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Abstract: Precise regulation of position and attitude (roll, pitch and yaw) is 

one of the most critical tasks to be considered in designing controllers for 

quadrotor types of Unmanned Aerial Vehicles (UAVs). The MATLAB-based 

simulator for quadrotors using PD-feedback control to achieve stabilization 

was developed. MATLAB/Simulink models are used to design and validate 

the control algorithms and the simulation results are presented. The quadrotor 

non-linear dynamics and kinematics were implemented using MATLAB S-

function to generate a continuous state output. The simulation results are 

presented graphically and quantitatively. The developed MATLAB GUI 

interface is robust and interactive to implement the different control 

algorithms under various operating conditions. 
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Introduction 

Mobile robot control has been the focus of active 

research in the past decades. During the last decade, with 

the advance in relevant technology, the demand of flying 

mobile robots or Unmanned Aerial Vehicles (UAVs) has 

rapidly increased. UAVs emergence also has to do with 

the simplicity of their construction and maintenance, 

their ability to hover and their Vertical Take-Off and 

Landing (VTOL) capability Armah (2015). 

Rotorcraft UAVs have a variety of configurations 

that include conventional helicopter with a main and tail 

rotor, a coax with counter-rotating coaxial rotors and 

quad-rotors Corke (2011). Quad-rotor types of UAVs 

has four rotors that are controlled independently. The 

movement of the quadrotor results from changes in the 

speed of each rotor. The structure of quadrotor in this 

research paper is assumed to be rigid and symmetrical, 

the center of gravity and the body fixed frame origin are 

coincided, the propellers are rigid and the thrust and drag 

forces are proportional to the square of propeller’s speed. 

It is also assumed that the earth is flat and non-rotating, 

which is a valid assumption for quad-rotors. 

This research presents application of PD-feedback 

control to achieve stabilization for roll, pitch, yaw, altitude 

and position motions. MATLAB/Simulink models are 

used to design and validate the control algorithms and the 

simulation results are presented. The PD-gains in this 

research were obtained by tweaking the various values to 

obtain satisfactory responses. The quadrotor’s non-linear 

dynamics and kinematics were implemented using 

MATLAB S-function to generate a continuous state 

output. Robust and interactive MATLAB GUI interface 

developed to implement the different control algorithms 

simulation models is also presented. 

Quadrotor’s Dynamics and Kinematics 

Figure 1 shows the notation for the quadrotor model 

Hassan et al. (2013) and 

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?articl

e=2324&context=facpub (2015). Different coordinate 

frames are used in identifying quadrotor’s location and 

attitude and translation and rotation matrices can then 

be applied to transform one coordinate reference frame 

into another. Quadrotors has three main coordinate 

systems attached to it; the body-fixed frame, {B}, the 

vehicle frame, {V} and the global inertial frame, {I}. 

There are two other coordinate systems, not shown, that 

are of interest, the vehicle-1 frame, {V
1
} and vehicle-2 

frame, {V
2
}. Frame {V

1
} is obtained by rotating frame 

{V} about the ZV-axis by a positive yaw angle, ϕV, 

assuming no rolling or pitching, so that XV and YV are 

aligned with XB and YB respectively. Frame {V
2
} is also 

obtained by rotating frame {V
1
} in a right-handed 

rotation about the YV
1
-axis by the pitch angle, θV

1
, 

assuming no rolling, so that XV
1
 and YV

1
 are aligned 

with XB and YB respectively. 



Stephen Armah et al. / American Journal of Applied Sciences 2016, 13 (6): 779.793 

DOI: 10.3844/ajassp.2016.779.793 

 

780 

 
 

Fig. 1. Coordinates for the quadrotor 

 

The configuration of the quadrotor is represented by 

its six degrees of freedom in terms of position, 

( , , )T
I I I
x y z  and the attitude defined using the Euler 

angles, 2 1( , , )T
VV V

θ ϕ∅ . This gives a 12-state system 

characterizing the quadrotor’s equations of motion, as 

( )2 1 , , , , , , , , , , ,

T

I I I V B B B B B BV V
x x y z x y zθ ϕ θ ϕ= ∅ ∅ɺ ɺ ɺɺ ɺ ɺ . 

