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Abstract: The transmission of dengue disease when there is a possibility of 

Vertical Transmission (VT) is studied using mathematical modeling. In the 

normal case, the mosquito is infected by the dengue virus when it bites an 

infectious human being. Evidence is gathering that the mosquitoes can also 

be infected through sexual contact with infected male mosquito. To see the 

possible consequence of having this addition mode of transmission, a SEIR, 

Susceptible-Exposed-Infected-Recovery, model is constructed. The Routh – 

Hurwitz criteria are applied to the model in order to establish the stability 

of the infection. It is seen that the model without the VT model has 2 

equilibrium points, a disease free equilibrium point and an endemic 

equilibrium point, while the model with the VT has only an endemic 
equilibrium point. The numerical solutions of differential equations of the 

model without the VT mode exhibit dynamical behaviors that converges to 

the disease free equilibrium state when basic reproduction time R0 is less 

than 1 and converges to endemic equilibrium state when R0>1. The 

trajectories of the numerical solutions for all possibilities (with and without 

VT mode) projected onto various 2D planes and 3D spaces are presented.  

 

Keywords: Dengue Disease, Vertical Transmission Infection Mode, SEIR 

Model, Disease Free and Endemic Equilibrium State, Routh – Hurwitz 

Criteria, Basic Reproductive Number  

 

Introduction  

Dengue disease is found in the tropical and 

subtropical areas around the world such as in South-East 

Asia, the Western Pacific, America, African, Eastern 

Mediterranean and others (WHO, 2011). Dengue 

infection is estimated to infect 50-100 million 

populations with almost half of world’ population living 

in dengue endemic countries (WHO, 2012). Dengue 

virus has four serotypes; i.e., DEN1, DEN2, DEN3 and 

DEN4 and cannot transmit from human to human 

directly. Dengue virus is transmitted to human by the 

bite of infected Aedes mosquitoes. It means that 

human is the main host of the dengue virus and 

mosquito are the vectors of the transmission. The 

mosquitoes can be found around houses and are 

infected when they bite an infectious human. This 

leads to the dengue virus moving within and between 

communities. The way to control dengue disease is 

focused on the spreading of the mosquitoes.  

In Thailand, dengue has been reported from all 

regions including the Bangkok metropolitan area. The 

reported cases and death cases from 2003 to 2015 are 

shown in Fig. 1. In 2015, the reported cases and deaths 

cases were 144,952 and 148 respectively (Bureau of 

Epidemiology, 2015). The historical reported data is 

indicated that dengue disease has potential to spread 

quickly with the country experiencing large epidemic in 

both reported cases and death. There is a high risk 

potential for the spread of the dengue disease when there 

is a high rate of contact between the host and vector in a 

large population of human and mosquito (as in the 

Bangkok metropolitan). Rainy season is suitable for 

mosquito to lay their eggs and Fig. 2 shows that there is 

high number of reported cases during the rainy season. 

Female mosquitoes will become the vector for the disease 

when they feed on the blood of infectious human. As the 

results, the mosquito will be able to transmit the virus to 

an uninfected human when she bites him.  
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Fig. 1: Thailand dengue reported historical data from 2003 to 2015 
 

 
 

Fig. 2: Thailand dengue reported cases from 2003 to 2015 (month by month) 
 

A model of the dengue epidemic is necessary to 

better understand the mechanism and behavior in order 

to analyze the spread and control the spread of the 

disease. Mathematical models are often developed to 

describe the transmission of dengue disease. Esteva and 

Vargas (1999) proposed a model for the transmission of 

dengue fever where the human population is constant but 

mosquito population varies. They provided a global 

analysis to establish the global stability of the endemic 

equilibrium. Naowarat et al. (2011) proposed a 

dynamical model to determine the human susceptibility 

to dengue fever. The standard method was used to 

analyze the dynamic of dengue disease system. 

Pongsumpun and co-workers proposed mathematical 

models for dengue disease which took into account 

additional features of the disease. The dynamic 

transmission with the effect of extrinsic incubation 

period was included. An standard dynamic analysis was 

applied to a modified Susceptible-Infected-Recovered 

(SIR) model included an annual variation in the length of 

the extrinsic incubation period in the mosquito 

(Pongsumpun, 2006a). The dynamic transmission 

behaviors of dengue disease in the presence and absence 

of an extrinsic incubation period were compared 

(Pongsumpun, 2006b). In other study, the effects of there 

being an incubation period in the virus was studied in a 

SEIR model (Pongsumpun, 2007). The vector 

populations in this model were divided into susceptible, 

infected and infectious classes. In a further study, a 

seasonal change was introduced into the transmission 

model used describe the dengue virus infection in 

Thailand (Pongsumpun, 2011).  
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Hiroshi (2006) proposed a new SIR model to clarify 

the relative contributions of a mathematical approach 

and of a statistical approach to the dengue epidemiology 

without having to delve into the mathematical details. He 

introduced a new method to determine the basic 

reproductive number which did not involve extensive 

mathematical manipulations. Erickson et al. (2010) used 

a SEIR model to examine the role of temperature in 

driving the vector dynamics. Their model used the Aedes 

albopictus mosquitoes as the transmitting vector. Bakach 

and Braselton (2015) looked at different mathematical 

models and compared their predicted behaviors with 

each other. The evaluation of each model under different 

scenarios allowed one to identify the strengths and 

weakness of each of the model. The effect of the 

spreading and progression of the disease were studied in 

order to determine what the values of the parameters 

were. Rodrigues et al. (2011) has also studied the 

transmission of dengue fever. They used their results 

to explain outbreak of the disease in Cape Verde. 

Aldila et al. (2013) a host-vector dengue transmission 

model to determine what the optimal control strategy 

should be. The strategy was based on using different 

amounts of mosquito repellent on different segments 

of the human population.  

