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Abstract: The transmission of dengue disease when there is a possibility of
Vertical Transmission (VT) is studied using mathematical modeling. In the
normal case, the mosquito is infected by the dengue virus when it bites an
infectious human being. Evidence is gathering that the mosquitoes can also
be infected through sexual contact with infected male mosquito. To see the
possible consequence of having this addition mode of transmission, a SEIR,
Susceptible-Exposed-Infected-Recovery, model is constructed. The Routh —
Hurwitz criteria are applied to the model in order to establish the stability
of the infection. It is seen that the model without the VT model has 2
equilibrium points, a disease free equilibrium point and an endemic
equilibrium point, while the model with the VT has only an endemic
equilibrium point. The numerical solutions of differential equations of the
model without the VT mode exhibit dynamical behaviors that converges to
the disease free equilibrium state when basic reproduction time R, is less
than 1 and converges to endemic equilibrium state when Ry>1. The
trajectories of the numerical solutions for all possibilities (with and without
VT mode) projected onto various 2D planes and 3D spaces are presented.

Keywords: Dengue Disease, Vertical Transmission Infection Mode, SEIR
Model, Disease Free and Endemic Equilibrium State, Routh — Hurwitz

Introduction

Dengue disease is found in the tropical and
subtropical areas around the world such as in South-East
Asia, the Western Pacific, America, African, Eastern
Mediterranean and others (WHO, 2011). Dengue
infection is estimated to infect 50-100 million
populations with almost half of world” population living
in dengue endemic countries (WHO, 2012). Dengue
virus has four serotypes; i.e., DEN1, DEN2, DEN3 and
DEN4 and cannot transmit from human to human
directly. Dengue virus is transmitted to human by the
bite of infected Aedes mosquitoes. It means that
human is the main host of the dengue virus and
mosquito are the vectors of the transmission. The
mosquitoes can be found around houses and are
infected when they bite an infectious human. This
leads to the dengue virus moving within and between
communities. The way to control dengue disease is
focused on the spreading of the mosquitoes.
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In Thailand, dengue has been reported from all
regions including the Bangkok metropolitan area. The
reported cases and death cases from 2003 to 2015 are
shown in Fig. 1. In 2015, the reported cases and deaths
cases were 144,952 and 148 respectively (Bureau of
Epidemiology, 2015). The historical reported data is
indicated that dengue disease has potential to spread
quickly with the country experiencing large epidemic in
both reported cases and death. There is a high risk
potential for the spread of the dengue disease when there
is a high rate of contact between the host and vector in a
large population of human and mosquito (as in the
Bangkok metropolitan). Rainy season is suitable for
mosquito to lay their eggs and Fig. 2 shows that there is
high number of reported cases during the rainy season.
Female mosquitoes will become the vector for the disease
when they feed on the blood of infectious human. As the
results, the mosquito will be able to transmit the virus to
an uninfected human when she bites him.
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Dengue report cases and Deaths from Y2003-Y2015
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Fig. 1: Thailand dengue reported historical data from 2003 to 2015
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Fig. 2: Thailand dengue reported cases from 2003 to 2015 (month by month)

A model of the dengue epidemic is necessary to
better understand the mechanism and behavior in order
to analyze the spread and control the spread of the
disease. Mathematical models are often developed to
describe the transmission of dengue disease. Esteva and
Vargas (1999) proposed a model for the transmission of
dengue fever where the human population is constant but
mosquito population varies. They provided a global
analysis to establish the global stability of the endemic
equilibrium. Naowarat et al. (2011) proposed a
dynamical model to determine the human susceptibility
to dengue fever. The standard method was used to
analyze the dynamic of dengue disease system.
Pongsumpun and co-workers proposed mathematical
models for dengue disease which took into account
additional features of the disease. The dynamic

