
 

 
© 2014 The E.V. Mashkina, K.A. Kovalenko and E.V. Butenko. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license 

 American Journal of Biochemistry and Biotechnology 

 

 

Original Research Paper 

Hypoxia-Inducible Factor 1α Expression in Chorionic Tissue 

and Decidua of Women with Spontaneous Abortion at the 

First Trimester of Pregnancy 

 
E.V. Mashkina, K.A. Kovalenko and E.V. Butenko 
 
Southern Federal University, Rostov-on-Don, Russia 

 
Article history 

Received: 31-08-2014 
Revised: 07-09-2014 
Accepted: 01-10-2014 
 
Corresponding Author: 
E.V. Mashkina,  
Southern Federal University, 
Rostov-on-Don, Russia 
Email: lenmash@mail.ru 

Abstract: Oxygen-regulated genes expression has important role in pre-
implantation embryonic metabolism regulation. Hypoxia Inducible Factor 
(HIF) regulated by hypoxia oxygen tension is crucial for placenta 
development. But the data about its role in spontaneous abortion is very 
poor. Thus, we aimed to determine an expression level of HIF-1α in 
chorionic tissue and decidua at pregnancy. Samples of chorionic tissue and 
decidua were taken after surgical termination of normally progressing 
pregnancies in 5-9 week of gestation (n = 8) and spontaneous abortion in 5-
9 week of gestation (n = 9). HIF-1α expression was analyzed using semi-
quantitative reverse transcription-polymerase chain reaction. Compared 
with decidual tissue, the expression of HIF-1α was increased in chorionic 
tissue in condition of normally progressing pregnancy. HIF-1α expression 
in samples of both tissues is equal in spontaneous abortion.  In same time 
the expression of HIF-1α was decreased (1,5 fold)  in chorionic tissue for 
spontaneous abortion compared with control group. The results 
demonstrated that low HIF-1α expression level in chorionic tissue can be 
associated with spontaneous abortion in first trimester of pregnancy. 
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Introduction 

About 15% of all human pregnancies end in 

spontaneous abortion before 12 weeks of gestation. 

The pathophysiology of pregnancy loss is complicated 

and poorly understood. Major part of the pregnancy 

loss causes remains unexplained after comprehensive 

study. Immunity, angiogenesis, apoptosis-related 

genes are involved in pathogenesis. The aberrant 

maternal inflammation associated with spontaneous 

abortion is closely linked to deficient placental 

perfusion (Renaud et al., 2011). 

Early stages of the mammalian placenta 

development are regulated by oxygen tension and the 

hypoxic uterine environment (Giaccia et al., 2004). A 

hypoxic environment is essential for proper 

embryonic development. Low oxygen appears to 

prevent trophoblast differentiation into an invasive 

phenotype. This physiological switch in oxygen 

tension is a prerequisite for proper placental 

development (Patel et al., 2010). Low oxygen tension 

induces embryo development up to the blastocyst stage 

(Kind et al., 2005; Harvey et al., 2007). Vascular 

development during embryonic and fetal growth in 

utero is triggered by hypoxia (Simon and Keith, 2008). 

Oxygen-regulated genes expression plays an 

important role in pre-implantation embryonic 
metabolism regulation. Hypoxia Inducible Factor (HIF) 

regulated by hypoxia oxygen tension is crucial for 

placenta development. This factor is up-regulated under 
hypoxic conditions that take place during implantation, 

fetal placentation, organogenesis, angiogenesis and 
embryo growth (Adelman et al., 2000). On the other 

hand, HIF-1α protein expression can also be induced by 

other stimuli, for example hormones, cytokines and 
growth factors (Pringle et al., 2010).  

HIF-1 modulates gene transcription by binding to a 

specific DNA sequence (Hypoxic Response Element 

(HRE)). HIF-1 is a heterodimer composed of HIF-1α and 

HIF-2α subunits. HIF-1α and HIF-2α activate a number 

of common genes. But HIF-1α exclusively induces the 

hypoxic transcription of glycolytic genes such as 

phosphoglycerate kinase I, aldolase (Wang et al., 2005; 

Covello et al., 2006). 

HIF is the primary molecular sensor which responds 

to oxygen tension changes (Adelman et al., 1999; 
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Maltepe et al., 2005). HIF as transcription factor 

regulates many cellular processes, for example 

angiogenesis, invasion, erythropoiesis and cell survival 

(Semenza, 2000; Bruick, 2003; Covello and Simon, 

2004; Cowden Dahl et al., 2005a). But the data about its 

role in spontaneous abortion is very poor. 