In another paper, Esteva and Vargas (2000) included 

the possibility of vertical or transovarial transmission. In 

this type of transmission, one does not need the host; one 

can pass the virus from mosquito to mosquito without 

the need of a human or from human to human without 

the need of a mosquito. These types of transmission are 

very. The rarity is seen in the report in 2010 of the first 

putative case of vertical transmission in China (Yin et 
al., 2010) Thenmozhi et al. (2007) reported that they had 

collected mosquitoes (both male and female) in Kerala 

State and examined for dengue virus DNA in them. They 

found that some of the male mosquitoes in them. Since 

the males do not need human blood for the purpose of 

generating eggs, the most likely way would be through 

sexual contact. This has happen in the most recent ZIKA 

epidemic (Lequime et al., 2016). The ZIKA disease is 

also an airborne disease where the same mosquito 

transmitting the virus is the same virus specie 

transmitting the dengue fever virus. The latest report is 

that the ZIKA disease has become a STD (sexually 

transmitted disease) which needs a different form of 

disease control strategy. Whatever the reasons, two 

recent reviews have appeared in 2016 on the vertical 

transmission of spread of dengue fever (Grunnil and 

Boots, 2016; D’Ortenzio et al., 2016).  

In this study, we will be reconsidering the 

transmission of dengue virus in the case where vertical 

transmission of the virus between the mosquitoes is 

possible. We will be using the SEIR model (Susceptible, 

Exposed, Infected and Recovered) is used to investigate 

the dynamics of the disease. We will be analyzing the 

stability of the model using standard dynamic analysis. 

We will consider the dynamical transmission model of 

dengue disease for the cases where vertical transmission 

is or is not possible. The equilibrium state and stability 

are considered both behaviors. The numerical 

simulation, results and conclusion are presented.  

Materials and Methods  

Mathematical Model  

The mathematical model is for two populations, 

human and mosquito. In the SEIR model, the human is 

divided into four compartments, susceptible human 

( )SHɶ , exposed human ( )EHɶ , infected human ( )IHɶ  and 

re-denoted as covered human ( )RHɶ . The vector 

population is partitioned into 3 compartments: 

Susceptible vector susceptible vector ( )SVɶ , exposed 

vector ( )EVɶ and infected vector ( )VIɶ . In this model, we 

assumed that the total number of members of each 

population is constant. For the vector population, we 

further assume that the rate at which the number of 

susceptible vectors entering into mosquito population is 

A per unit time and M is the number of infected 

mosquitoes that enter directly by vertical (transovarial) 
infection if this type of transmission is possible. As we 

have mentioned, this transmission mode is rare or 

nonexistent. We consider the different behaviors of 

dynamical transmission of dengue disease with and 

without the effect of vertical transmission taken into 

account (M ≠ 0 and M = 0). The dynamic transmission of 

dengue disease when both modes of transmissions are 

possible is shown schematically in Fig. 3.  

Let: 

 

( )SHɶ  = Number of susceptible humans population at 

time t 
( )EHɶ  = Number of exposed humans population at time t 

( )IHɶ  = Number of infected humans population at time t 

( )RHɶ  = Number of recovered humans population at 

time t 
( )SVɶ  = Number of susceptible vector population at 

time t 
( )EVɶ  = Number of exposed vector population at time t 

( )VIɶ  = Number of vertically infected population at 

time t 
A = Constant recruitment rate 

M = Number of mosquitoes which were infected 

transovarially  
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Fig. 3: The dynamic transmission of dengue disease by both biting infected human and vector born infection 
 

The mathematical representations of the processes 

shown schematically in Fig. 3 are given by equations (1) 

to (7). The dynamic change of the human and mosquito 

populations are given by Equation (1) to (4) and (5) to 

(7) respectively: 
 

H H
H H H V H H

H

dS b
N S I S

dt N

β
λ µ= − −

ɶ
ɶ ɶɶ   (1) 

 

( )H H
H V H H

H

dE b
S I E

dt N

β
µΗ= − ε +

ɶ
ɶ ɶ ɶ   (2) 

 

( )H
H H H H H

dI
E r I

dt
µ= ε − +

ɶ
ɶ ɶ   (3) 

 

H
H H H H

dI
r I R

dt
µ= −

ɶ
ɶ ɶ   (4) 

 

V V
V H V V

H

dS b
A S I S

dt N

β
µ= − −

ɶ
ɶ ɶɶ   (5) 

 

( )V V
V H V V V

H

dE b
S I E

dt N

β
µ= − ε +

ɶ
ɶ ɶ ɶ   (6) 

 

V
V V V V

dI
M E I

dt
µ= + ε −

ɶ
ɶ ɶ   (7) 

 
We have assumed that: 

 

H H H H HN S E I R= + + +ɶ ɶ ɶ ɶ   (8) 

 

V V V VN S E I= + +ɶ ɶ ɶ   (9) 

 

Where: 

NH = Total number of human population 

NV = Total number of vector population 

λH = Birth rate of human population 
b = Biting rate of vector population 

βH = Transmission probability of dengue virus from 
vector population to human 

βV = Transmission probability of dengue virus from 
human population to vector 

εH = Intrinsic incubation rate 

εV = Extrinsic incubation rate 

µH = Death rate of human population 

µV = Death rate of vector population 
rH = Recovery rate of the human population 
 

The assumption of our model is the total human and 

vector populations are constant. This leads to the rate of 

change for human and vector population being zero, i.e.: 
 

0H H H HdS dE dI dR

dt dt dt dt
+ + + =

ɶ ɶ ɶ ɶ

  (10) 

 

0V V VdS dE dI

dt dt dt
+ + =

ɶ ɶ ɶ

  (11) 

 
From the above equations, we can obtain the 

following equations:  
 

( ) /V VN A M µ= +   (12) 

 

H Hλ µ=   (13) 

 
We now normalized equations (1) – (9) as following: 

 