transmission with the effect of extrinsic incubation
period was included. An standard dynamic analysis was
applied to a modified Susceptible-Infected-Recovered
(SIR) model included an annual variation in the length of
the extrinsic incubation period in the mosquito
(Pongsumpun, 2006a). The dynamic transmission
behaviors of dengue disease in the presence and absence
of an extrinsic incubation period were compared
(Pongsumpun, 2006b). In other study, the effects of there
being an incubation period in the virus was studied in a
SEIR model (Pongsumpun, 2007). The vector
populations in this model were divided into susceptible,
infected and infectious classes. In a further study, a
seasonal change was introduced into the transmission
model used describe the dengue virus infection in
Thailand (Pongsumpun, 2011).
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Hiroshi (2006) proposed a new SIR model to clarify
the relative contributions of a mathematical approach
and of a statistical approach to the dengue epidemiology
without having to delve into the mathematical details. He
introduced a new method to determine the basic
reproductive number which did not involve extensive
mathematical manipulations. Erickson ef al. (2010) used
a SEIR model to examine the role of temperature in
driving the vector dynamics. Their model used the Aedes
albopictus mosquitoes as the transmitting vector. Bakach
and Braselton (2015) looked at different mathematical
models and compared their predicted behaviors with
each other. The evaluation of each model under different
scenarios allowed one to identify the strengths and
weakness of each of the model. The effect of the
spreading and progression of the disease were studied in
order to determine what the values of the parameters
were. Rodrigues et al. (2011) has also studied the
transmission of dengue fever. They used their results
to explain outbreak of the disease in Cape Verde.
Aldila ef al. (2013) a host-vector dengue transmission
model to determine what the optimal control strategy
should be. The strategy was based on using different
amounts of mosquito repellent on different segments
of the human population.

In another paper, Esteva and Vargas (2000) included
the possibility of vertical or transovarial transmission. In
this type of transmission, one does not need the host; one
can pass the virus from mosquito to mosquito without
the need of a human or from human to human without
the need of a mosquito. These types of transmission are
very. The rarity is seen in the report in 2010 of the first
putative case of vertical transmission in China (Yin ef
al., 2010) Thenmozhi et al. (2007) reported that they had
collected mosquitoes (both male and female) in Kerala
State and examined for dengue virus DNA in them. They
found that some of the male mosquitoes in them. Since
the males do not need human blood for the purpose of
generating eggs, the most likely way would be through
sexual contact. This has happen in the most recent ZIKA
epidemic (Lequime ef al., 2016). The ZIKA disease is
also an airborne disease where the same mosquito
transmitting the virus is the same virus specie
transmitting the dengue fever virus. The latest report is
that the ZIKA disease has become a STD (sexually
transmitted disease) which needs a different form of
disease control strategy. Whatever the reasons, two
recent reviews have appeared in 2016 on the vertical
transmission of spread of dengue fever (Grunnil and
Boots, 2016; D’Ortenzio ef al., 2016).

In this study, we will be reconsidering the
transmission of dengue virus in the case where vertical
transmission of the virus between the mosquitoes is

possible. We will be using the SEIR model (Susceptible,
Exposed, Infected and Recovered) is used to investigate
the dynamics of the disease. We will be analyzing the
stability of the model using standard dynamic analysis.
We will consider the dynamical transmission model of
dengue disease for the cases where vertical transmission
is or is not possible. The equilibrium state and stability
are considered both behaviors. The numerical
simulation, results and conclusion are presented.

Materials and Methods
Mathematical Model

The mathematical model is for two populations,
human and mosquito. In the SEIR model, the human is
divided into four compartments, susceptible human

(SH), exposed human (£H) , infected human (IH) and

re-denoted as covered human (RH). The vector
population is partitioned into 3 compartments:
Susceptible vector susceptible vector (SV), exposed

vector (EV) and infected vector (7,). In this model, we

assumed that the total number of members of each
population is constant. For the vector population, we
further assume that the rate at which the number of
susceptible vectors entering into mosquito population is
A per unit time and M is the number of infected
mosquitoes that enter directly by vertical (transovarial)
infection if this type of transmission is possible. As we
have mentioned, this transmission mode is rare or
nonexistent. We consider the different behaviors of
dynamical transmission of dengue disease with and
without the effect of vertical transmission taken into
account (M # 0 and M = 0). The dynamic transmission of
dengue disease when both modes of transmissions are
possible is shown schematically in Fig. 3.
Let:

