Simultaneous Detection of Nitrite and Nitrate in Celeries and Carrots

^{1,2}Dongwu Liu, ²Jinye Niu, ¹Ling Kong and ¹Zhiwei Chen

¹School of Life Sciences, Shandong University of Technology, 255049, Zibo, China ²Analysis and Testing Center, Shandong University of Technology, 255049, Zibo, China

Article history Received: 22-01-2016 Revised: 11-05-2016 Accepted: 12-05-2016

Corresponding Author: Zhiwei Chen School of Life Sciences, Shandong University of Technology, 255049, Zibo, China Tel: +86-05332786781, Fax: +86-05332786781 Email: 12chen@163.com Abstract: In this study, the anions nitrite ion (NO_2^-) and nitrate ion (NO_3^-) in celeries and carrots were detected with the technique of ion chromatography. A Dionex ICS-2000 ion chromatograph was used to detect the content of NO_2^- and NO_3^- in celeries and carrots. NO_2^- and $NO_3^$ were separated on a DIONEX Ionpac AS19 A-4 mm ion-exchange column and an Iopac AG AS19 A-4 mm guard column. The eluant was suppressed with an anion electrical self-regenerating suppressor (ASRS 300) and the content of NO_2^- and NO_3^- was detected with a conductivity detector. The detection limits were obtained for anions NO_2^- and NO_3^- . The present results showed that the ion chromatography was a suitable technique for the simultaneous determination of NO_2^- and NO_3^- in vegetables.

Keywords: Ion Chromatography, NO2, NO3, Celery, Carrot

Introduction

Ion Chromatography (IC) is a popular method for anion analysis. With the technique of IC, a variety of parameters could be detected in one run (Tartari *et al.*, 1995; Marchetto *et al.*, 1995; Rey and Pohl, 1996). In addition, IC has high reliability and sensitivity. The reproducible data can be yielded under the same experimental conditions. For detecting inorganic ions and organic acids, the conductivity detector is usually combined with the method of chemical suppression (Buldini *et al.*, 1997a; 1997b; Hafez *et al.*, 1991). Nowadays, IC has been used in the studies of environment, food quality, water quality, chemical industry and life science (Ohta and Tanaka, 1999; Ding *et al.*, 2001; Tanaka *et al.*, 2001).

In the previous studies, nitrite and nitrate in the rain water samples were simultaneously determined by ion chromatography with the post-column ammonium derivatization (Niedzielski et al., 2006). High performance ion chromatography was used to detect nitrite and nitrate in the foodstuffs, biological fluids and seawater (Santillana et al., 1993; Tozer et al., 1995; Horioka et al., 2014). In addition, the kinetic studies were performed with ion-pair chromatography to detect nitrite and nitrate in rats (Stein et al., 1988). In the saliva and foodstuffs, a non-suppressed ion chromatography was used to detect nitrate and nitrite with a bulk acoustic wave detector (Yu et al., 2001).

In the food products or digestive system of human, nitrite could be converted to carcinogenic nitrosamines. Compared to nitrite, nitrate is more stable and less toxic. In the food products, nitrate is readily converted to nitrite by microorganisms. Thus the content of nitrite and nitrate in vegetables should be detected for their toxicity. It is necessary to analyze the content of NO_2^- and NO_3^- in vegetables from the toxicological points. In this study, a Dionex ICS-2000 ion chromatograph with a conductivity detector was used to detect the anions NO_2^- and NO_3^- in celeries and carrots.

Materials and Methods

Instrument

A Dionex ICS-2000 ion chromatograph with a conductivity detector was used to detect NO_2^- and NO_3^- in celeries and carrots. Anions were separated by a DIONEX Ionpac AS19 A-4 mm ion-exchange column with an Iopac AG AS19 A-4 mm guard column. The eluant was suppressed with an anion electrical self-regenerating suppressor (ASRS 300, 4 mm I.D.) and the signals of ions were detected with a conductivity detector.

Reagents

The water was purified with a Milli-Q system (Millipore). Then the purified water was used to prepare

© 2016 Dongwu Liu, Jinye Niu, Ling Kong and Zhiwei Chen. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. the eluents, reagents, as well as standard solutions. Both NO_2^- and NO_3^- standard solutions (1.0 g L⁻¹) were purchased from Shanghai standard solutions center (Shanghai, China).

