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Abstract: This paper addressed obstacle avoidance problem of a quadrotor 

in outdoor environment. Path planning was finished by employing classical 

Dijkstra algorithm and the controller of the quadrotor adopted integral 

backstepping method. In order to get a smooth trajectory with time optimal 

and acceleration constraints properties, quantic polynomials were utilized 

to generate trajectory file. The scheme is particularly practical and useful 

because of its small computation burden and feasibility. Simulations have 

been done to verify the performance of the whole system. As a result, the 

quadrotor successfully tracked the path without any collision with obstacles 

except that there are some small error in the final part of position tracking 

performance (±1m) and some small delay in the attitude tracking about 0.3 

ms. In conclusion, the proposed method showed acceptable performance 

for quadrotor obstacle avoidance. 
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Introduction 

Quadrotors, as a kind of Unmanned Aerial Vehicles 

(UAVs), have being an attractive research area in recent 

years. In terms of dynamics modeling and controller 

design, many fantastic works have been published and 

demonstrate robust control performance (Geng et al., 

2013). Since fixed wing UAVs payload is large enough, 

it is possible for them to install kinds of equipment such 

as powerful communication facilities and high resolution 

stereo vision system, which give them an advantage over 

communicating with military satellites to successfully 

avoiding collision with other UAVs or aircrafts. 

Comparing to fixed wing UAVs, obstacle avoidance 

control of small UAVs such as quadrotors has been a 

very challenging problem because of its limited payload, 

which make it unrealistic to choose high powerful 

processor with more relative weight to implement 

complicated algorithms and to mount accurate sensors 

such stereo vision equipment. However, no matter where 

quadrotors are applied in indoor or outdoor environment, 

collision avoidance with obstacles is one of basic 

functions to finish complicated tasks. Hence it needs to 

pay attention to obstacle avoidance controller design and 

choosing hardware. 

Recent approaches for path planning has many 
different directions. In terms of usage of sensors for 
obstacle avoidance, one main trend is based on stereo 
vision system by using image processing technics, 
which obtained impressive and robust performance 

especially in indoor environment. However, its main 
drawback is that image processing implementation is 
offline, which means that it is not feasible for long 
distance surveillance in outdoor environment. Another 
research direction is based on some other different kind 
sensors instead of camera such as a laser range finder. 
Although such sensor can give online and real time 
information to microprocessor and they also can be 
applied into both indoor and outdoor environment, its 
experimental performance is not as good as such 
systems based on stereo vision system. When it comes 
to the algorithm processing raw map information sent 
by sensors, it has two main directions: Extending 
classical method successfully applied on ground mobile 
robots and proposing some other new approaches. 
Simultaneously Localization and Mapping (SLAM) is 
one of representatives of classical method of ground 
mobile robots obstacle avoidance (Grzonka et al., 
2012) and some other methods also obtain good results 
such as combining D* lite and Probabilistic Roadmap 
(Hrabar, 2008), Mixed Integer Linear Program (MILP) 
(Richards et al., 2002), dynamically feasible 
interpolation (Dever et al., 2006) and using motion 
primitives (Bottasso et al., 2008). 

This paper firstly derived the dynamics model for 

quadrotors based on Newton-Euler equations. In terms of 

control of the quadrotor, integral backstepping controller 

was adopted. The main part of this paper is path 

planning based on Dijkstra algorithm. By using this 

simple method, it can substantially alleviate the 
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computation burden problem, which make it possible to 

run on off shelf products. A discrete original path 

consisting of hundreds of points was firstly generated by 

using Dijkstra algorithm. However, it is not optimal. 

Hence, this paper proposed one measure to improve this 

original path: Condensing the original path by checking 

if it can directly reach the next point without collision, 

which can abridge the original path to make it time 

optimal. In order to taking velocity and acceleration 

constraints into account and meet desired velocity inputs 

for integral backstepping controller, quantic polynomials 

were chosen to generate smooth 3D trajectory. Similar 

forest environment was created under Simulink 

environment to evaluate the performance of the path 

planning method and integral backstepping controller. 

Simulation results showed that this new method exhibit 

nice performance for quadrotor obstacle avoidance. In 

comparison with other methods, the main contribution of 

this paper is incorporating Dijkstra algorithm and 

integral backstepping controller to generate a relatively 

time optimal 3D trajectory with substantially decreasing 

computation burden of microprocessors and considering 

dynamics constraints. 