(SH) = Number of susceptible humans population at
time ¢

(EH) = Number of exposed humans population at time ¢

(IH) = Number of infected humans population at time ¢

(RH) = Number of recovered humans population at
time ¢

(SV) = Number of susceptible vector population at
time ¢

(EV) = Number of exposed vector population at time ¢

(fV) = Number of vertically infected population at
time ¢

A = Constant recruitment rate

M = Number of mosquitoes which were infected
transovarially
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Fig. 3: The dynamic transmission of dengue disease by both biting infected human and vector born infection

The mathematical representations of the processes
shown schematically in Fig. 3 are given by equations (1)
to (7). The dynamic change of the human and mosquito
populations are given by Equation (1) to (4) and (5) to
(7) respectively:

ds,, bB,

= Ny =S L = S, (1
‘{ftifsz (e + 1)E, @
Ay o B G, r), 3)
dt

% =1yl — 1y Ry, )
‘% - f;fﬂv S0, - w5, 5)
af;:l;\’lg:SViH —(8V+,uV)EV (6)
%:M+8VEV —u 1, (7

We have assumed that:

N,=S,+E,+1I,+R, 8)
N, =S, +E, +1, )
Where:

Ny = Total number of human population

Ny = Total number of vector population

Ay = Birth rate of human population

b = Biting rate of vector population

By = Transmission probability of dengue virus from
vector population to human

By = Transmission probability of dengue virus from
human population to vector

¢y = Intrinsic incubation rate

¢y = Extrinsic incubation rate

wy = Death rate of human population

wy = Death rate of vector population

rg = Recovery rate of the human population

The assumption of our model is the total human and
vector populations are constant. This leads to the rate of
change for human and vector population being zero, i.e.:

asy (dEy  dly ARy _ (10)
dt dt dt dt
ﬁ_}_ﬂ_}_ﬂ:o (11)

dt dt dt

From the above equations, we can obtain the
following equations:

N, = (A4 M) g, (12)
Ay =ty (13)

We now normalized equations (1) — (9) as following:

o Su g Buy L _Ru (14)
NH NH NH NH

oS p By L (5)
NV NV NV
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We also have:
1=8S,+E,+I1,+R, (16)
1=S,+E, +1, (17)

The mathematical model of Equation (1) — (7) is now
reduced to the following 5 Equations:

ds b

T;f:ﬂH(l—sH)—Ni:SHIVNV (18)
dE, b

T;ZNL:SHIVNV_(sH-}_#H)EH (19)
%ZEHEH =y +r)ly (20)
dE

7;/ =bp,S, 1, — (&, + 1) E, (21)
dl M

7: :N7V+8VEV - u 1, (22)

Mathematical Analysis for Equilibrium Point

The mathematical model is now analyzed and
investigated in order to find the equilibrium points and
system stability. The equilibrium point is determined by
setting the right hand side of Equation (18) — (22) to
zero. The system stability is determined by its
eigenvalues and R, After we solved Equation (18) —
(22), we only obtain the endemic disease equilibrium
points E; given by:

B =(Sy, By 1y, By L) (23)

Where:

Sy =N} By Bre ety +

Ny (N py (& + 11y )2y e 1ty +

(Vi + t)Ew + py )y )

+OM By (v (e + py (& + 14)

iy (OB &y + (e + py Ny + 14y))))

(N, (ADMN By (7 + 1 NEg + 1,)(E, + 14, (24)
OBy ety + (Vi + 1y ey + 1y )1, +

Nty 0y + 1y Xey + 1) 1y (8, + 14y)

=B (My, (e, + p, )&, + 14,)+

Hy (bfey (M + Nye, )+ M (e, + 1, )&, + 14,)))))) /
(2N, By& 1ty (DB (M + Nyg, )+ Ny (e, + 1))

