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Abstract: The gene sequences of 4-coumarate:coenzyme A ligase (4CL) 
family of Scutellaria baicalensis came from the GenBank Database. With 
help of some bioinformatics tools such as Vector NTI Suite 8, ProtParam 
and SWISS-MODEL and so on, a series of biological information of their 
nucleic acid sequences and amino acid sequences were predicted and 
analyzed and the results were revealed as following: Two 4cl member 
genes share high similarity in structure and properties on level of nucleic 
acid and amino acid molecular. 4CLs are hydrophic proteins without any 
transmembrane topological structure and some crucial motifs were found. 
The secondary structures of Sb4CLs are mainly composed of random coil 
and α-helix and the models of their tertiary structures were built. In silico 
analysis of Sv4CL was finished, which would pave for further studies of 
physichemical properties of 4CL family and its related molecular 
mechanism of flavonoid metabolic regulation. 
 

Keywords: Scutellaria baicalensis, Flavonoid, Metabolic Regulation, 

4-Coumarate:coenzyme A Ligase, Bioinformatics 

 

Introduction 

Bioinformatics is a science, which uses data 

information based on mathematics and computer science 

to understand biology. In the post genome era, researches 

of the protein structures and functions are the focus 

issues of molecular biology field and today, a number of 

computational software’s and online servers are rapidly 

developed for identification and characterization of 

proteins and their encoded nucleotide acid sequences 

(Sivakumar et al., 2007; Lei et al., 2009). The 

physiochemical properties and biological function of the 

proteins can be well studied with bioinformatics methods 

(Ling et al., 2007; Lei et al., 2010). 

Flavonoids are the important plant secondary 

metabolites, which are necessary for flower coloration, 

interspecies interaction, disease defense, UV protection 

and environment challenges (Stefan and Axel, 2005; 

Chen et al., 2014). Flavonoids are synthesized through 

phenylpropanoid pathway (the partial elements were 

represented in Fig. 1) and many of its enzymes involved 

have already been determined. 4-coumarate:coenzyme A 

ligase (4CL), locating on branch point of the 

phenylpropanoid derivative biosynthesis, catalyzes the 

formation of 4-coumarate-CoA from 4-coumarate and 

coenzyme A (Gross and Zenk, 1974; Lei et al., 2011a) 

and then the 4-coumarate-CoA served as substrates for 

various important reactions involved in branch metabolism 

of phenylpropanoid derivative including flavonoids 

(Dixon and Paiva, 1995; Hahlbrock and Scheel, 1989; 

Holton and Cornish, 1995). So 4CL is one key enzyme of 

flavonodids biosynthesis pathway (Fan et al., 2007). Many 

studies revealed that 4cl gene was a multigene family: Two 

4cl genes are cloned from Scutellaria baicalensis Georgi 

and three 4cl genes are isolated and characterized in Hyvrid 

Poplar (Allina et al., 1998). With further 4CL 

enzymological identification, genetic mutation and 

crystal modeling, the studies on the structure and 

evolution were implemented extensively (Cukovic et al., 

2001; Schneider et al., 2003) and then some highly 

conserved enzyme active sites residues were revealed, 

such as Box I (SSGTTGLPKGV) and Box II (GEICIRG) 

(Stuible and Kombrink, 2001), sbd I (N-terminal domain) 

and   abd II  (C-terminal  domain)   (Ehlting  et  al.,  2001). 
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Fig. 1. Flavonoid biosynthetic pathway in Scutellaria cells 
 
Individual expression of 4cl family is regulated by 

developmental process (Zhao et al., 2003), tissue 

specificity (Kumar and Ellis, 2003) and environmental 

stress (Ehlting et al., 1999), which just answered for the 

structural diversity of flavonoid compounds and 

explained their various biological function. Nevertheless, 

little information is available about molecular structure 

and physichemical function of 4CL family in Scutellaria 

baicalensis (Lei and Shui, 2014). 

S. baicalensis is mainly distributed in East Asia and 
its dry roots were prevalently used to treat inflammatory 
and bacterial diseases as old-line China traditional 

medicine (Yamamoto, 1991; Huang et al., 2012; Xue et al., 
2015). In present study, the bioinformatic analyses of 
4cl family from S. baicalensis were completed, which 
would pave for further studies of physichemical 
properties of 4CL protein family and its related 
molecular mechanism of flavonoid biosynthesis. 

Materials and Methods 

Database Analyses 

Two complete sequences with the coding regions 
(CDS) of Sb4cl gene were obtained from NCBI 
databases: 4CL1 (Accession: AB166767), 4CL2 
(Accession: AB166768) and the accession numbers of 
their corresponding amino acid sequences were 
BAD90936 (4CL1) and BAD90937 (4CL2). 