The dynamics modeling is described in section II. 

Section III gives an overview about integral 

backstepping controller. Simulation is presented in 

section IV. The results and discussion, presented in 

section V, is a clear illustration of performance of the 

whole system. 

Quadrotor Dynamics Modeling 

Quadrotor dynamics model is usually obtained by 

two different approaches: Euler-Lagrange and Newton- 

Euler equations and these two approaches can get same 

motion equations. There are many nonlinear factors of 

complete dynamics of a quadrotor such as free-stream 

velocity, blade flapping and gyroscopic effect. It would 

be very complicated even not feasible for the purpose of 

control if one dynamics model considers all nonlinear 

effect factors (Habib et al., 2014). Therefore, this chapter 

builds a simplified dynamics model which retains main 

features and ignores some nonlinear effect factors such 

as free-stream velocity and blade flapping, which are 

easily observed in aggressive motions of large 

quadrotors (Garcia et al., 2006; Kendoul et al., 2009; 

2010). In this chapter, the dynamics model will be 

derived based on Newton-Euler equations under the 

following assumptions: 

 

• The quadrotor structure is supposed be symmetrical 

and rigid 

• The center of geometry and the body fixed frame 

origin are assumed to coincide 

• The propellers are supposed rigid 

• Thrust and drug are proportional to the square of 

propeller’s speed 

 

In this study, the dynamics model will be derived 

based on Newton-Euler equations. Based on Newton-

Euler formalism, the dynamics of a rigid body in body 

frame can be described as: 

 

3
0

0

ext
mVmI V F

JJ τ

Ω×      
+ =      Ω× ΩΩ       

ɺ

ɺ
 (1) 

 

where, I is the identity matrix; V = (u, v, w) and Ω = (p, 

q, r) are, respectively, the linear and angular velocities in 

the body-fixed frame; Fext and τ are the total external 

force and torque, respectively; and J is the moment of 

inertia which is given by: 

 

0 0

0 0

0 0

x

y

z

I

J I

I

 
 

=  
 
 

 (2) 

 

Based on Euler angles parameterization, one can use 

a rotation matrix R to express translational dynamics in 

inertial frame, where R is defined as follows: 

 

c c s s c c s c s c s s

R c s s s s c c c s s s c

s s c c c

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ φ θ φ θ

− + 
 = + − 
 − 

 (3) 

 

where η = (φ, θ, ψ) denotes three Euler angles roll, 

pitch and yaw, respectively and s and c are 

abbreviations for sin and cos function. By considering 

this transformation, the translational dynamics of 

inertial frame are computed as follows: 

 

0

0BmV RF

mg

 
 = −  
  

ɺ  (4) 

 

where ( ), ,V x y z= ɺ ɺ ɺ  the rotorcraft velocity in inertial frame 

and g is the gravitational acceleration and FB is the total 

force excluding the gravity force. 

The original Newton-Euler equations are derived 

based on rigid body which does not consider internal 

dynamics. Since electric motor’s gyroscopic effect is 

obvious, this paper adds gyroscopic effect term to 

Newton-Euler equations. The new dynamics equations 

for rotational motion can be expressed as: 
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0 0
T

r rJ J J τ Ω + Ω× Ω +Ω× Ω = 
ɺ  (5) 

 

where Jr is motor’s moment of inertia and Ωr is residual 

angular speed of four motors (w1, w2, w3, w4), which can 

be expressed as: 

 

1 2 3 4r
w w w wΩ = − + −  (6) 

 

To transform attitude dynamics in body-fixed fame 

into inertia frame, we need the kinematic relation 

between Ω andηɺ : 

 

r
Rη = Ωɺ  (7) 

 

where the Euler matrix Rr is given by: 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

r
R

φ θ φ θ
φ φ

φ θ φ θ

 
 = − 
  

 (8) 

 

We can make assumption around hover state and 

small angles where ψ≈0, θ≈0. Based on that assumption, 

this transformation matrix can be simplified to an 

identity matrix, which means that actually no changes 

are made on rotational dynamics. Depending on this 

approximation, the rotational dynamics of inertial frame 

can be calculated as follows: 

 

0 0
T

r rJ J Jη η η τ + × + Ω× Ω = ɺɺ ɺ ɺ  (9) 

 