1127

Ey =N BBty by

AN, (Nt (Vg + 1 &y + 1) 1y (&) + 14)

+OM By (=7 (8 + 1y ey + 14y)

—Hy (DB ey + (&4 + 11y )&y + 14))))

(N} (4MN B, (7yy + 1)

@+ 14,)E + 11,) (bt (25)
AV + My N + ) 1) +

Nty (Vi + ey + ) iy (8 + 1)

by (My, (e + py e, + 1)

1y (bfyey (M + Nyje, ) + M (e, + )&, + 1))/
(2bN, Byey (& + ) OBy (M + Ny, ) + Ny iy (8, + 14,)))

Ly = (0N} By &y &y pyy +

Ny (=N iy (g + 1 ) Ey + p) iy (8 + 1) +

+bM By (=7 (& + 11y )&y + 11y)

—Hy (b ey + (&4 + 1y )&y + 14))))

N (NZADMN By, (Vg + 1y &y + 11 )&y + 11,)°

(BB &1ty + (Vg + 3y NEy + 1) 14) (26)
F(Nytty (Vi + iy NEy + i)y (&) + 1)
—bfy(Myy(ey + 1y Ney + 1)

+1t, (P&, (M + Nyg, ) + Mgy, + 1, )& + 15,))))))/
(2N, B, (v + )&y + 1)

BBy (M +Ny&, )+ Ny gy (&, + 1))

E) = (=bMN, B, (7, + tt, &y + 1)1, () + 1)

~Ny Ny sty (7 + 1 W&y + ) 15(8, + 15,)
+D7N, By B8ty (M gty + &, (-2M + N, 11,)))

a1y N2 AOMN, B,y ) (7 + )

(& + 1y &y + 4, ) (D& 11y @7
AV + My NEy + py)Hy ) +

(NH/JH(VH + U N + 1) 10, NEy + 1)

—bBy(My, (& + )&, + py)

+ b, ey (M +Nyg, )+ My, + p, e, + ) )/

(26N} Bys (51 + 1 YOBy bty + (Vi + 1 )8y + ) 14))

I =N B Brenes ity + N,

Nty (Vi + Ny + p) 1y (€ + 14)

+bM By (7 (& + py N&y + 11y)

+ty (BB &y + (& + ty)Ey + 1))

NN DMN oty (Vi + 1) + )8+ 1) )
BBy &ty + (Vi + 1y &y + ) y)

H(N iy (Vg + 1y N &y + p ), (8 + 11)

=B My (&y + e, + 1,)

+ 1y (b (M + Nyg,) + M (e, + pt, &, + 14, ))'))/
(BN By (& + YO, & g + (Vg + ty NEy + 1) 14y))
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All parameters used in system (24) — (28) are positive
and the epidemic region is:

Q={(Sy.Ey. 1, ) 1)) 0< Sy By 1 B <1

Mathematical Analysis for Local Stability

The local stability of the equilibrium point
determined from Equation (18) — (22) is analyzed by
first obtaining an expression for the basic reproduction
number R, and the Jacobian matrix. After these are done,
we then solve the eigenvalues equation which involves
the Jacobian matrix. The Jacobian matrix of system (18)
—(22) is as follows:

. bBy
—u, —};vﬁ I'N, 0 0 0o gy,
H H
29)
bB, - bBy o (
e N—: I'N, (g +1y) 0 0 T:S’I*N’"
0 &y —(pyy +1y) 0 0
0 0 bB,(-1~-E)) (& +1) 0
0 0 0 & —4y

The basic reproductive number, \R,, is the number of
secondary infection produced by a typical case of an
infection in a population of its infectious period. R, can
be indicated the transmission potential of disease. In case
of Ry,>1, the transmission has potential to spread
between people. The requirement for local stability at the
equilibrium state is stated in proposition 1 given below.

Proposition 1.

The equilibrium state E; is asymptotically stable
when R, is higher than 1, Ry>1.

Proof.

