Synthesis of Sodium Salt of 3,6-Dibutanoic-1,2,4,5-Tetroxane

¹Eduardo A. Castro, Soledad Bustillo, Jorge M. Romero, Laura C. Leiva, Nelly L. Jorge and Manuel E. Gómez Vara

Facultad de Ciencias Exactas y Naturales y Agrimensura, Área de Química-Física, Universidad Nacional del Nordeste, Avda Libertad 5400, (3400) Corrientes, Argentina ¹Divisiónof Química Teórica, INIFTA, Suc.4, C.C. 16, La Plata 1900, Buenos Aires, Argentina

Abstract: We report the experimental preparation of the sodium salt of 3,6-dibutanoic-1,2,4,5-tetroxane by addition of saturate solution of sodium hydroxide to the 3,6-dibutanoic-1,2,4,5-tetroxane, synthesized following the method modified by Jorge *et al.* The UV and IR spectra were studied from the experimental standpoint. A rather complete vibrational assignment was performed and the nature of the electronic transitions was discussed in detail.

Key words: Sodium salt, tetroxane derivatives, synthesis, peroxide, UV and IR spectroscopy

INTRODUCTION

The study of organic peroxides comprehends a large number of chemical issues, from biological like themes (involving, for example, the metabolic oxidation processes), up to industrial applications (disinfections action and pigment manufacture) Kohler^[1], Adam y Cilento^[2].

In biological systems organic peroxides are specially important since they take part in cellular decaying transformations caused by enzymatic self-oxidation due to intermediate peroxidic chemical species. Malaria is one of the leading causes of morbidity and mortality in the tropics, with 300 to 500 million estimated clinical cases and 1.5 to 2.7 million deaths per year. Nearly all fatal cases are caused by *Plasmodium falciparum*. Because the parasite's resistance to conventional drugs such as chloroquine and mefloquine is growing at an alarming rate, new efficient drugs are urgently needed^[3].

For example, dispiro-1,2,4,5-tetroxanes, often prepared by the acid-catalysed peroxidation of cicloalkanones^[4,5], exhibit remarkable anti-malarial activity *in vitro* and *in vivo*^[6].

As a result of an apparent association between the peroxide functional group and antimalarial activity, a substantial effort has been devoted to developing new peroxide antimalarials^[7-10].

Even the importance of these compounds is well known in the chemistry area, several structural aspects and reactivity modeling need to be precisely defined. Low solubility is one of the pharmacological inconvenient of tetroxanes, ionic salt would facilitate this inconvenient.

The aim of this study is to report the synthesis of the sodium salt of 3,6-dibutanoic-1,2,4,5-tetroxane (SDPAG), as well as to present experimental results of the UV and IR spectra.

RESULTS AND DISCUSSION

In solid state SDPAG displayed bands at 3523 and 3539 cm⁻¹, that are assigned as stretching modes $vO_{11}H_{33}$ and $vO_{18}H_{34}$ disappears. (Table 1, Fig. 4)

Bands at 3448 and 3433 are assigned as an asymmetrical ring CH stretching mode, while the bands at 3255 and 3250 are assigned as a symmetrical ring CH stretching mode.

The band at 2819 cm⁻¹ is assigned as a symmetrical CH₂ stretching mode. The asymmetrical CH stretching bands are located at 2848, 2860, 2878, 2909 and 2942 cm⁻¹.

The ion carboxilate asymmetrical and symmetrical stretching appear at 1659 and 1450 cm⁻¹, Bands calculated between 1212-1481 cm⁻¹ correspond to different CH2 bend, wag, rock and twisting modes. Experimental bands at 1481-1375, 1351, 1341, 1324, 1311, 1212, assigned as CH₂ wagging and CH bending; twist and wag CH₂, δ OCO, vCC and CH bending; CH bending and CH₂ twist, vCO; CH bend, wag and twist CH₂; CH bend, twist CH₂, vCC(O)O; twisting CH₂, CH bend, vCC(O)O, respectively.