, , , ,H H H H
H H H H

H H H H

S E I R
S E I R

N N N N
= = = =
ɶ ɶ ɶ ɶ

  (14) 

 

, ,V V V
V H V

V V V

S E I
S E I

N N N
= = =
ɶ ɶ ɶ

  (15) 
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We also have: 
 

1 H H H HS E I R= + + +   (16) 

 

1 V H VS E I= + +   (17) 

 
The mathematical model of Equation (1) – (7) is now 

reduced to the following 5 Equations: 
 

(1 )H H
H H H V V

H

dS b
S S I N

dt N

β
µ= − −   (18) 

 

( )H H
H V V H H H

H

dE b
S I N E

dt N

β
µ= − ε +   (19) 

 

( )H
H H H H H

dI
E r I

dt
µ= ε − +   (20) 

 

( )V
V V H V V V

dE
b S I E

dt
β µ= − ε +   (21) 

 

V
V V V V

V

dI M
E I

dt N
µ= + ε −   (22) 

 

Mathematical Analysis for Equilibrium Point 

The mathematical model is now analyzed and 

investigated in order to find the equilibrium points and 

system stability. The equilibrium point is determined by 

setting the right hand side of Equation (18) – (22) to 

zero. The system stability is determined by its 

eigenvalues and R0. After we solved Equation (18) – 

(22), we only obtain the endemic disease equilibrium 

points E1 given by: 

 
1* 1* 1* 1* 1*

1
( , , , , )H H H V VE S E I E I=   (23) 

 

Where: 

 

 
1* 2 2

2 2

(

( ( )(2

( )( ) )

( ( ( )

( ( )( ))))

( (4 ( )( )( )

( ( )( ) )

( )( ) (

H V H V H V H

V H H V V V H

H H H V

H H H V V

H V H V V

V H H H H H H V V

V H H H H V

H H H H H V V

S b N

N N b

bM

b

N bMN

b

N

Η

Η

Η

Η Η

Η

Η Η

Η

= ε ε +

ε + ε +

+ ε +

+ ε + ε +

+ ε + ε + ε +

−√ + ε + ε +

ε + + ε + +

+ ε + ε +

β β µ

µ µ β µ

γ µ µ µ

β γ µ µ

µ β µ µ

β µ γ µ µ µ

β µ γ µ µ µ

µ γ µ µ µ

2

)

( ( )( )

( ( ) ( )( )))) ))) /

(2 ( ( ) ( )))

V

H H H V V

H V V V H H V V

V V H H H V V H H V V

b M

b M N M

bN b M N N

Η

Η

− ε + ε + +

ε + ε + ε + ε +

ε + ε + ε +

µ

β γ µ µ

µ β µ µ

β µ β µ µ

  (24) 

1* 2 2

2

2

(

( ( )( ) ( )

( ( )( )

( ( )( ))))

( (4 ( )

( )( ) (

( )( ) )

( )( ) ( )

H V H V H V H

V H H H H H V V V

H H H V V

H V H V V

V H H H H H

H V V V H

H H H V

H H H H H V V V

H

E b N

N N

bM

b

N bMN

b

N

b

β β µ

µ γ µ µ µ µ

β γ µ µ

µ β µ µ

β µ γ µ

µ µ β µ

γ µ µ µ

µ γ µ µ µ µ

β

Η

Η

Η Η

Η Η

Η

Η

= ε ε

+ − + ε + ε +

+ − ε + ε +

− − ε + ε + ε +

+√ +

ε + ε + ε

+ + ε + +

+ ε + ε +

−
2

( ( )( )

( ( ) ( )( )))) ))) /

(2 ( )( ( ) ( )))

H H V V

H V V V H H V V

V V H H H V V H H V V

M

b M N M

bN b M N N

γ µ µ

µ β µ µ

β µ β µ µ

Η

Η

Η

ε + ε +

+ ε + ε + ε + ε +

ε ε + + ε + ε +

  (25) 

 
1* 2 2

2 2

(

( ( )( ) ( )

( ( )( )

( ( )( ))))

( 4 ( )( )( )

( ( )( ) )

( ( )( ) ( )

H V H V H V H

V H H H H H H V V V

H H H H V V

H V H H H V V

V H H H H H H H V V

V H H H H H H V

H H H H H H V V V

I b N

N N

bM

b

N bMN

b

N

b

β β ε ε µ

µ γ µ ε µ µ ε µ

β γ ε µ ε µ

µ β ε ε µ ε µ

β µ γ µ ε µ ε µ

β ε µ γ µ ε µ µ

µ γ µ ε µ µ ε µ

β

= +

− + + + +

+ − + +

− − + + +

+√ + + +

+ + +

+ + + +

−
2

( ( )( )

( ( ) ( )( )))) )))) /

(2 ( )( )

( ( ) ( )))

H H H H V V

H V H V V H H V V

V V H H H H

H V V H H V V

M

b M N M

bN

b M N N

γ ε µ ε µ

µ β ε ε ε µ ε µ

β γ µ ε µ

β ε µ ε µ

+ +

+ + + + +

+ +

+ + +

  (26) 

 

(

1*

2

2

2

2

( ( )( ) ( )

( )( ) ( )

( ( 2 ))

( (4 ( )

( )( ) (

( )( ) )

( )( ) )( )

(

V V H H H H H V V V

H V H H H H H V V V

V H V H H V V V V

V V H H H H H

H H V V V H H

H H H H V

H H H H H H V V V

H

E bMN

N N

b N M M N

N bMN

b

N

b M

β γ µ ε µ µ ε µ

µ γ µ ε µ µ ε µ

β β ε µ µ ε µ

µ β µ γ µ

ε µ ε µ β ε µ

γ µ ε µ µ

µ γ µ ε µ µ ε µ

β

= − + + +

− + + +

+ − + − +

+ √ +

+ +

+ + + +

+ + +

−

( )