The local stability of E; is governed by linearization
of system (18)-(22). The R, is given as:

Ry =(a, + NMa,(y,05 + (o, +3))) +

Nﬁ(asazasasz(a4ﬂﬂ + a0 fhy) + (30
(masa, —a,(My,o; + gy (a0 + Ma, )
Ny o o,a,

Where:

a, = szlfIBHIBVgHgV#H

a, = bPu

as = (ewthm) (Ertuy)

ag = bBVgH

as = 4NH“HM

as = (Yutuu)

a; = (&gt

ag = Nuugiy

ay = (M+Nyey)

The characteristic of equation (29) which determines
the eigenvalues is the eigenvalue equation obtained by
solving det:

=0

J. —Al,

E,

Where:

Jrg; = The Jacobian matrix at the equilibrium point £
A = The eigenvalues

Is The identity 5x5 matrix

Evaluating the determinant, we get the following
Evaluating the determinant, we get the following:

(A +e it +e,’ +e, A’ +e A +e,)=0 (31)
Where:
o = | FCra- Ho ) 1y GH ;

| +F(~GHJ — 1, GH (= 1, — KL))

or = | CFCru = m)GHI = i, GH (- =K+ L))
=
| +F(~GHP + GHJ (-4, — K + L)))

[—F(~y, — 14;)GHP + GHJ (~u1,, — K + L) v
e =
> | +FOGH + GHP(~, - K + L)

ey = RMH(MK+U+@H(K+MMK+Q}F%GH
~F((-yy — pt;) OGH + GHP(,, — K + L))

es = (1/2Ny Ny (bBrentm +(yr + wa) (e + m)un)T

Where:

F = SNZIN:tIBH 55;8,,

G = (er+w)
(bBM B, +bN, B,6,)+ N, &, 1, + N, 11, 18,)°
(BB &bty + Y uubly + Vbl + &y by by + My 1ty )’
J = ey =)y, — 155, +21.))

(B°N? BBty iy
K = TN ENuy iyt ey + )ty (8 + 1)
+OM By (v (e + 1y )&y + 1y)
+y (BB &y + (& + py )&y + 1))
V(NG @BDMN,, By 11y (7 + iy NEy + 1y Ny + 1)
BByt + ¥y + )&y + 1y )Hy) +
(Nt (g + i )Ey + ) 1y (& + 1) =
b (My, (& + py )&y + 1)
ity (DB, (M + Nyg, )+ M (s, + )&, + 1))/
NN, (&) + )OSty + (Vg + 1y NEG + 1))
BNN; B, B een (&, + )’
N = (bMB, +bN, &, + Ny, sty + Nty pt,)

(BB &bty + Y uEubly + Vo by by + Eqy bty + My ty)')
O = (-&y— )ty (=&, — 1)ty

H =
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Po= (=6, — )ty + (=& — ) 115, (8, +218,))

0 = 1/ (B (M +Ny&,) + Ny g1y (5, + 11,))
ADN Ny B Breses (8, + 1)
V(NG @DMN 3,11y, (74 + 3y N &y + 11y N6y + 14, )
b eyt + (Y + by XEy + Hy)Hy)

s = HN by (7 + by &y + 1) 14, (&) + 14)

—bBy (My (& + )&y + 1)
+11y (b, £y (M + N,&,) + M8y, + 1, X &, + 15,))°)))
126N} By (& + 4, OB, bty + (g + 11, W E + 11,0 14,))
=(-b'N; B, Bresiey iy
+ON, By piy (Nt (Vi + py )+t 1y (€ + 1)
+OM By (—y (e + iy )Ey + 14y)
—ty (bByey + (&4 + iy ey + 1))
OB ety + 2y + Hy N Ey + My 1)
T = NV (Nay (7 + 1) 6 + 11,V 15 (8 + 14,)°
+2DN Byt (Vg + oy (& + py NEy + 1)
My + )y + 1) 1y (& + 1)
+bfy ey 2Me, +(M - Ny&,)p,)
+b? By (M y, (& + 1y ey + 1)
+ 4ty (b, ey (M + Ny&, )+ M(gy, + p1,)(8, + 14,))))))
V(N GOMN By (73 + 1 )€y + 1y &y + 1)
OB ey + vy + w1y )&y + 1) 1y)
ANy (Vg + ) Ey + )ty (€ + 1)
0By My, (e + py)Ey + 1y)
+a, (D&, (M + Ny&,) + M (s, + 1,8, + 12,)))*)))