To further investigate the role of HIF-1a in spontaneous 

abortion, we measured the HIF-1a gene expression in 

chorionic tissue and deciduas. 

Material and Methods 

Prior to inclusion in the study, all subjects underwent a 

standard diagnostic work-up. The women were examined 

using transvaginal ultrasonography for the absence of 

uterine abnormalities and polycystic ovary syndrome. 

Women with previously diagnosed arterial hypertension, 

diabetes, thyroid diseases, autoimmune pathology and 

infections during pregnancy were excluded from studied 

population.  Women contacting with exogenous risk 

factors, such as alcohol, electromagnetic radiation, 

industrial noise, vibration, chemical pollutants were also 

excluded. The study was approved by the Southern Federal 

University Bioethics Committee. The participants willingly 

signed the informed consent. After approval by institutional 

review board, 9 women (mean age 29) with spontaneous 

abortion and 8 women (mean age 29) with normally 

progressing pregnancies were studied.  

Samples of chorionic and decidual tissues were taken 

after surgical termination by curettage of normally 

progressing pregnancies in 5-9 week of gestation (n = 8) 

and spontaneous abortion in 5-9 week of gestation (n = 9). 

Villous samples from the control group were obtained from 

women undergoing elective abortion for social reasons. 

Samples were stored at -80°C in aliquots for RNA isolation 

and thawed only once to avoid degradation. 

Total RNA isolation was extracted by the acid 

guanidinium thiocyanate phenol method (Chomczynski and 

Sacchi, 1987). Upon isolation, RNA was immediately 

treated with DNAse I (Syntol, Russia). RNA integrity was 

assessed using non-denaturing 1,5% agarose gel 

electrophoresis. Clear 18S and 28S bands were observed 

with no signs of RNA degradation. The RNA was reverse 

transcribed immediately following the RNA isolation and 

the DNAse treatment using the “RT kit” (Syntol, Russia) 

with the template denaturation step and the oligo (dT) 

primer. Reverse transcription (with M-MLV enzyme) was 

performed during 50 min incubation at 42°С for 50 

minutes, followed by duration of 92°С for 10 min. cDNA 

samples were stored at -20°С. 

Polymerase Chain Reaction (PCR) was performed with 

commercially available reagents by Syntol (Russia). 

Sequences of the HIF-1α-specific primers were: forward 5`-

ATCTCGGCGAAGTAAAGAATCTG-3`; and reverse 5`-

GTCACCATCATCTGTGAGAACC-3`. Human β-Actin 

gene was used as a reference gene. Sequences of the β-

Actin-specific primers were: 5`-

CTTCTACAATGAGCTGGGTG-3`; and 5`-

TCATGAGGTAGTCAGTCAGG-3`. PCR was performed 

according to the protocol for TerCyc thermocycler (DNK 

Technologiya, Russia). Cycling parameters for HIF-1α 

were the following: 1 cycle: 94°С for 10 c; 35 cycles: 94°С  

for 15 c, 64°С for 30 c and 72°С  for 30 c; final elongation: 

72°С for 2 min.  

The PCR products were analyzed by 2% agarose gel 

electrophoresis. Gel images were captured using GelDoc 

XR system (Bio-Rad, USA). Densitometry was performed 

using ImageJ (NIH, USA). The background was subtracted 

with the rolling ball radius of 50 pixels.  

The intensities of the bands of the target gene (HIF-1α) 

was normalized to that of β-Actin. All experiments were 

conducted in duplicate. Data were analyzed with MedCalc 

11.4.2 software using the appropriate non-parametric 

Mann–Whitney test. P-value <0.05 was considered 

statistically significant. 

Results 

The expression of HIF-1 differs for chorionic and 

decidual tissues in condition of normal gestation. Compared 

with decidual tissue, the expression of HIF-1α was 

statistically increased in chorionic tissue in condition of 

normally progressing pregnancy (P = 0.016) (Fig. 1). 
HIF-1α expression in samples of both tissues in 

spontaneous abortion is equal (Fig. 2). Thus the expression 
of HIF-1α in chorionic tissue in case of spontaneous 
abortion does not match for normal gestation condition. 

There wasn`t any difference in the level of HIF-1α 

expression in decidua in condition of normal pregnancy 

compared to spontaneous abortion. 
Compared with control group, the expression of HIF-1α 

was decreased (1.5 fold) in chorionic tissue (P = 0.057) in 
case of spontaneous abortion (Fig. 3). 