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?articl

e=2324&context=facpub (2015). 

The quadrotor has four rotors, labeled 1 to 4, 

mounted at the end of each cross arm. The rotors are 

driven by electric motors powered by electronic speed 

controllers. The vehicle’s total mass is m and d is 

distance from the motor to the center of mass. 

The forces and the moments on the quadrotor is 

primarily due to gravity and the four propellers and since 

there are no aerodynamic lifting surfaces, it will be 

assume that the aerodynamic forces and moments are 

negligible. The total upward thrust, T, on the vehicle is 

given by: 

 
1

4

i

i

i

T T

=

=

=∑  (1) 

Where: 

ωi = The relationship between the rotor speed 
 
The upward thrust Ti, is defined as Corke (2011): 

 
2
, 1,2,3,4

i i
T a iω= =  (2) 

 

where, α>0 is the lift constant that depends on the air 

density, the cube of the blade radius, the number of 

blades and the chord length of the blade Corke (2011). 

The translational dynamics of the vehicle in the 

world coordinates is given by Newton’s second law: 

 

B

B

I

dv
m F

dt
=  (3) 

 

Where: 

( , , )T
B B B B
v x y z= ɺ ɺ ɺ  = The quadrotor’s linear velocity 

( ), ,

B B B

T

B x y zF f f f=  = The total force applied to the 

quadrotor 

d/dt = The time derivative in frame {I} 

 

From equation of Coriolis, Equation 3 becomes: 
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x
B B

B B B
I

I B

dv dv
m m v F

dt dt
ω

 
= + = 

 
 (4) 

 

where, ( )/
, ,

T

B I B B B B
ω ω θ ϕ= = ∅ɺ ɺ ɺ is the angular velocity of 

the vehicle in frame {B}. 

Now, FB is made up of the gravity force, 
B

g
F and the 

total thrust from the motors, 
B

TF , given as: 

 

0 0

0 0
B B

B

B g T V
F F F R

mg T

   
   

= + = +   
   −   

 (5) 

 
Where: 

g = The gravitational acceleration 
B

V
R  = The rotation matrix from frame {V} to frame {B} 

given by Equation 19 
 
Substituting Equation 5 into Equation 4 and 

rearranging, to obtain: 
 

0 0

x 0 0

/

B

B B B V
v R

g T m

ων

   
   

= − + −   
   
   

ɺ  (6) 

 
The rotational dynamics of the airframe in frame {I} 

is given by Euler’s equation of motion 

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?articl

e=2324&context=facpub (2015): 

 

B

B

I

dh

dt
= Γ  (7) 

 

Where: 

B B
h Jω=  = The quadrotor’s angular momentum 

( ), ,

B B B

T

B x y zτ τ τΓ =  = The applied torque to the airframe 

 

Similarly, using the equation of Coriolis and 

rearranging, Equation 7 becomes: 

 

( ).  x 
B B B B

J ω ωΓ ω= +ɺ  (8) 

 

where, J is the constant rotational inertia matrix of the 

vehicle given by Guenard et al. (2008): 

 

xx yx zx

xy yy zy

xz yz zz

J J J

J J J J

J J J

 − −
 

= − − 
 − − 

 (9) 

 

And if the airframe’s mass distribution is assumed to 

be symmetrical with respect to frame {B}, 

then 0xy xz yzJ J J= = =  and 
xx yy

J J= . The moments of 

inertia are calculated as: 

 
2

2

2

2

2
2

5

2
4

5

e
xx yy c

e
zz c

m r
J J d m

m r
J d m

= = +

= +

 (10) 

 