The C-O stretching bands appear at 1159 and $1165 \, \mathrm{cm}^{-1}$.

The OCO deformation mode at 1048 cm⁻¹ is coupled with twist, wag, rocking CH₂ and asymmetrical stretching CC(O)O; modes.

Corresponding Author: Eduardo A. Castro División Química Teórica, INIFTA, Suc.4, C.C. 16, La Plata 1900,

Buenos Aires, Argentina

E-mail: castro@quimica.unlp.edu.ar

Table 1: Experimental frequency vibrational and assignments of the 3,6-dibutanoate disodium-1,2,4,5-tetroxane

	butanoate disodium-1,2,4,5-tetroxane
Experimental	A:
Vibration	Assignments
441	τOCCC, &CCO
467	rocking CH2, δOCC, vCO
496	τOCOO, τHCOO
527	τΗCOO, τCCCH, rocking CH2, bend CH,
	rocking CH ₂ , δOOC, δOCH
561	rocking CH ₂ , δOCC
569	τOCCH, rocking CH ₂
582	tHCCO, vOC, wag CH, wag CH2, rocking
	CH ₂ , 8OCO, 8CCC
600	Sym ring def. O2,3,5,6, 800C
634	δOCO, rocking CH ₂ , vCO
662	δOCO, rocking CH ₂ , δCCC
705-706	Asym ring def. $O2,6\downarrow O3,5\uparrow$, rocking CH_2 ,
703-700	bending CH
761	Rocking CH ₂
836	δCOO, bend CH, rocking CH ₂
837	δCOO, bending CH, rocking CH ₂ , δOCC
924	νΟΟ, δCOO, twist CH ₂ , rocking CH ₂
992	vOO, ring def., twist CH ₂ , rocking CH ₂
993	vCO, ring def., rocking CH ₂ , wag CH ₂ , Asym
	vCC(O)O
1044	vCO, vCC, wag CH ₂ , rocking CH ₂
1048	δ OCO, twist CH ₂ , wag CH ₂ , rocking CH ₂ ,
	Asym vCC(O)O
1093	Wag CH ₂ , bending CH ₂ , vCC, wag CH ₂ , rocking
CH_2 ,	
	Sym vCC(O)O
1095	vCC, δHCC, wag CH2, rocking CH2, vCO
1131	vCC, vCO, twist CH_2 , bend CH_2
1158	νCO, wag CH ₂ , δCOO, δHCO
1165	vCO, wag CH ₂ , δCH ₂ , Sym vCC(O)O
1212	Twist CH ₂ , twist CH ₂ , bend CH, Sym vCC(O)O
1311	bend CH, twist CH ₂ , Sym vCC(O)O
1324	Bend CH, wag CH ₂ , twist CH ₂
1341	Bend CH, twist CH ₂ , vCO
1351	Twist CH ₂ , bend CH, δOCO, wag CH ₂ , vCC
1375	Bend CH, Sym v carboxylate ion, vCO
1411	Bend CH, wag CH ₂ , twist CH ₂ , twist CH ₂ , wag
	CH ₂ , vCO, Sym v carboxylate ion
1449	Wag CH ₂ , bend CH, Sym v carboxylate ion
1450	Sizz, cond cit, Synt v catoonymic toff
1481	δнсн
1557	Asym v carboxylate ion
1659	1 to y in v carooxy acc ron
2819	Sym ∨CH ₂
2825	Sym vCH
2848	-
	Asym vCH
2860	vCH
2878	Asym vCH
2909	Asym vCH
2930	Asym vCH
2942	
3250	Sym ring vCH
3255	
3433	Asym ring vCH
3448	

Bands at 1044-1095 cm⁻¹ correspond to C-O and C-C stretching modes are coupled with twist, wag, rocking CH₂ and deformation HCC and OCO.