 

 
 
Fig. 1. HIF-1α expression level in chorionic tissue and decidua 

in condition of normally progressing pregnancy. Gene 
expression is provided in the same scale in relative 
units. The mid-lines are medians and the box lines are 
25th and 75th percentiles 
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Fig. 2. HIF-1α expression level in chorionic tissue and 

decidua in condition of spontaneous abortion. Gene 
expression is provided in the same scale in relative 
units. The mid-lines are medians and the box lines 
are 25th and 75th percentiles 

 

 
 
Fig. 3. HIF-1α expression level in control group (A) and 

spontaneous abortion (B) in chorionic tissue. Gene 
expression is provided in the same scale in relative 
units. The mid-lines are medians and the box lines are 
25th and 75th percentiles 

 

Thus, the high expression level of the HIF-1α gene in 

chorionic tissue is characteristic for a normal pregnancy. 

The decrease in the expression level of HIF-1α gene in 

chorionic tissue may be associated with miscarriage in 

the first trimester. 

Discussion 

Our study shows, that during normally progressing 

pregnancy HIF-1α expression level in chorionic tissue is 

significantly increased compared to decidua. In 

spontaneous abortion HIF-1α expression in chorionic 

tissue decreases and reaches values typical for decidua. 

This may result in trophoblast differentiation alteration, 

implantation changes, or altered angiogenesis in the 

forming placenta.  Furthermore, as a transcription factor, 

low levels of HIF may have negative effect on 

organogenesis and embryo growth.  On the other hand, 

low level of HIF expression may reflect changes in 

hypoxic environment and active oxygen radicals level 

increase, which leads to lipid peroxidation 

intensification, cell membrane damage and cell death. 

This statement demands further investigation.  

During the first trimester of pregnancy placental 
oxygen remains low. It appears to be necessary for 

placental metabolic activity and for protecting 
placental and fetal tissues against toxic oxygen 
metabolites (Illsley et al., 2010). The invasion of 
trophoblast cells is regulated by major different factors 
including signaling of the adhesion and growth factors 
regulated by the interactions of decidua and trophoblast 

(Flaminio and Antczak, 2005; Harris, 2010). Hypoxic 
conditions are the typical factor that regulates the 
invasion of trophoblast cells which migrate and invade the 
surrounding blood vessels of the endometrium in the 
maternal uterus in persisting hypoxic conditions. Hypoxia 
induces alteration of various genes including integrin, 

MMP and TIMP (Luo et al., 2011; Onogi et al., 2011; 
Na et al., 2012). It was found that the invasion ability of 
trophoblast is regulated by the expression of HIF-1α 
(Dubinsky et al., 2010). The invasive ability of 
trophoblast cells decreases according to the inhibition of 
HIF-1α expression by siRNA (Choi et al., 2012). 

HIF-1α is expressed in syncytiotrophoblast and in 

villous cytotrpophoblast (Rajakumar, 2000). HIF-1α 

mRNA and protein peaked at 7-10 weeks of gestation 

(Ietta et al., 2006). HIF in hypoxia condition provides a 

potent stimulus for VEGF synthesis and is essential for 

development of maternal and placental vasculation in early 

human pregnancy (Cowden Dahl et al., 2005a; Nau et al., 

2002; De Marco and Caniggia, 2002; Daikoku et al., 2003; 

Qian et al., 2004; Zhang et al., 2009; Arjamaa et al., 2009). 

HIF expression changes exceeding optimal level lead to 

pathological processes. There is increase level of HIF 

expression in choriocarcinoma and other trophoblastic 

diseases (Bolat et al., 2010). 

Defects in HIF are often responsible for early 

termination of pregnancy (Goldman-Wohl and Yagel, 

2002; Sibai et al., 2005). Complete disruption of HIF 

signaling results in improper placental development 

(Fryer and Simon, 2006). Homozygosity for a null allele 

at the mouse Hif1α locus results in embryonic lethality 

attributable to failed vascularization (Iyer et al., 1998). 

Cowden Dahl et al. (2005b) reported that HIF-1α- HIF-

2α knockout mice displayed a 17% reduction in 

trophoblast invasion compared with wild type placenta. 

Several pro- and anti-invasive factors expressed by 

either the trophoblasts or the decidua were HIF target 

genes (Cowden Dahl et al., 2005b). These studies 
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suggest that HIF appear to act as a key mediator in 

regulation of placental differentiation, growth and 

function during early pregnancy. 

Conclusion 

Our findings show that a low HIF-1α expression 
level in chorionic tissue (close to values, typical for 
decidua) can be associated with spontaneous abortion in 
first trimester of pregnancy. 
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