2

2

( )( )

( ) ( )( )))) ))) /

2 ( )( ( )( ) )

H H H V V

H V H V V H H V V

V H V V V V H H H H H H V

b M N M

bN b

γ ε µ ε µ

µ β ε ε ε µ ε µ

β ε ε µ β ε µ γ µ ε µ µ

+ +

+ + + + +

+ + + +

  (27) 

 
1* 2 2

2 2

(

( ( )( ) ( )

( ( )( )

( ( )( ))))

(4 ( )( )( )

( ( )( ) )

( ( )( ) ( )

(

V V H V H V H V

H H H H H H V V V

H H H H V V

H V H H H V V

H H H H H H H H V V

V H H H H H H V

H H H H H H V V V

H

I b N N

N

bM

b

N bMN

b

N

b

= +

− + + +

+ + +

+ + + +

+√( + + +

+ + +

+ + + +

−

β β ε ε µ

µ γ µ ε µ µ ε µ

β γ ε µ ε µ

µ β ε ε µ ε µ

β µ γ µ ε µ ε µ

β ε µ γ µ ε µ µ

µ γ µ ε µ µ ε µ

β
2

2

( )( )

( ( ) ( )( )))) ))) /

(2 ( )( ( )( ) ))

H H H v v

H V H V V H H V V

V H V V V H H H H H H V

M

b M N M

bN b

+ +

+ + + + +

+ + + +

γ ε µ ε µ

µ β ε ε ε µ ε µ

β ε µ β ε µ γ µ ε µ µ

  (28) 
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All parameters used in system (24) – (28) are positive 

and the epidemic region is: 
 

{ }1* 1* 1* 1* 1* 1* 1* 1* 1* 1*( , , , , , ) : 0 , , , , 1H H H V V H H H V VS E I E I S E I E IΩ = ≤ ≤  

 

Mathematical Analysis for Local Stability 

The local stability of the equilibrium point 

determined from Equation (18) – (22) is analyzed by 

first obtaining an expression for the basic reproduction 

number R0 and the Jacobian matrix. After these are done, 

we then solve the eigenvalues equation which involves 

the Jacobian matrix. The Jacobian matrix of system (18) 

– (22) is as follows:  
 

1* 1*

1* 1*

1* 1*

0 0 0

( ) 0 0

0 ( ) 0 0

0 0 (1 ) ( ) 0

0 0 0

H H
H V V H V

H H

H H
V V H H H V

H H

H H H

V V V V V

V V

b b
I N S N

N N

b b
I N S N

J N N

r

b I E

β β
µ

β β
ε µ

ε µ
β ε µ

ε µ

 
− − − 
 
 
 − + 

=  
 − + 
 − − − +
 

− 

 (29) 

 
The basic reproductive number, √R0, is the number of 

secondary infection produced by a typical case of an 

infection in a population of its infectious period. R0 can 

be indicated the transmission potential of disease. In case 

of R0>1, the transmission has potential to spread 

between people. The requirement for local stability at the 

equilibrium state is stated in proposition 1 given below. 

Proposition 1. 

The equilibrium state E1 is asymptotically stable 
when R0 is higher than 1, R0>1.  

Proof.  

The local stability of E1 is governed by linearization 

of system (18)-(22). The R0 is given as: 
 

0 1 2 3 4 3

2 2

5 2 6 3 4 6 7

2

8 6 3 2 3 4 9 3

8 6 3

( ( ( )))

( ( )

( ( ( ))) )))

V H H

V H V

H H

V

R N M

N

M M

N

α α γ α µ α α

α α α α α µ α α µ

α α α α γ α µ α α α
α α α

= + + + +

+ +

− + +
 (30) 

 
Where: 
 

a1 = 2 2

V H V H V Hb N β β ε ε µ  

a2 = bβH  

a3 = (εH+µH) (εV+µV) 

a4 = bβVεH 
a5 = 4NHµHM 

a6 = (γH+µH)  

a7 = (εH+µH) 

a8 = NHµHµV 
a9 = (M+NVεV) 

The characteristic of equation (29) which determines 

the eigenvalues is the eigenvalue equation obtained by 

solving det: 
 

1
5 0

E
J Iλ− =  

 
Where: 

JE1 = The Jacobian matrix at the equilibrium point E1 

λ = The eigenvalues 

I5 = The identity 5×5 matrix 
 

Evaluating the determinant, we get the following 

Evaluating the determinant, we get the following: 
 

5 4 3 2 1

1 2 3 4 5
( ) 0e e e e eλ λ λ λ λ+ + + + + =  (31) 
 
Where: 

e1 = 
2

2

( )
/

( ( ))

H H H

H H

F GH
N

F GHJ GH KL

γ µ µ

µ µ

 − − −
 
+ − − − −  

 

e2 = 
2( ( ) ( ))

/
( ( )))

H H H H

H

F GHJ GH K L
N

F GHP GHJ K L

γ µ µ µ

µ

 − − − − − − +
 
+ − + − − +  

  

e3 = 
( ) ( )

/
( )

H H H

H

F GHP GHJ K L
N

FOGH GHP K L

γ µ µ

µ

 − − − + − − +
 
+ + − − +  

 

e4 =  2
( ) ( ( ))(1 )

/
(( ) ( ))

H
H

H H H

FOGH K L QH K R K S
F GH

F OGH GHP K L

µ
µ

γ µ µ

 − − − + + − + − +
 
− − − + − − +  

 

e5 = (1/2NH NV (bβVεHµH +(γH + µH) (εH + µH)µV))T 
 
Where: 

F = 2 4 2 28 H V H V H VN N β β ε ε  

G = (εV + µV)2 

H = 
2

2 3

( ) )

( )