Where: 

mc = Mass of the quadrotor’s center (assuming a 

spherical dense center, with radius r) 

me = The mass at the end of each cross arm, where the 

propellers are located 

 

The pair wise differences in rotor thrust cause the 

vehicle to rotate. The torque about frame {B} x-axis, the 

rolling (positive) torque, is given by: 

 

( )4 2
B B
x

d T T
∅

τ τ= = −  (11) 

 

Substituting Equation 2 into Equation 11, to obtain: 

 

( )2 2

4 2
B

ad
∅

τ ω ω= −  (12) 

 

And similarly for the y-axis, the pitching (positive) 

torque is: 

 

( )2 2

1 3
B B
y ad

θ
τ τ ω ω= = −  (13) 

 

Due to Newton’s third law, the drag of the propellers 

produces a yawing torque on the body of the quadrotor. 

The aerodynamic torque is given by Corke (2011): 

 
2
, 1,2,3,4

i i
b iτ ω= ± =  (14) 

 

where, b is the torque constant, which depends on the 

same factors as a. 
This torque exerts a reaction torque on the airframe 

which acts to rotate the airframe about the propeller 
shaft in the opposite direction to its rotation. 
Therefore the total yawing (positive) torque is given 
by Hassan et al. (2013): 
 

( )
4

2 2 2 2

2 4 1 3

1

B B

i

z i

i

b
ϕ

τ τ τ ω ω ω ω

=

=

= = = + − −∑  (15) 

 
where, the different signs are due to the different rotation 

directions of the rotors, thus a yaw torque can be created 

simply by appropriate coordinated control of all four 

rotor speeds. 

The forces and torques on the quadrotor’s airframe, 

obtained by combining Equation 1, 12, 13 and 15, can be 

written in matrix form as Corke (2011): 
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2 2

1 1

2 2

12 2

2 2

3 3

2 2

4 4

B

B

B

x

yB

z

T

T
C C

ω ω

τω ω

τω ω

ω ω τ

Γ

−

    
    

      = ⇒ =                      

 (16) 

 

Which gives the rotor speeds required to apply a 

specified thrust T and torque ΓB to the airframe, where: 

 

0 0

0 0

a a a a

ad ad
C

ad ad

b b b b

 
 

− =
 −
 
− − 

 (17) 

 

The matrix C is of full rank if a, b, d>0, thus making 

the vehicle controllable. 

The linear velocities in the different frames are 

related by 

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?articl

e=2324&context=facpub (2015): 

 

V

B

I V B

R

x x x

y y y

z z z

     
     

= =     
     
     

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

 (18) 

 

where, V
B

R is the transformation matrix from frame {B} 

to frame {V} given by 

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?articl

e=2324&context=facpub (2015): 

 
2 1

2 1[ ] ( ) ( ) ( )
T

V B T B V V

B V VV V
R R R R R

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

θ ϕ

θ ϕ θ ϕ θ ϕ θ ϕ ϕ

θ ϕ θ ϕ ϕ θ ϕ ϕ

θ θ θ

 = = ∅
 

∅ − ∅ + ∅ 
 

= ∅ + ∅ ∅ − ∅ 
 − ∅ ∅ 

 (19) 

 

And the angular velocities are related as 

http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?articl

e=2324&context=facpub (2015): 

 

 1  

 0   

0  
V B

s tan c tan

c s

s sec c sec

θ θ

θ θ

ϕ θ θ ϕ

   ∅ ∅ ∅ ∅ 
    

= ∅ − ∅    
    − ∅ ∅    

ɺ ɺ

ɺ ɺ

ɺ ɺ

 (20) 

 

where, 2 1sin, cos, ,  
VV V

s c andθ θ ϕ ϕ∅ ∅≜ ≜ ≜ ≜ ≜ . 