A quadrotor is an under-actuated system with 6 

degree of freedom and four control inputs, which are the 

total thrust U1 and the torques (U2, U3, U4). Hence the 

force and torque vectors in Equation 4 and 5 can be 

expressed as FB = [0 0 U1] and τ = [U2 U3 U4]
T
, 

respectively. Under the assumption that thrusts are 

proportional to the square of propeller’s speed, the 

relationship between control inputs (U1, U2, U3, U4) and 

rotors’ speed (w1, w 2, w 3, w 4)can be given by: 

 

1 1

2 2

3 3

4 4
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f f f f

f f

f f
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    

− −        

 (10) 

 

where Kf and Km are the aerodynamic force and moment 

constants respectively. Recalling Equation 4 and 8, the 

nonlinear model of a quadrotor can be expressed in the 

following form, where l denotes the distance between 

rotors’ center and the center of mass: 
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 (11) 

 

The dynamics model derived by this section is 

suitable for mini-quadrotor with small propellers and 

low flying speed. For a more accurate dynamics for large 

quadrotors model which considers blade flapping, big 

angles of attack, one can refer to (Hoffmann et al., 2007) 

and paper (Bouabdallah, 2007). 

Integral Backstepping Controller Design 

Backstepping is a novel and practical approach that 

provides a recursive method for stabilizing the origin of 

a system in strict-feedback form. By constructing 

Lyapunov function for the closed-loop systems, 

backstepping controller guarantees system stability. 

However, integral backstepping has more robustness to 

some disturbances owing to integral action, which 

cancels steady error. In other words, integral 

backstepping is the combination between PID and 

backstepping. Integral backstepping controller was 

derived in Samir Bouabdallah’s thesis (Bouabdallah, 

2007). According to its results, integral backstepping 

controller is robust to external disturbances and can 

stabilize the quadrotor. The following equations are 

rotational (Equation 12) and translational (Equation 14) 

control laws of integral backstepping controller: 
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Solving Under-Actuated Problem 

Quadrotor is an under-actuated system which can 

produce 6 outputs (φ,θ, ψ, x, y, z) with 4 inputs (U1, 

U2, U3, U4). From the translational motion equations, 

we can see that desired angles (φd, θd, ψd) are the 

outputs of position system. Considering ψd is given by 

an operator. One can use the following motion 

Equation 16 to solve under-actuated problem and get 

Equation 17: 
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 (17) 

With Equation 17, the under-actuated problem is 

solved and then the control system advocated for the 

overall system is schematized in Fig. 1. As the Fig. 1 

shown, the two controllers, position controller and rotation 

controller, are connected by nonlinear Equation 17. 

Obstacles Avoidance Scheme 

Obstacle avoidance involves detecting obstacle, 

avoiding them and finally getting optimal path. In this 

part, Dijkstra algorithm was applied to finish path 

planning. Because it has following advantages: Simple, 

fast and low computation burden. Based on Dijkstra 

algorithm, path planning was finished in several steps: 

 

• Getting obstacle and map boundary information to 

finish mapping, as Fig. 2 shown 

• Utilizing Dijkstra algorithm to get original discrete 

path, as Fig. 2 shown  

• Exploiting quantic polynomials to generate 

trajectory file with acceleration and average velocity 

constraints  

 

In terms of Dijkstra algorithm, it firstly obtains 

original discrete path consisting of points. After mapping, 

the whole procedure can be divided into three steps: 

 

• Picking the unvisited vertex with the lowest-distance 

• Calculating the distance through it to each unvisited 

neighbor and updating neighbor's distance if smaller  

• Marking visited when done with neighbors  

 

This original discrete path consisted of hundreds of 

points. However, it is not optimal. In order to make it 

more time optimal, this chapter condensed the discrete 

path through checking if the quadrotor can directly arrive 

the next point without collision with obstacle. After 

finishing this step, it obtained a condensed path 

composed of much less points, which were marked by 

five blue stars, as shown in Fig. 3. Comparing to the 

original Dijkstra path’s length (56.00 m), this condensed 

path’s length is 38.46 m, which is shorter about 31% than 

the original one. This condensed path are also treated as 

the reference path for simulation experiments. Another 

advantage of this condensed path is that it is convenient to 

generate smooth trajectory, because sometimes it can fail 

to directly generate smooth trajectory if the distance 

between two adjacent points is too small. 
Since integral backstepping controller needs 

desired velocity inputs, quantic polynomials were 

chosen to generate smooth 3D trajectory with 

acceleration constraints. Formulating the desired 

trajectory as a 5 order polynomial offers two 

advantages. Firstly, constraints on velocities and 

accelerations are easily incorporated into the reference path. 
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Fig. 1. Structure of control system 
 