H V H V H V H H H V

V H H H H V H H V H H V H V

bM bN N N

b

β β ε ε µ µ µ

β ε µ γ ε µ γ µ µ ε µ µ µ µ

+ + +

+ + + +
 

J = ( )2 2( ) ( 2 )H H H H V Vε µ µ µ ε µ− − − +  

K = 

( 2 2

( ( )( ) ( )

( ( )( )

( ( )( ))))

V H V H V H

V H H H H H H V V V

H H H H V V

H V H H H V H

b N

N N

bM

b

β β ε ε µ

µ γ µ ε µ µ ε µ

β γ ε µ ε µ

µ β ε ε µ ε µ

+ − + + +

+ + +

+ + + +

 

L = 

2 2

2

( (4 ( )( )( )

( ( )( ) )

( ( )( ) ( )

( ( )( )

( ( ) ( )( )))) ))) /

(2 ( )( ( )( )))))

V H H H H H H H V V

V H H H H H H V

H H H H H H V V V

H H H H V V

H V H V V H H V V

H V V V V H H H H H H

N bMN

b

N

b M

b M N M

N N b

β µ γ µ ε µ ε µ

β ε µ γ µ ε µ µ

µ γ µ ε µ µ ε µ

β γ ε µ ε µ

µ β ε ε ε µ ε µ

ε µ β ε µ γ µ ε µ

√ + + +

+ + + +

+ + + −

+ +

+ + + + +

+ + + +

 

N = 

2 4 2 2 2 2

2

2 3

(8 ( )

( )

( ) )

H V V V H H V V

H V H V H V H H H V

V H H H H V H H V H H V H V

N N

bM bN N N

b

β β ε ε ε µ

β β ε ε µ µ µ

β ε µ γ ε µ γ µ µ ε µ µ µ µ

+

+ + +

+ + + +

 

O = 2( ) ( )H H H V V Vε µ µ ε µ µ− − − −  
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P = ( )2 2( ) ( ) ( 2 )H V V V H H H V Vµ ε µ µ ε µ µ ε µ− − + − − +  

Q = 
( )

4 2 2 2 2 2

1/ ( ) ( )

4 ( )

H V V H H V V

H V H V H V H V V

b M N N

bN N

β ε µ ε µ

β β ε ε µ ε µ

+ + +

+
 

S = 

( )

2 2

2

2

( (4 ( )( )( )

( )( ) )

( ( )( ) ( )

( ( )( )

( ( ) ( )( )))) )))

/ 2 ( )( ( )( ) )

V H H H H H H H V V

V H H H H H H V

H H H H H H V V V

H H H H V V

H V H V V H H V V

V H V V V H H H H H H V

N bMN

b

N

b M

b M N M

bN b

β µ γ µ ε µ ε µ

β ε µ γ µ ε µ µ

µ γ µ ε µ µ ε µ

β γ ε µ ε µ

µ β ε ε ε µ ε µ

β ε µ β ε µ γ µ ε µ µ

√ + + +

+ + +

+ + + +

− + +

+ + + + +

+ + + +

 

T = 

3 2 2 2 2

2 2 2 2 2 2 2

(

( ( )( ) ( )

( ( )( )

( ( )( ))))

( 2( )( ) )

( ( ( ) ( ) ( )

2 ( ( )(

V H V H V H

V V H H H H H H H H V V V

H H H H V V

H V H H H V V

V H H H H H H V

V H H H H H H V V V

H H H H H H H

b N

bN N

bM

b

b

N N

bN

β β ε ε µ

β ε µ µ γ µ ε µ µ ε µ

β γ ε µ ε µ

µ β ε ε µ ε µ

β ε µ γ µ ε µ µ

µ γ µ ε µ µ ε µ

β µ γ µ ε µ ε

= −

+ + + +

+ − + +

− + + +

+ + + +

√ + + +

+ + +

2 2

2

)

( ( )( ) ( )

(2 ( ) )

( ( )( )

( ( ) ( )( ))) )))

V V

H H H H V V V

V H H V V V V

H H H H V V

H V H V V H H V V

M

b M M N

b M

b M N M

µ

γ µ ε µ µ ε µ

β ε µ ε ε µ

β γ ε µ ε µ

µ β ε ε ε µ ε µ

+

+ + +

+ + −

+ + +

+ + + + +

 

R = 

2 2

2

( (4 ( )( )( )

( ( )( ) )

( ( )( ) ( )

( ( )( )

( ( ) ( )( )))) )))

V H H H H H H H V V

V H H H H H H V

H H H H H H V V V

H H H H V V

H V H V V H H V V

N bMN

b

N

b M

b M N M

β µ γ µ ε µ ε µ

β ε µ γ µ ε µ µ

µ γ µ ε µ µ ε µ

β γ ε µ ε µ

µ β ε ε ε µ ε µ

√ + + +

+ + +

+ + + +

− + +

+ + + + +

 

 
The solution of equation (31) is solved through use of 

the Routh-Hurwitz criteria. The equilibrium point will be 

local stability when all eigenvalues have negative real 

parts. This will happen if all the coefficients satisfy the 
following conditions:  
 

1 2 3 4 5
0, 0, 0, 0, 0e e e e e> > > > >   (32) 

 
2 2

1 2 3 3 1 4
e e e e e e> +   (33) 

 
2 2 2

1 4 5 1 2 3 3 1 4 5 1 2 3 1 5
( )( ) ( )e e e e e e e e e e e e e e e− − − > − +   (34) 

 
All conditions of equation (32) - (34) are satisfied for 

endemic equilibrium point as seen in Fig. 4.  