Treatment of Vegetable Samples

The celeries and carrots were collected from a local market in zibo (Shandong, China). About 5.0 g vegetable sample was weighed and ground with a mortar and pestle. Then the samples were put into a volumetric flask (50 mL) and the activated carbon $(0.1 \text{ g } \text{ L}^{-1})$ was added into the volumetric flask to decolorize the supernatant. Finally, the samples were oscillated for 15 min with an ultrasonic sound (59 kHz) and further centrifuged at 8000 r/min for 15 min. The final solutions of supernatants were filtered with a Dionex on Guard C18, followed by a 0.22 µm Nylon filter.

Anion Chromatographic Analysis

Isocratic elution was used for NO_2^- and NO_3^- detection. About 30 mM potassium hydrate (KOH) was used as eluant and the velocity of flow was 1.0 mL min⁻¹. 25 μ L sample was injected and the run time was 16-25 min.

Results

Separation Condition

The chromatographic conditions for separating anions NO_2^- and NO_3^- were shown in Table 1. The chromatogram of NO_2^- and NO_3^- was shown in Fig. 1, which was obtained after the injection of a standard solution (20.0 mg L⁻¹). It can be found that NO_2^- and NO_3^- were successfully separated under these chromatographic conditions.

Linearity

To acquire the calibration of NO₂⁻ and NO₃⁻, three standard solutions (1.0, 10.0 and 20.0 mg L⁻¹) were used. The typical chromatogram for NO₂⁻ and NO₃⁻ standard solutions was obtained (Fig. 1). The calibration was linear for NO₂⁻ (y = 4.7033x - 0.0062; $r^2 = 0.999946$) and NO₃⁻ (y = 5.6148x - 0.2034; $r^2 = 0.999163$), respectively.

Precision and Detection Limit

The linear relationship, reproducibility and sensitivity were good for NO_2^- and NO_3^- under the separation conditions summarized in Table 1. The precision was acquired after one real sample was injected five times. The Relative Standard Deviation (RSD) for NO_2^- and NO_3^- was 3.56 and 5.21% (Table

2), respectively. The detection limit (3N/S) for NO₂⁻ and NO₃⁻ was calculated, which was 0.64 and 0.53 μ g L⁻¹, respectively.

The suitable amount of NO_2^- and NO_3^- standard solutions were added into the real vegetable samples. The content of NO_2^- and NO_3^- were detected with the optimum experiment conditions. For NO_2^- and NO_3^- , recovery was expressed as the mean percentage ratio between the measured amounts and the added ones. The recovery for NO_2^- and NO_3^- was $98.33\pm0.24\%$ and $99.57\pm0.31\%$ (Table 2), respectively.

Analysis of Vegetable Samples

The chromatogram of celery and carrot was shown in Fig. 2 and 3. The content of NO_2^- and NO_3^- in celeries and carrots can be seen in Table 3 and 4. The results indicated that both NO_2^- and NO_3^- were present in celeries and carrots. However, the concentration of NO_2^- and NO_3^- in celeries was higher than that of carrots.

Table 1. Optimum condition for IC

rable 1. Optimum condition for iC	
KOH concentration	$30 \text{ mmol } \text{L}^{-1}$
Flow rate of eluent	1.0 mL min^{-1}
The electric current of suppressor	75 mA
Chromatographic column	Ionpac AS19 A-4 mm
	ion-exchange column
Guard column	Iopac AG AS19 A-4 mm
	guard column

Table 2. Detection limit and precision for detection of anions			
Anion	NO ₂ ⁻	NO ₃ -	
R.S.D. (%) $(n = 5)$	3.56	5.21	
Detection limit (µg/L)	0.64	0.53	
The recovery data (%) $(n = 3)$	98.33±0.24	99.57±0.31	
R.S.D.: The relative standard deviation			

Table 3. The content of NO_2^- and NO_3^- in celery

Anion content	$NO_2^-(mg/kg)$	NO ₃ ⁻ (mg/kg)
Samle 1	14.48	2055.76
Samle 2	11.70	2070.38
Samle 3	9.84	2094.56
Average	12.01	2073.57
Standard error	2.34	19.60
Anion content	12.01±2.34	2073.57±19.60

Table 4. The content of NO₂ and NO₃ in carrot

Anion content	NO ₂ ⁻ (mg/kg)	NO ₃ ⁻ (mg/kg)
Samle 1	10.32	406.82
Samle 2	8.6	410.96
Samle 3	15.22	400.66
Average	11.38	406.15
Standard error	3.43	5.18
Anion content	11.38±3.43	406.15±5.18

Dongwu Liu *et al.* / American Journal of Biochemistry and Biotechnology 2016, 12 (2): 122.126 DOI: 10.3844/ajbbsp.2016.122.126