The solution of equation (31) is solved through use of
the Routh-Hurwitz criteria. The equilibrium point will be
local stability when all eigenvalues have negative real
parts. This will happen if all the coefficients satisfy the
following conditions:

e, >0,e,>0,e, >0,e,>0,e, >0 (32)

2 2
eee >e +eje, (33)

2
(ee, —es)(e e —e; -

ele))>es(ee, —e) +ee (34)

All conditions of equation (32) - (34) are satisfied for
endemic equilibrium point as seen in Fig. 4.

The dynamic transmission of dengue disease without
a vertical mode of transmission (M = 0) is described by
equations (18) to (21) which are the same as the case
where vertical transmission is possible except that
Equation (22) has been replaced by the equation below:

dl
7: =&E, -1, (35)

Reanalyzing the new set of equations in the same
way as before, we now arrive at two equilibrium points,
a disease free equilibrium point and an endemic disease
equilibrium point defined as.

i.  Disease free equilibrium point
E, =(1,0,0,0,0) (36)
ii. Endemic disease equilibrium point:
E, = (S, By 1y E) L) 37)
Where:

szl* =[Ny (& + 1 )OB ety + (Vi + )y + 1) 14,)]

(38)
N1bB, € (bN, By + Nyt (&, + ph)]

E; =
A (BN BB+ Ny + 1)+ )t G+ 1) | (39)
1] BB, &6+ 4, XON, By + Nyt (6, + 14)

= Hy (szVﬂuﬂV‘sugV
n=
Ny + iy ey + ) 14, (& + 1)) (40)

BB, (¥ + by Ny + )N, By&, + Ny, (&, + 14,))

E;* =—{p,p, (_szVIBH:BVgHgV
+N (Vg + N Ey + )ty (&) + 14))] (41)
IbNy Byey (& + p YOBr&ytty + (Vi + iy )y + py) 1)

Iy =
sy (_szVﬁH,BV‘gHgV + N, (Vi + 1)y + i), (8, + 14,))] (42)
BN, By (&, + 14 Y OB, Etty + (Vi + M N Ey + 1) 1)

The Jacobian matrix used to determine the stability of
eigenvalues at E, = (1,0,0,0,0) has the form:

- b -
- 0 0 0 —LHN
Hy N, 14
bp;
0 g+ 0 0 1N
J — (gH IUH) NH Vv (43)
0 &y ~(py + 1) 0 0
0 bp, & +u) 0
| 0 0 0 & |

Proposition 2.

The equilibrium state E, is asymptotically stable
when R is less than 1, Ry < 1.
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Proof.

The local stability of £ is governed by linearization of
system (18) - (21) and (35). The R, will be of the form:

— b’N,BuBeney
Nty (Yo + p ey + iy Ny + 1ty)

The characteristic equation obtained same by solving
the determinant equation, Equation (43) is given by:

WM +ert+el’ +ed +ed +e)=0

Where:
er = [Nyvy+Nyey+Nyg, +3N 0, +2N,0, 1/ Ny
[Nyvuey + Nyvye, + Nyeye, + 2N,y 0y + 2N 6,10,
H3NyE Ny +3NHP’§I + 2Ny Yyl +2Ne 1, + Nyep
+HON 1y, + NHP’IZ/] / Ny

[(NyYuenty + NyVueuby + 2Ny &by + 2N ye 8,0y
Ny Y b + Nyge bty +3Nye15 + Ny + 2N, 7841,
ANy Y uly + Nyepgplty + 4N,y by + 4N e 0,1,
+3N 8, by + 6N My + Ny