The dynamic transmission of dengue disease without 

a vertical mode of transmission (M = 0) is described by 

equations (18) to (21) which are the same as the case 

where vertical transmission is possible except that 

Equation (22) has been replaced by the equation below: 
 

V
V V V V

dI
E I

dt
ε µ= −   (35) 

Reanalyzing the new set of equations in the same 

way as before, we now arrive at two equilibrium points, 

a disease free equilibrium point and an endemic disease 

equilibrium point defined as.  
 

i. Disease free equilibrium point 

 

0
(1,0,0,0,0)E =   (36) 

 
ii. Endemic disease equilibrium point: 

 
2* 2* 2* 2* 2*

2
( , , , , )H H H V VE S E I E I=   (37) 

 

Where: 

 
2* [ ( )( ( )( ) )]

/[ ( ( ))]

H H V V V H H H H H H V

V H V H V H H V V

S N b

b bN N

= + + + +

+ +

ε µ β ε µ γ µ ε µ µ

β ε β ε µ ε µ
  (38) 

 
2*

2
( ( )( ) ( ))

/ ( )( ( ))

H

H V H V H V H H H H H V V V

V H H H V H V H H V V

E

b N N

b bN N

µ β β ε ε γ µ ε µ µ ε µ

β ε ε µ β ε µ ε µ

=

 − − + + + + 

 + + + 

  (39) 

 
2

2*
(

( )( ) ( ))

/ ( )( )( ( ))

H V H V H V
H

H H H H H V V V

V H H H H V H V H H V V

b N
I

N

b bN N

µ β β ε ε

γ µ ε µ µ ε µ

β γ µ ε µ β ε µ ε µ

 
=  
− + + +  

+ + + +

  (40) 

 
2* 2[ (

( )( ) ( ))]

/ ( )( ( )( ) )

V H V V H V H V

H H H H H V V V

V H V V V V H H H H H H V

E b N

N

bN b

µ µ β β ε ε

γ µ ε µ µ ε µ

β ε ε µ β ε µ γ µ ε µ µ

= − −

+ + + +

+ + + +

  (41) 

 
2*

2[ ( ( )( ) ( ))]

/ ( )( ( )( ) )

V

H V H V H V H H H H H V V V

V H V V V H H H H H H V

I

b N N

bN b

µ β β ε ε γ µ ε µ µ ε µ

β ε µ β ε µ γ µ ε µ µ

=

− − + + + +

+ + + +

 (42) 

 
The Jacobian matrix used to determine the stability of 

eigenvalues at E0 = (1,0,0,0,0) has the form: 

 

0 0 0

0 ( ) 0 0

0 ( ) 0 0

0 0 ( ) 0

0 0 0

H
H V

H

H
H H V

H

H H H

V V V

V V

b
N

N

b
N

J N

r

b

 
− − 
 
 
 − + − 

=  
 − + 
 − +
 

− 

β
µ

β
ε µ

ε µ
β ε µ

ε µ

 (43) 

 

Proposition 2. 

The equilibrium state E0 is asymptotically stable 

when R0 is less than 1, R0 < 1.  



Pratchaya Chanprasopchai et al. / American Journal of Applied Sciences 2017, 14 (12): 1123.1145 

DOI: 10.3844/ajassp.2017.1123.1145 

 

1130 

  

  

  

 
 
Fig. 4: The All parameters spaces of endemic disease equilibrium of E1 are satisfied the Routh-Hurwitz criteria. The parameter value are NH 

= 92,000, b = 1/5, µH  = 1/(70*365) γH = 0.1428, βH = 0.95, βV = 0.75, µV = 1/24, εV = 0.1428, εH = 0.1667, A = 5,000 and M = 400  
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Proof.  

The local stability of E0 is governed by linearization of 

system (18) - (21) and (35). The R0 will be of the form: 
 

2

0
( )( )( )

V H V H V

H V H H H H V V

b N
R

N
=

+ + +

β β ε ε
µ γ µ ε µ ε µ

 

 

The characteristic equation obtained same by solving 

the determinant equation, Equation (43) is given by: 
 

5 4 3 2 1

1 2 3 4 5
( ) 0e e e e eλ + λ + λ + λ + λ + =  

 
Where: 

e1 = [ 3 2 ] /H H H H H V H H H V HN N N N N Nγ + ε + ε + µ + µ  

e2 = 2

2

[ 2 2

3 3 2 2

6 ] /

H H H H H V H H V H H H H H H

H V H H H H H V H H V H V V

H H V H V H

N N N N N

N N N N N

N N N

γ ε + γ ε + ε ε + γ µ + ε µ

+ ε µ + µ + γ µ + ε µ + ε µ

+ µ µ + µ

 

e3 = 

2 2 2 3

2 2

2 2

[( 2 2

3 2

4 4

3 6

3 ] /

H H H V H H H H H H V H H H V H

H H H H H H H V V H V H H H V

H H V V H H V V H H H V H H H V

H V H V H H V H H V

H H V H H V H

N N N N

N N N N N

N N N N

N N N

N N N

γ ε ε + γ ε µ + γ ε µ + ε ε µ

+ γ µ + ε µ + ε µ + µ + γ ε µ

+ γ ε µ + ε ε µ + γ µ µ + ε µ µ

+ ε µ µ + µ µ + γ µ

+ ε µ + µ µ

 

e4 = 

2 2

2 3

2

2 2 3 2

2 2 2 2

[

2

2 2 2

2 3 2

2 2 3 )] /

V H V H V H H H V H H H V H

H H V H H V H H H H V V H H H H V

H H V H V H H V H V H H H V

H H H V H V H V H H V H H H V

H H H V H H H V H H V H

b N N N

N N N N

N N N

N N N N

N N N N

− β β ε ε + γ ε ε µ + γ ε µ

+ ε ε µ + ε µ + γ ε ε µ + γ ε µ µ

+ γ ε µ µ + ε ε µ µ + γ µ µ

+ ε µ µ + ε µ µ + µ µ + γ ε µ

+ γ µ µ + ε µ µ + µ µ

 

e5 = 
2[ (

( )( ) ( ))] /

H V H V H V

H H H H H V V V H

b N

N N

µ − β β ε ε

+ γ + µ ε + µ µ ε + µ
  

 

All conditions of equation (32)-(34) are satisfied for 

disease free equilibrium point as seen in Fig. 5. 
 