Bioinformatic Analyses 

Comparative bioinformatic analysis of Sb4cl was 

performed at the websites including http://www.expasy.org 

and http://www.ncbi.nlm.nih.gov. Multiple alignment 

analysis of the amino acid sequences of Sb4CL and 

4CLs from other plant species was finished with Vector 

NTI Suite 8 (Lei et al., 2009). The physicochemical 

properties was analyzed by ProtParam (Gasteiger et al., 

2005). The transmembrane helices, subcellular location 

and hydrophobicity in target proteins were predicted by 

TMHMM Server v.2.0 (Ikeda et al., 2002), TargetP 1.1 

Server (Kristin and Siegfried, 2004) and ProtScale (Kyte 

and Doolittle, 1982) orderly. The motifs of 4CL proteins 

were searched by ScanProsite. The conserved domains 

and coiled-coil structures were scanned by CDD 

(Marchler-Bauer and Bryant, 2004) and COILS (Lei et al., 

2008) server, respectively. Amino acid sequences of 

Sb4CL and 4CLs from five species of plants were aligned 

using ClustalX software (Thompson et al., 1997) and 

subsequently a phylogenetic tree was successfully 

constructed by Maximum-Likelihood (MP) method with 

1000 replicates and another tree was reconstructed by 

Neighbor-Joining (NJ) with 1000 replicates and 

meanwhile their reliability of each node was determined 

by bootstrap calculation using MEGA4.1, respectively 

(Saito and Nei, 1987; Kumar et al., 2008). Finally, the 

three-dimensional (3D) structures of Sb4CL sequences 

was modeled based on homological method by Swiss-

Modeling (Guex and Peitsch, 1997; Schwede et al., 2003; 

Arnold et al., 2006) and then edited and displayed by 

WebLab ViewerLite 4.2. 

Results 

Analyses of Structure and Properties 

Nucleotide acid sequences of two 4cl genes were 
analyzed by the Vector NTI Suite 8 software. They had 
the same length of Open Reading Frame (ORF), the star 
codon (ATG) and the stop codon (TGA) and the only 
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differentiation was that there was one base in the 5’ 
Untranslated Region (UTR) of 4cl2, but forty-one in 
4cl1. Computed using the online tools ProtParam, some 
physicochemical parameters were almost identical about 
4CL members as shown in the Table 1, such as the 
formula, isoelectric point (PI), molar extinction 
coefficient, grand average of hydropathicity (GRAVY) 
and total number of negatively and positively charged 
residues and so on. 

The tool GOR4 was used for the secondary 
structure prediction. Sb4CL1 had mixed secondary 
structure, i.e., random coil, α-helix and extended 
strand shared a proportion of 47.54, 33.52 and 
18.94%, respectively. There was similar composition 
proportion in Sb4CL2 as shown in Fig. 2 and the coil 
structures were very high due to abundant 
hydrophobic praline and flexible glycine amino acids. 

Cytological Characterization and Phylogram 

Analysis 

Subcellular localization prediction with the help of 

online TargetP 1.1 Server inferred that Sb4CL family 

proteins localized in cytosol without transit peptide. 

TMHMM Server v2.0 identified no transmembrane 

region in two 4CL proteins, implying that Sb4CL 

catalyzed a series of reaction and substrates in cytoplasm 

without transportation. 

After multiple alignments by ClustalX sofeware, two 

phylogenetic trees of 4CLs were successively constructed 

from seven plants by MEGA 4.1 with the ME and NJ 

methods. The most similar result in Fig. 3 showed that 

Sb4cl was most closed relative to each other and the 

genetic distance was determined to reach 100 nearly. 

 

 
 
Fig. 2. The secondary structure model of Sb4CL family. The α-helix and extended strand were indicated as  and , respectively. 

Random coil was indicated as  

 

 
 
Fig. 3. Molecular phylogram analysis of Sb4CL family and 4CLs from other plants. Phylogenetic trees were constructed by 

Neighbor-Joining (NJ) and Maximum-Likelihood method, as well as the bootstrap values were showed on branch using 
MEGA4.1 software. The GenBank accession numbers of the protein sequences used for the phylogenic analysis: Scutellaria 
baicalensis (4CL1: BAD90936; 4CL2: BAD90937), Agastache rugosa: AAT02218, Amorpha fruticosa: AAL35216, Lolium 
perenne: AAF37732, Aspergillus niger: CAK40120, Arabidopsis thaliana: Q42524 
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Fig. 4. The multiple alignment of amino acid sequences of Sb4CLs and other plant 4CLs and about six highly conserved regions 

were shown. The identical sites are shown in white letters and black background; the conservative sites are shown in white 
letters and gray background; other sites were all shown in black letters and white background 

 

 
 
Fig. 5. The 3D structural models of Sb4CL family were established. The α-helixes and β-strands were helix-shaped and wide ribbon-

shaped, respectively. Random coils were line-shaped. The three important motifs were marked 