The corresponding O-O stretching modes of the ring are located at 992-924 cm⁻¹ correspond to the asymmetric and symmetric O-O coupled stretching modes.

The bands at 837-836, 705-600, 582 cm⁻¹, are assigned as COO deformation modes, asymmetric and symmetric O₄ ring deformation and OCO and CCC deformation modes, respectively.

Bands located between 582 and 441 $\rm cm^{-1}$ correspond to torsion angles coupled with wag, rock and twisting $\rm CH_2$ modes.

Experimental

Synthesis of glutaraldehyde acid diperoxide (**DPAG**): The DPAG (Fig. 1) was synthesized by oxidation of glutaraldehyde with oxygen peroxide in presence of concentrated sulfuric acid, following the Bayer and Viller Method modified by Jorge *et al.*^[11].

Sixty eight percent $\rm H_2O_2$ (0.102mol, 1.95g) and glutaraldehyde (35.4mmol, 4.02g) were added by consecutive dropwise addition to a stirred solution of water (12mL), EtOH (12 mL) and $\rm H_2SO_4$ (12 mL) at -10°C. Stirring was continued for 1 h at -10°C. The resulting white precipitate was filtered, washed with water and air-dried to afford. The precipitate was recrystallized in methanol. The DPAG was analyzed via UV and IR Spectroscopic.

Synthesis of sodium salt of 3,6-dibutanoic-1,2,4,5-tetroxane (SDPAG): Solution of sodium hydroxide pH=9.5 (10 ml), was added to the DPAG (0,0117g), before obtained.

The DPAG, was maintained under agitation during 6 hours at room temperature. Progressive dissolution of the solid (DPAG) indicates conversion to the corresponding salt. Final pH value were 7.5.

Aqueous solution of the salt (SDPAG) was lyophilized in order to recover the product as a solid.

The SDPAG was analyzed via UV and IR Spectroscopic. The UV visible spectrum was carried out in the 200-700 nm range (the quartz cell was 1cm long, in a 0-2 absorbance range), in a trademark Camspec model M330 spectrophotometer. Standard solutions were employed. The IR spectrum was determined between 400-4000 cm⁻¹ in an IR Nicolet infrared spectrometer using the diffuse refracting technique with KBr acting as solvent. These spectra are shown in Fig. 3 and 4.

REFERENCES

- 1. Kohler, E. P., 1906. J. Am. Chem. Soc., 36: 177.
- 2. Adam, W. and G. Cilento, 1982. Chemical and Biological Generation of Electronically Excited States, Academic Press, New York.
- Jomaa, H., J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, I. Tübachova, M. Eberl, J. Zeidler, H. K. Liechtenthaler, D. Soldati and E. Beck, 1999. Science, 285: 1573.
- McCullough, K. J., A. R. Morgan, D. C. Nonhebel,
 P. L. Pauson, G. J. White, 1980. J. Chem. Res.(S),
 34: 601.
- Schulz, M., K. Kirschke, 1972. In Organics Peroxides, (Swern. D., Ed.), Wiley, New York, 3: 67-140.
- Vennestron, J. L., H. Fu, W. Y. Ellis, A. Jr. Ager, J. K. Wood, S. L. Andersen, L. Gerena and K. Milhous, J. 1992. Med. Chem., 35: 3023.
- 7. Castel, D. A., 1992. Nat. Prod. Rep., pp: 289.
- 8. Zhou, W. S., X.-X. Xu, 1994. Acc. Chem. Res., 27: 211.
- 9. Boukouvalas, J. R. Pouliot, Y. Frechette, 1995. Tetrahedron Lett., 36: 4167.
- 10. Avery, M. A., P. Fan, J. M. Karle, R. Miller and K. Goins, 1995. Tetrahedron Lett., 36: 3965.
- Leiva, L. C. A., J. M. Romero, N. L. Jorge, M. E. Gómez Vara and L.F.R. Cafferata, 2002. Rev. Int. Inf. Tecnol., 13: 156.