The Jacobian matrix at 2* 2* 2* 2* 2*

2
( , , , , )H H H V VE S E I E I= is: 

 
2* 2*

2* 2*

2* 2*

0 0 0

( ) 0 0

0 ( ) 0 0

0 0 (1 ) ( ) 0

0 0 0

H H
H V V H V

H H

H H
V V H H H V

H H

H H H

V V V V V

V V

b b
I N S N

N N

b b
I N S N

J N N

r

b I E

β β
µ

β β
ε µ

ε µ
β ε µ

ε µ

 
− − − 
 
 
 − + − 

=  
 − + 
 − − − +
 

− 

 (44) 

 

Proposition 3. 

The equilibrium state E2 is asymptotically stable 

when R0 is higher than 1, R0>1. 

Proof. 

The local stability of E2 is established through the 

linearization of equations (18) - (21) and (35) which 

leads to the determinant equation previously obtained. 

Solving the eigen value equation, we get a similar 

characteristic equation, i.e: 

 
5 4 3 2 1

1 2 3 4 5
( ) 0e e e e eλ λ λ λ λ+ + + + + =  

 

Except that the coefficients are now. 
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Fig. 5: The All parameters spaces of endemic disease equilibrium of E0 are satisfied the Routh-Hurwitz criteria. The parameter 

value are NH = 92,000, b = 1/5, µH = 1/(70*365), γH = 0.01428, βH = 0.65, βV = 0.65, µV = 1/24, εV = 0.01428, εH = 0.1667, A 

= 5,000 and M = 400 
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Fig. 6: The All parameters spaces of endemic disease equilibrium of E2 are satisfied the Routh-Hurwitz criteria. The parameter value are NH 

= 92,000, b = 1/5, µH = 1/(70*365), γH = 0.01428, βH = 0.65, βV = 0.65, µV = 1/24, εH = 0.1428, εH = 0.1667, A = 5,000 and M = 0 

 
Where: 

e1 = [ ( ( )] /HUH GH V GHµ− − + − +  

e2 = 
1 2 3 4

[ ( ( ) ( )] /HGH W W W W GUH V GHµ− − − + + − +  

e3 = 3 2 1 4

1 2 3 4

[ ( ( )

( )( )] /H

UH W W W W

GH W W W W V GHµ

− − − +

+ − + − +
 

e4 = 
1

1 2 3 1 2

3 2 1 4 3

[( / )(1 ) (

( ))( )] /

V

H

Y HY V V Y W W GH

GH W W W W V GHY

µ

µ

+ + −

+ − + − +
 

e5 = 

2[ ( )( ) (

( )( ) ( ))]

/ ( ( )( ) )

H H H H H V V H V H V

H H H H H V V V

H V H H H H H H V

b N

N

N b

µ γ µ ε µ µ β β ε ε

γ µ ε µ µ ε µ

β ε µ γ µ ε µ µ

− + + −

+ + + +

+ + +

 

 
Where: 

U = ( 2 2 )H H V H Vγ ε ε µ µ+ + + +  

V = 
2[ ( ( )( ) ( ))]

/[ ( )( ( )( ) )]

H V H V H V H H H H H V V V

H V V V H H H H H H V

b N N

N b

µ β β ε ε γ µ ε µ µ ε µ

ε µ β ε µ γ µ ε µ µ

− + + + +

+ + + +
 

W1 = ( )( )H H H Hγ µ ε µ− − − −  

W2 = ( )V V Vε µ µ− −  

W3 = ( 2 )H H Hγ ε µ+ +  

W4 = ( 2 )V Vε µ+  

Y1 = 
2 2 2 2 2 2 3

( ( ))

( )

V H V H H V V

H V H V H V V V

bN N

bN N

β ε µ ε µ

β β ε ε ε µ

+ +

+
 

Y2 = ( ( )( ) )),V H H H H H H Vbβ ε µ γ µ ε µ µ+ + +  

Y3 = 2 2 2

H V H V H VN N β β ε ε  

These coefficients of this new characteristic equation 

will also satisfy the Routh-Hurwitz criteria, Equation 

(32) - (34) for the coefficients defined above (Fig. 6) and 

so the eigenvalues by the characteristic equation above 

will all have negative imaginary parts and the endemic 

disease equilibrium point will be stable. 

Numerical Results 

The numerical analysis in this study considers the 

transmission of dengue disease in models where the 

values of the parameter values are listed in Table 1, 

which gives different values for three sets of 

parameters which leads to the three cases we are 

looking at. Case 1 are the values when vertical 
transmission occurs and the equilibrium state is the 

endemic state. Case 2 are the values when there is no 

vertical transmission is possible but the equilibrium 

state will be the disease free state. Finally, case 3 are 

the values when there is no vertical transmission but 

the equilibrium state will be the endemic state. 

The trajectories of the numerical solutions case 1, 

case 2 and case 3 projected onto SH, EH, IH, EV and IV 
are shown in the Fig. 7-9 respectively. The trajectory 

of the numerical solutions case 1, case 2 and case 3 

projected onto (SH, EH), (SH, IH), (SH, EV), (SH, IV), (EH, 
EV) and (IH, IV) are shown in the Fig. 10-12 respectively.  
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Table 1: Parameter are used involved in the transmission of 
dengue disease  

Parameter  Case 1  Case 2  Case 3  

µH 1/(70*365)  1/(70*365)  1/(70*365)  

NH 92,000  92,000  92,000  
b  1/5  1/5  1/5 
A  5,000  5,000  5,000  

µV 1/24  1/24  1/24 

M  400  0  0  

γH 0.1428  0.01428  0.01428  

βH 0.95  0.65  0.65  

βV 0.75  0.65  0.65 

εV 0.1428  0.01428  0.1428 

εH 0.1667  0.01667  0.1667 

 

The trajectory of the numerical solutions case 1, case 2 

and case 3 projected onto (SH, EH, IH), (SH, EH, EV), (SH, 

EH, IV), (SH, EV, IV), (EH, EV, IV) and (IH, EV, IV) are 

shown in the Fig. 13-15 respectively. 