 
Table 1. Analysis of molecular structure and physicochemical properties 

Index 4CL1 4CL2 

Formula C2699H4286N694O793S23 C2703H4293N697O795S23 
Molecular weight 59883.2 60012.3 
PI 5.35 5.35 
Molar extinction coefficient 33975 33975 
Estimated half-life 30 hours 30 hours 
Instability index 34.55 34.90 
Aliphatic index 102.30 101.93 
GRAVY 0.109 0.093 
Total number of negatively charged residues 67 68 
Total number of positively charged residues 50 61 
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Function Analysis and Three-dimensional Modeling 

The tool PROSITE recognized the presence of some 

motifs with genetic evolutional information and specific 

biochemical functions, such as an N-glycosylation site 

(491-494), N-myristoylation site (362-367), AMP-

binding domain signature (190-201) in each Sb4CL 

protein and especially the last two patters were closely 

related to the important function of 4CL, including 

modifying myristoyl CoA: Protein N-Myristoyl 

Transferase (NMT) and acting via an ATP-dependent 

covalent binding of AMP to their substrate. 

The tool CDD recognized the presence of an Acs 

domain in each Sb4CL protein, suggesting Sb4CL 

belong to 4CL family. Furthermore, the coiled-coil 

structure within the Sb4CLs proteins was visualized 

using COILS online server, polypeptide chain between 

368-382aa shaped an obvious coiled-coil structure, 

confirming there were important function sites located in 

this region, which was just inlaid within the Acs domain. 

Furthermore, the amino acid sequences multi-alignment 

of Sb4CL family and 4CLs from other four plant species 

was performed in Vector NTI Suite 8 and Fig. 4 showed the 

result, in which six highly conserved regions were found 

orderly from C-terminal to N-terminal: I SSGTTGLPKGV, 

II QGYGMTE, III GEICIRG, IV GWLHTGD, V 

VDRLKELIK, VI PKSPSGKILR. 

And then, the three-dimensional modeling of the 

Sb4CLs proteins was visualized using Swiss-Modeling 

on the basis of the Firefly Luciferase in complex with 

bromoform and displayed by WebLab ViewerLite. As 

shown in Fig. 5, some crucial functional domains were 

marked on the 3-D structure map. 

Discussion 

Molecular structure and physicochemical properties 

were analyzed by some bioinformatic tools. Forty-one 

bases were found in the nucleotide acid sequences of 

4cl1 gene, indicating that replication and transcription of 

Sb4cl2 gene were impossibly regulated by 5’UTR. Some 

physicochemical parameters showed high similarity 

between Sb4CL members and it was important to conclude 

that Sb4cl family was a group of genes with significant 

genetic conservation and functional association. 

The abundant coil structures create effectively links 

in polypeptide chains and disrupting ordered secondary 

structure. It appeared that Sb4CL family was associated 

to ligation of hydroxycinnamate ester and amides. 

Sb4CL proteins were observed to locate in cytosol, 

consistent with Geza Hrazdina’s report that flavonoid 

was synthesized in cytoplasmic matrix (Hrazdina, 1992). 

4cl gene has been reported in various plants and the 

researches on its evolutionary were always the hotpoint in 

the field of the flavonoid metabolic regulation and genetic 

engineering (Lei et al., 2011b). It would be interesting to 

investigate the Sb4cl family evolutionary position in the 

phylogenetic trees (Huang et al., 2008). Belonging to 

Scutellaria 4cl gene family, Sb4cl1 was most closed 

relative to Sb4cl2 in evolutionary level, which also 

strongly suggested that 4CL was a conserved and 

committed enzyme of the flavonoid biosynthetic pathway. 

Acs domain were identified in each Sb4CL protein, 

answer for rate-limiting step involved in flavonoids 

precursor synthesis pathway, i.e., the formation of CoA 

esters. Additionally, the domain I (i.e., Box I mentioned 

aboved) was considered as AMP binding motif in 4CL 

catalytic reaction (Challis et al., 2000), which just 

coincided with the PROSITE prediction that domain I was 

noted the AMP-binding domain signature. Therefore, 

domain I SSGTTGLPKGV has become one of the 

symbols of the adenylate synthase superfamily (Fulda et al., 

1994; Stuible et al., 2000) and meanwhile, domain III (i.e., 

Box II mentioned aboved) was absolutely conserved in all 

4CL proteins, whose central C residue directly 

participated in catalysis process (Stuible et al., 2000). 

Conclusion 

Based on computational software packages and 

online servers, bioinformatics analysis can provide 
useful characterization and prediction of proteins 
structure and function. In our current study, the 
nucleotide acid sequences and corresponding amino acid 
sequences of 4-Coumarate:coenzyme A ligase family 
from S. baicalensis were aligned, analyzed and modeled 

by some bioinformatic tools and their molecular 
structures and biochemical functions prediction were 
obtained as well. The results showed that there was 
almost no differentiation of molecular structures and 
physicochemical properties between two members of 
Sb4CL family, confirming their function relating to 

flavonoid biosynthesis. The study will be significant in 
lending theoretical supports for researches of 
physiochemical properties of 4CL protein and molecular 
mechanism of flavonoids biosynthesis. 
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