded from ROI A and B of all samples 
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Simple Correlation Analysis between Eggs 

Freshness and Ex-Em Spectrum  

Before using the stepwise regression discriminant 
method to select the characteristic Ex-Em wavelength 
combination for MLR prediction model construction, the 
simple correlation analysis between the fluorescence 
signal at each excitation-emission wavelength and the 
freshness of eggs was analyzed. The results are shown in 
Fig. 5. It can be seen from the Fig. 5 that there is a great 
difference between Ex-Em fluorescence signal and egg 
freshness in the whole Ex-Em spectrum range. 
According to statistics, there are 1329 Ex-Em 
fluorescence signal points where the absolute value of 
correlation coefficient (R value) is greater than 0.6 and 
there are 313 Ex-Em fluorescence signal points where 
the R values is greater than 0.6, furthermore, the R 
values at 33 Ex-Em fluorescence signal points are more 

than 0.70. The Ex-Em spectra with R values greater than 
0.70 are mainly concentrated at the emission 
wavelengths of 380nm, 450nm, 460nm and 490nm. The 
maximum R values of the Em spectra of the 4 Ex 
wavelengths appear at at 735, 650, 725 and 730nm are 
0.734, 0.7185, 0.7356 and 0.7466 respectively. This 
showed a good correlation between the Ex-Em 
fluorescence spectrum signal extracted from the selected 
ROI region and the freshness of eggs. 

Prediction of Egg Freshness (Haugh Unit) 

The stepwise method was performed to determine the 

optimal Ex-Em wavelengths. Discrete Ex-Em wavelength 

combinations were identified as sensitive variables for 

predicting the Haugh units for an egg. The combinations, 

which included 27 emission wavelengths, were excited 

using 13 different excitation wavelengths (Table 2).  

 
Table: 2 Determination of Ex-Em wavelengths combinations 

 Excitation wavelength (nm) Emission wavelength(nm) 

1 290 320, 335 

2 380 731, 735 

3 400 643, 721, 728 

4 410 628, 633, 643, 676, 735 

5 430 667 

6 450 667, 727 

7 460 622, 662, 693, 699, 724, 731 

8 470 702 

9 490 667 

10 500 743 

11 510 745 

12 520 635 

13 530 635 

 

 
 

Fig. 5: Sample correlation analyze curve between eggs freshness value and Ex-Em spectrum 
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(a) 

 

 
 (b) 

 
Fig. 6: Egg freshness calibration and validation results for MLR 

 

MLR prediction models were established based on 

the Ex-Em wavelength combinations of the optimal 

wavelengths, which consisted of a constant term and 

regression coefficients corresponding to the optimal 

wavelength numbers. Then, validation was performed to 

validate the predictive accuracy of the models.  

Figure 6 shows the egg freshness calibration and 

validation results for MLR based on the Ex-Em 

wavelength combinations of 27 optimal wavelengths.  

The MLR model gave good predictions for the 

calibration, with R2 = 0.8971 and SEC = 5.7893 (Fig. 

6a). The model predicted egg freshness with Rp
2 = 0.91 

100.00   

 
 90.00     

 
 80.00   

 
 70.00  

 
 60.00  

 
 50.00  

 
 40.00  

 

 
 30.00  

100.00 

 
90.00 

 
80.00 

 
70.00 

 
60.00 

 
50.00 

 
40.00 

 
30.00  

Measured Haugh Units (HU) 

30.00                          50.00                         70.00                          90.00 

30.00                             50.00                            70.00                          90.00 

Measured Haugh Units (HU) 

E
st

im
at

ed
 H

au
g
h

 U
n

it
s 

(H
U

) 

E
st

im
at

ed
 H

au
g
h

 U
n

it
s 

(H
U

) 

R2 = 0.8971 

SEC = 5.7893 

R2 = 0.8879 

SEP = 6.2896 



Jianhu Wu et al. / American Journal of Biochemistry and Biotechnology 2019, 15 (4): 230.240 

DOI: 10.3844/ajbbsp.2019.230.240 

 

239 

and SEP = 6.2896 (Fig. 6b). The results of Haugh units 

and synchronous fluorescence spectral measurement 

were highly correlated in MLR model. 

Conclusion 

In this study, a laboratory SFS acquisition device is 

developed and SFS of intact eggs were collected over the 

wavelength range from 260 to 800 nm. Eggs had 

fluorescence signals that were mainly concentrated in 

two regions: A (excitation wavelength of 290 nm over 

the emission wavelength range of 320-380 nm) and B 

(excitation wavelength range of 380-570 nm over the 

emission wavelength range of 610-735 nm.); the two 

regions were selected as Regions Of Interest (ROI) with 

a one dimension array, which included 2581 excitation-

emission wavelengths, extracted from the sample ROI 

fluorescence spectra. Stepwise discrimination analysis 

was performed and 27 Ex-Em wavelength combinations 

were determined. A Multiple Linear Regression (MLR) 

prediction model was built using fluorescence signals 

based on the 27 optimal Ex-Em wavelength 

combinations. The results revealed that the freshness of 

an egg could be accurately predicted with Rp2 of 0.8879 

and a root mean square error estimated by validation 

(SEP) of 6.2896. The model prediction results can meet 

the requirements of practical detection and application. 

This study demonstrates that the synchronous 

fluorescence spectral technique has high potential for 

nondestructive sensing of egg freshness.  

At present, the fluorescence spectrometer is limited by 

the structure and can not be used to obtain the SFS signal 

of intact eggs directly. The SFS acquisition device and 

analysis method developed in this study demonstrates a 

methodology for the future development Synchronous 

fluorescence nondestructive detection. This is an 

sensitive egg freshness detection method. Egg is a 

complex organism, which contains a variety of 

fluorescence groups; The change of synchronous 

fluorescence spectral was affected by the egg’s age, 

variety, feeding conditions and so on. In the future 

research, it is necessary to consider the variety of egg 

samples, breeding age and the feeding conditions, in order 

to meet the needs of practical detection applications. 
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