Discussion  

In this study, the dynamic transmission of dengue 

disease using SEIR mathematical models which focus 

on the transmission of the virus in the mosquito by its 

being bitten by an infected human or by vertical 

transmission mode, i.e., through sexual contact with a 

male mosquito is studied. It is shown that the presence 

of vertical transmission insures that the endemic 

equilibrium state is the only possible outcome. In the 

absence of vertical transmission, the model leads to 

two possible outcomes, a disease free equilibrium 

state and an endemic equilibrium state which depend 

on whether R0<1 or R0>1. The Routh-Hurwitz criteria 

for the coefficients of the characteristics equations for 

the system are used to determine whether all the 

eigenvalues have negative imaginary parts.  

When there is vertical transmission of the virus in 

the mosquito and the values of the parameters are 

such that R0>1, the only equilibrium state is the 

endemic equilibrium point, E1 and it is local 

asymptotically stable as can be seen from Fig. 4 which 

shows the values of the parameters satisfy the Routh-

Hurwitz criteria. The time trajectories of SH, EH, IH, EV 
and IV are plotted on Fig. 7. The trajectories of the 

numerical solutions are plotted on the 2D (SH, EH), 

(SH, IH), (SH, EV), (SH, IV), (EH, EV) and (IH, IV) planes 

and in the 3D (SH, EH, IH), (SH, EH, EV), (SH, EH, IV), 

(SH, EV, IV), (EH, EV, IV) and (IH, EV, IV) spaces seen in 

Fig. 10 and 13 respectively.  

In the absence of vertical transmission, the disease 

free equilibrium point, E0, will be local asymptotically 

stable when R0<1. The range of values of the parameters 

for which the coefficients of the characteristic equation 

for eigenvalues satisfy the Routh-Hurwitz criteria for the 

disease free state to be local asymptotical stable are 

shown in Fig. 5. 

Picking the values (the ones listed for case 2 in 

Table 1 and given in figure caption), the time 

dependences of SH, EH, IH, EV and IV, are plotted in 

Fig. 8. The trajectories of the numerical solutions are 

plotted in the 2D (SH, EH), (SH, IH), (SH, EV), (SH, IV), 

(EH, EV) and (IH, IV) and the 3D (SH, EH, IH), (SH, EH, 

EV), (SH, EH, IV), (SH, EV, IV), (EH, EV, IV) and (IH, EV, 

IV) space in Fig. 11 and 14 respectively. The endemic 

equilibrium point, E2, is local asymptotically stable 

for R0>1. The behaviors of the populations for this 

case (case 3) are shown in Fig. 6, 9 and 15.   
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Fig. 7: The time trajectories of the numerical solutions of the model when vertical transmission occurs for SH, EH, IH, EV and IV are shown 
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Fig. 8: The time trajectories of the numerical solutions of the model when there is no vertical transmission of the virus of SH, EH, IH, EV and 

IV lead to the equilibrium state being the disease free state 
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Fig. 9: The time trajectories of the numerical solutions of the model when there is no vertical transmission of the virus of SH, EH, IH, 

EV and IV lead to the equilibrium state being the endemic disease state 
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Fig. 10: The trajectories of the numerical solutions projected onto the 2D (SH, EH), (SH, IH), (SH, EV), (SH, IV), (EH, EV) and (IH, IV) 

planes when vertical transmission occurs 
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Fig. 11: The trajectories of the numerical solutions projected onto the 2D (SH, EH), (SH, IH), (SH, EV), (SH, IV), (EH, EV) and (IH, IV) 

planes when there is no vertical transmission and equilibrium state is the disease free state 
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Fig. 12: The trajectories of the numerical solutions projected onto the 2D (SH, EH), (SH, IH), (SH, EV), (SH, IV), (EH, EV) and (IH, IV) 

planes when there is no vertical transmission and equilibrium state is the endemic state 
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Fig. 13: The trajectories of the numerical solutions of the model when vertical transmission occurs into the 3D (SH, EH, IH), (SH, EH, 

EV), (SH, EH, IV), (SH, EV, IV), (EH, EV, IV) and (IH, EV, IV) spaces 
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Fig. 14: The trajectories of the numerical solutions into the 3D (SH, EH, IH), (SH, EH, EV), (SH, EH, IV), (SH, EV, IV), (EH, EV, IV) and 

(IH, EV, IV) spaces when there is no vertical transmission and the values of the parameters are such that the equilibrium state 
is the disease free state 
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Fig. 15: The trajectories of the numerical solutions into the 3D (SH, EH, IH), (SH, EH, EV), (SH, EH, IV), (SH, EV, IV), (EH, EV, IV) and 

(IH, EV, IV) spaces when there is no vertical transmission and the values of the parameters are such that the equilibrium state 
is the endemic disease state 

 

  

In the presence of vertical 
transmission of the virus 

In the absence of vertical 

transmission of the virus 
(a) 
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Fig. 16: (a) The time series comparison of dengue disease with and without the effect of vertical transmission for infectious human, 

IH (b) the time series comparison of dengue disease with and without the effect of vector born infection projected onto 
infectious vector, IV 

 

Conclusion  

To see the influence of vertical transmission in the 

mosquitoes on the human and mosquito populations, we 

have plotted on Fig. 16(a) and 16(b) the time dependence 

of the infectious humans and mosquitoes in the presence 

or absence of vertical transmission of the virus in the 

mosquitoes of IH and IV. In both cases, the equilibrium 

state was the endemic state. We see that the equilibrium 

states were reached slower when vertical transmission of 
the virus in the mosquito occurs. 
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