 
 

Fig. 2. Defining boundaries of obstacle and the map 
 

 
 

Fig. 3. Dijkstra path and condensed path 
 

Secondly, providing boundary conditions to ensure 

the continuity of the first four derivatives of the 

reference path, which means that those inputs to 

quadrotor will be smooth. The reference trajectory 

between two points can be defined as: 

2 3 4 5

1 2 3 4 5
( )r t a t a t a t a t a t= + + + +  (18) 

 

It is obvious that initial and final velocities and 

accelerations are zero. So the following equation can be 

obtained: 
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With: 

 

f idr r r= −  (20) 

 
Solving for coefficients: 

 
1

3 4 5

3

2

4

2

5

3 4 5 0

6 4 20 0

f f f

f f

f f

a t t t dr

a t t

a t t

−
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  (21) 

 
Thus the desired trajectory between two points is 

given by: 
 

3 4 5

3 4 5
( )

i
r t x a t a t a t= + + +   (22) 

 
After getting Equation 22, it is easy to get parameters 

for the desired trajectory if traveling time between two 

points is known. 

Here is the method that how we use the above 

equation with acceleration constraints to generate 

smooth desired trajectory: 
 
• Defining average speed Vavg and maximum 

acceleration amax 
• Calculating traveling time tf by using average speed 

and distance between two points  
• Using Equation 22 to get parameters of the desired 

trajectory  
• Checking maximum acceleration to see if it exceeds 

amax. If not, those parameters are acceptable; if it 
does, it reduces the average speed to 80% of the 

former one and iterates until parameters of desired 
trajectory are acceptable 

 

By taking constraints on actuators of a quadrotor into 

account, this chapter added acceleration and average speed 

constraints to trajectory generation. Finally, a 3D trajectory 

was generated by exploiting quantic polynomials to 

guarantee the trajectory staying on the reference path. 

Simulation and Results 

In order to evaluate the performance of path 
planning algorithm and integral backstepping 
controller, this paper, based on Simulink environment, 
built outdoor simulate forest environment for quadrotor 
simulation tests, as shown in Fig. 2. Firstly, Dijkstra 
algorithm finished path planning tasks and then 
trajectory was generated by using Equation 18 to 22. 
The generated trajectory could give desired position 
and velocity inputs to integral backstepping controller. 
By exploiting Simulink Response Optimization 
toolbox, this paper obtained all the parameters for 
integral backstepping controller. 

As Fig. 4 shown, the quadrotor was command to fly 

from starting point (0, 0, 0) to final points (25, 18, 10) with 

no collision with trees and it succeeded to finish this task, 

which the desire yaw angle was given by the pilot. Figure 5 

and 6 presented responses of position and attitude, 

respectively. In terms of position response, it tracked the 

reference trajectory successfully in most of the time except 

that there are some small error (±1m) in the end. In 

comparison, attitude response has some obvious time delays 

about 0.3 ms but the yaw repose showed nice tracking 

performance. In conclusion, the whole system including 

path planning and integral backstepping controller works 

well and finishes the task successfully. 

 

 
 

Fig. 4. Obstacle avoidance simulation 
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Fig. 5. Position response of obstacle avoidance simulation 

 

 
 

Fig. 6. Attitude response of obstacle avoidance simulation 

 

Conclusion 

This paper presented one obstacle avoidance method 

for a quadrotor. A nonlinear dynamics model was 

studied firstly. Integral backstepping controller was 

proposed to tackle the stable problem of the quadrotor. 

Dijkstra algorithm was applied to obtain discrete path. 

In order to make the path optimal and feasible, this 

paper condensed original discrete path into several 

points and added accelerations and velocities constrains 

to the smooth trajectory, which was generated using 

quantic polynomials. Simulation results show that the 

quadrotor successfully complete the task with very 

little tacking error. 

Many breakthroughs of path planning about 
quadrotors has been made, especially some algorithm 
shows impressive performance with stereo vision 
system. Under supervision of video system, one 
quadrotor can finish very complicated and difficult tasks 

such as holding one cup of wine or several quadrotors 
cooperate with each other to do some big and 
sophisticated tasks such as building something. With the 
advances of technology, there functions can be achieved 
in cluttered and long range environments. 
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