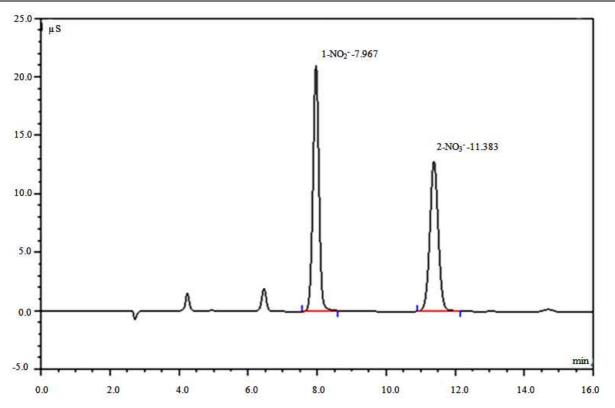


Fig. 1. The chromatogram for the standard solution of NO_2^- and NO_3^- (20.0 mg L^{-1}). The ion separation column was Ionpac AS19 A-4 mm. NO_2^- and NO_3^- were detected with a conductivity detector. The injection volume was 25 μ L and the eluant was 30 mM KOH

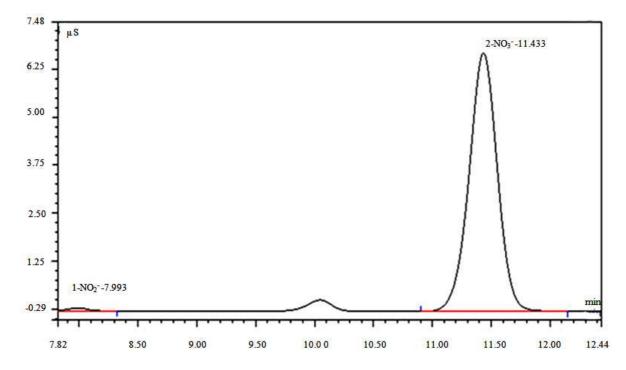


Fig. 2. The chromatogram for NO_2^- and NO_3^- in celery. The ion separation column was Ionpac AS19 A-4 mm. NO_2^- and NO_3^- were detected with a conductivity detector. The injection volume was 25 μ L and the eluant was 30 mM KOH

Dongwu Liu *et al.* / American Journal of Biochemistry and Biotechnology 2016, 12 (2): 122.126 DOI: 10.3844/ajbbsp.2016.122.126

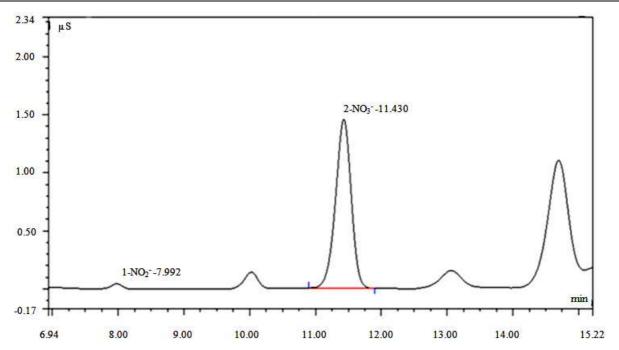


Fig. 3. The chromatogram for NO_3^- in carrot. The ion separation column was Ionpac AS19 A-4 mm. NO_2^- and NO_3^- were detected with a conductivity detector. The injection volume was 25 μ L and the eluant was 30 mM KOH

Discussion

In the previous study, high performance ion chromatography was used to detect nitrite and nitrate in the foodstuffs, biological fluids and seawater (Santillana et al., 1993; Tozer et al., 1995; Horioka et al., 2014). In this study, the anions NO_2^- and NO_3^- in celeries and carrots were determined with the technique of IC and a conductivity detector. The results showed that IC was suitable for the accurate detection of NO₂⁻ and NO_3^- in the vegetables. The suitable parameters for evaluating vegetables could be acquired with IC. There were high sensitivity and reproducibility for quantifying NO2⁻ and NO3⁻ in vegetables. In addition, there were acceptable detection limits for NO₂⁻ and NO₃⁻ analysis and the content of NO2⁻ and NO3⁻ could be analyzed in a shorter time.

Conclusion

IC was suitable for the accurate detection of $NO_2^$ and NO_3^- in the vegetables. There were high sensitivity and reproducibility for quantifying $NO_2^$ and NO_3^- in vegetables.

Acknowledgement

This work was supported by the foundation for technological innovation of experimental instruments in Shandong Province (Grant No. 2011SJGZ10) and the base foundation of Shandong Province (Grant No. ZR2013FB001).