+N ety + 3N 1/ Ny

e; =

[=0° Ny BuBreney + Noyueusybty + Ny ey,

Ny €8 M + Nypbyy + Ny € eby + 2N, Y€ 0,1,
F2N Y by + 2N 8, b 1y + 2N, Y by

2N, €Mk, + 3N g1, + 2N, 1y + Ny €10
2N, Y bty +2N,,E by + 3N, )]/ N,

L] 20 bk L{21]

ﬁ‘.l. B Bik

|

0 M Ak LLCI

A W T

[“1—1 (_szVBHBVSHSV
AN, (Vy e, )1, (8 + 1))/ Ny

All conditions of equation (32)-(34) are satisfied for
disease free equilibrium point as seen in Fig. 5.

The Jacobian matrix at E, = (S5 ,E; I} ,E> 1)) is:

bpy o bBy o
—p, 2PN, 0 0 0 —ingxN,
‘H N” v v N” H 'Y (44)
bBy o bBy
o NN e 0 0 SN,
0 £y ~(py +131) 0 0
0 0 BB, (-1 —E) —(&,+m,) 0
0 0 & —Hy

Proposition 3.

The equilibrium state E, is asymptotically stable
when Ry is higher than 1, Ry>1.

Proof.

The local stability of E2 is established through the
linearization of equations (18) - (21) and (35) which
leads to the determinant equation previously obtained.
Solving the eigen value equation, we get a similar
characteristic equation, i.e:

A +elt+e, A’ +el’ +e A +e)=0

Except that the coefficients are now.

v m n By 50 P oo

|
|

|
02 |
a |

j LU

000 |

o 20 4} ({51

ﬂ' 0 0
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Where:
e = [-(-UH+GH(-u, +V)]/GH
e = [(~-GHW, ~W, +W,W,)+GUH (-, +V))/ GH
e3 = [_(_UH(_W3W2+W1W4)
+GHW, =W, + W, W, )(~u, +V)]/GH
e = [(H/Y, HY, YA+ V + u,V)-Y, (W, W,GH
+GH (=W, W, + W, W) (-, +V)]/ GHY,
_ [_luH(}/H+lu1~1)(£1~1+ﬂH)ﬂV(_b2NVﬁHﬁV£H£V
€ T AN, ey + O my (6 + )]
INybByeypy +(ry +puy)ey + uy)uy)
Where:
U = (P +en+& +20, +21)

V = W CON B Beye, +Ny(ry + uy ey + )iy (8, + 14,))])
NNy (& + Y OBy ey 1y + (Vg + H ) Ey + 1) 1y)]

Wi = 1y =)=y = 1y)

Wy = (=&, — ) 1y

Wy = (ru+éey+2uy)

Wy= (& +2u,)

Y, = ONvBusy + Ny &y +41,))
BN, NJ B Brese; (e, + uy)’

o= BB uy+y+ ey + 1)),

Y5 = N;N,B.Breqe

These coefficients of this new characteristic equation
will also satisfy the Routh-Hurwitz criteria, Equation
(32) - (34) for the coefficients defined above (Fig. 6) and
so the eigenvalues by the characteristic equation above
will all have negative imaginary parts and the endemic
disease equilibrium point will be stable.

Numerical Results

The numerical analysis in this study considers the
transmission of dengue disease in models where the
values of the parameter values are listed in Table 1,
which gives different values for three sets of
parameters which leads to the three cases we are
looking at. Case 1 are the values when vertical
transmission occurs and the equilibrium state is the
endemic state. Case 2 are the values when there is no
vertical transmission is possible but the equilibrium
state will be the disease free state. Finally, case 3 are
the values when there is no vertical transmission but
the equilibrium state will be the endemic state.