Author's Contributions

Dongwu Liu: Analyzed the data and wrote the paper. **Jinye Niu and Ling Kong:** Performed the experiments. **Zhiwei Chen:** Conceived and designed the experiments.

Conflict of Interest

The author declares that they have no conflict of interest.

References

- Buldini, P.L., D. Ferri and J. Lal Sharma, 1997a. Determination of some inorganic species in edible vegetable oils and fats by ion chromatography. J. Chromatogr. A, 789: 549-555. DOI: 10.1016/S0021-9673(97)00822-4
- Buldini, P.L., S. Cavalli and A. Trifiro, 1997b. Stateof-the-art ion chromatographic determination of inorganic ions in food. J. Chromatogr. A, 789: 529-548. DOI: 10.1016/S0021-9673(97)00963-1
- Ding, M., K. Tanaka, W. Hu, K. Hasebe and P.R. Haddad, 2001. Simultaneous ion-exclusion chromatography and cation-exchange chromatography of anions and cations in environmental water samples on a weakly acidic cation-exchange resin by elution with pyridine-2,6-dicarboxylic acid. Analyst, 126: 567-570. DOI: 10.1039/B100104N

- Hafez, A.A., S.S. Goyal and D.W. Rains, 1991.
 Quantitative determination of total sulfur in plant tissues using acid digestion and ion-chromatography. Agron. J., 83: 148-153.
 DOI: 10.2134/agronj1991.00021962008300010034x
- Horioka, Y., S. Kurata and K. Ito, 2014. Simultaneous and selective determination of nitrite, nitrate and phosphate ions in seawater by ion chromatography. Bunseki Kagaku, 63: 657-663.
 DOI: 10.2116/bunsekikagaku.63.657
- Marchetto, A., R. Mosello, G.A. Tartari, H. Muntau and M. Bianchi *et al.*, 1995. Precision of ion chromatographic analyses compared with that of other analytical techniques through intercomparison exercises. J. Chromatogr. A, 706: 13-19. DOI: 10.1016/0021-9673(95)00039-P
- Niedzielski, P., I. Kurzyca and J. Siepak, 2006. A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with postcolumn ammonium derivatization by nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta, 577: 220-224. DOI: 10.1016/j.aca.2006.06.057
- Ohta, K. and K. Tanaka, 1999. Simultaneous determination of common mono-and divalent cations in natural water samples by conductimetric detection ion chromatography with an unmodified silica gel column and oxalic acid/18-crown-6 as eluent. Anal. Chim. Acta, 381: 265-273. DOI: 10.1016/S0003-2670(98)00720-X
- Rey, M.A. and C.A. Pohl, 1996. Novel cation-exchange stationary phase for the separation of amines and of six common inorganic cations. J. Chromatogr. A, 739: 87-97. DOI: 10.1016/0021-9673(96)00042-8

- Santillana, M.I., E. Ruiz, M.T. Nieto and M. De Alba, 1993. High performance ion chromatography determination of nitrite and nitrate in foodstuffs. J. Liquid Chromatography, 16: 1561-1571. DOI: 10.1080/10826079308020973
- Stein, C., H.G. Classen and G. Schwedt, 1988. Kinetic studies on nitrite and nitrate in rats by ion-pair chromatography. Clinica Chimica Acta, 175: 167-173. DOI: 10.1016/0009-8981(88)90006-X
- Tanaka, K., K. Ohta, P.R. Haddad, J.S. Fritz and A. Miyanaga *et al.*, 2001. High-performance ionexclusion/cation-exchange chromatography of anions and cations in acid rain waters on a weakly acidic cation-exchange resin. J. Chromatogr. A, 920: 239-245. DOI: 10.1016/S0021-9673(01)00578-7
- Tartari, G.A., A. Marchetto and R. Mosello, 1995. Precision and linearity of inorganic analyses by ion chromatography. J. Chromatogr. A, 706: 21-29. DOI: 10.1016/0021-9673(94)01222-Z
- Tozer, G.M., V.E. Prise, P. Wardman and M. Stratford, 1995. Nitric oxide in biological fluids: Analysis of nitrite and nitrate by high-performance ion chromatography. J. Chromatogr. A, 706: 437-442. DOI: 10.1016/0021-9673(95)00078-2
- Yu, B.S., P. Chen, L.H. Nie and S.Z. Yao, 2001. Simultaneous determination of nitrate and nitrite in saliva and foodstuffs by non-suppressed ion chromatography with bulk acoustic wave detector. Anal. Sci., 17: 495-498. DOI: 10.2116/analsci.17.495