The trajectories of the numerical solutions case 1,
case 2 and case 3 projected onto Sy, Ey, Iy, Eyand I,
are shown in the Fig. 7-9 respectively. The trajectory
of the numerical solutions case 1, case 2 and case 3
projected onto (Sy, En), (Su, In), Su, Ev), (Su, Iy), (En,
Ey) and (I, Iy) are shown in the Fig. 10-12 respectively.
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Table 1: Parameter are used involved in the transmission of
dengue disease

Parameter Case 1 Case 2 Case 3
e 1/(70*365) 1/(70*365) 1/(70*365)
Ny 92,000 92,000 92,000
b 1/5 1/5 1/5

A 5,000 5,000 5,000
Uy 1/24 1/24 1/24

M 400 0 0

Yu 0.1428 0.01428 0.01428
Bu 0.95 0.65 0.65

Bv 0.75 0.65 0.65

gy 0.1428 0.01428 0.1428
ey 0.1667 0.01667 0.1667

The trajectory of the numerical solutions case 1, case 2
and case 3 projected onto (Sy, Ey, In), (Su, En, Ev), (Su,
Ey, Iy), Sy, Ev, Iy), (Ey, Ey, Iy) and (Iy, Ey, Iy) are
shown in the Fig. 13-15 respectively.

Discussion

In this study, the dynamic transmission of dengue
disease using SEIR mathematical models which focus
on the transmission of the virus in the mosquito by its
being bitten by an infected human or by vertical
transmission mode, i.e., through sexual contact with a
male mosquito is studied. It is shown that the presence
of vertical transmission insures that the endemic
equilibrium state is the only possible outcome. In the
absence of vertical transmission, the model leads to
two possible outcomes, a disease free equilibrium
state and an endemic equilibrium state which depend
on whether Ry<I or Ry>1. The Routh-Hurwitz criteria
for the coefficients of the characteristics equations for

ﬁ A\ ﬂ ﬂ

Susceptible Human

Times [h;!:,']

the system are used to determine whether all the
eigenvalues have negative imaginary parts.

When there is vertical transmission of the virus in
the mosquito and the values of the parameters are
such that R,>I, the only equilibrium state is the
endemic equilibrium point, E; and it is local
asymptotically stable as can be seen from Fig. 4 which
shows the values of the parameters satisfy the Routh-
Hurwitz criteria. The time trajectories of Sy, Ey, Iy, Ey
and [y are plotted on Fig. 7. The trajectories of the
numerical solutions are plotted on the 2D (Sy, En),
Su, In), (Su, Ev), (Sy, Iy), (Ey, Ey) and (Iy, Iy) planes
and in the 3D (Sy, En, In), (Su, En, Ev), (Su, En, Iy),
(Su, Ev, Iy), (En, Ey, Iy) and (Iy, Ey, Iy) spaces seen in
Fig. 10 and 13 respectively.

In the absence of vertical transmission, the disease
free equilibrium point, £y, will be local asymptotically
stable when R,</. The range of values of the parameters
for which the coefficients of the characteristic equation
for eigenvalues satisfy the Routh-Hurwitz criteria for the
disease free state to be local asymptotical stable are
shown in Fig. 5.

Picking the values (the ones listed for case 2 in
Table 1 and given in figure caption), the time
dependences of Sy, En, Iy, Ey and Iy, are plotted in
Fig. 8. The trajectories of the numerical solutions are
plotted in the 2D (Sy, En), (Su, In), (Su, Ev), (Su, Iy),
(Ey, Ey) and (Iy, Iy) and the 3D (Sy, Ey, 1y), (Sy, Ex,
Ev), (Su, En, 1), Su, Ev, Iy), (En, Ey, Iy) and (Iy, Ey,
Iy) space in Fig. 11 and 14 respectively. The endemic
equilibrium point, E,, is local asymptotically stable
for Ry>1. The behaviors of the populations for this
case (case 3) are shown in Fig. 6, 9 and 15.

l

Exposed Human
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Conclusion

To see the influence of vertical transmission in the
mosquitoes on the human and mosquito populations, we
have plotted on Fig. 16(a) and 16(b) the time dependence
of the infectious humans and mosquitoes in the presence
or absence of vertical transmission of the virus in the
mosquitoes of 7 and [;. In both cases, the equilibrium
state was the endemic state. We see that the equilibrium
states were reached slower when vertical transmission of
the virus in the mosquito occurs.
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