Control Algorithms 

Control of the quadrotor input, ( )1 2 3 4
, , ,

T

ω ω ω ω , is 

about applying the appropriate thrust, T and/or torque, 

ΓB, to the airframe, which will be determined using 

the traditional PID-feedback controller, given by 

Katsuhiko (2002): 

 

( ) ( ) ( )
( )

0

t

P I D

de t
PID e K e t K e d K

dt
τ τ= + +∫  (21) 

 

Where: 

e = Defined for each task below, is the error between 

the desired value and the output value 

Kp = The proportional gain 

KI = The integrator gain 

KD = The derivative gain and t is time 

 

In general the dynamics of rotational systems has a 

second order transfer function of the form Corke (2011): 

 

2

( ) 1

( )

s

s Js Bsτ

Θ
=

+
 (22) 

 

Where: 

B = The aerodynamic damping 

J  = The rotational inertia  

Θ(s) = The output signal (e.g., pitch) 

τ(s) = The input signal (e.g., pitching torque) 

 

B is generally quite small, thus the integrator controller 

is not necessarily in the regulation of the quadrotor and 

therefore PD-controller is applied in this research. 

Attitude Controllers 

This section presents control algorithms that make 

quadrotor pitch, roll and yaw. The PD-controller is used 

to determine the required torques based on the error 

between desired angles ( )* * *
,

B B B
andθ ϕ∅  and actual 

angles ( ),

B B B
andθ ϕ∅ . For real-time application, the 

actual vehicle angles would be estimated by an inertia 

navigation system. The required rotor speeds are then 

calculated from the respective torques using Equation 

16. Typically, the rate of the desired angles 

( )* **
,

B B B
and ϕθ ∅ɺ ɺ ɺ  are small and can be ignored. 

Controlling Pitch Motion 

The pitch is controlled by increasing the speed, which 

in turn increase the thrust, of either rotor 1 or 3, whiles 

keeping the speed of rotor 2 or 4 the same or zero, as 

illustrated in Fig. 2. The required pitching torque on the 

airframe is given by: 

 

( ) ( )

( ) ( )

* *

*

B B

B

y p B B d B B

d
p B B B

p

K K

K
K

K

θ θ

θ

θ

θ

θ

θ

τ τ θ θ θ

τ θ

θ

θ θ

= = − + −

 
⇒ = − − 

 

ɺɺ

ɺ
 (23) 
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Controlling Roll Motion 

Similarly, the roll is controlled by increasing the 

speed, which in turn increase the thrust, of either rotor 2 

or 4, whiles keeping the speed of rotor 1 or 3 the same or 

zero, as illustrated in Fig. 3. The required rolling torque 

on the airframe is given by: 
 

( ) ( )

( ) ( )

* *

*

B B

B

x p B B d B B

d
p B B B

p

K K

K
K

K

τ τ

τ

∅ ∅

∅

∅

∅

∅

∅

= = ∅ −∅ + −

 
⇒

∅ ∅

∅= ∅ −∅ − 
 

ɺ ɺ

ɺ
 (24) 

 

 
 
Fig. 2. Coordinates for pitch motion 

 

 
 
Fig. 3. Coordinates for roll motion 

Controlling Yaw Motion 

The yaw is controlled by simultaneously applying the 

same speed, which in turn changes the thrusts, of rotors 2 

and 4 whiles keeping speeds of rotors 1 and 3 the same 

or zero or vice versa, as illustrated in Fig. 4. The 

required yawing torque on the airframe is given by: 

 

( ) ( )

( ) ( )

* *

*

B B

B

z p B B d B B

d

p B B B
p

K K

K
K

K

ϕ ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

τ τ ϕ ϕ

τ ϕ

ϕ ϕ

ϕ ϕ

= = − + −

 
⇒ = − − 

 

ɺ ɺ

ɺ

 (25) 

 

 
 
Fig. 4. Coordinates for yaw motion 

 

 
 
Fig. 5. Coordinates for altitude motion 
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Position Controllers 

This section presents control algorithms that make 

quadrotor undergoes translational motions in the x, y and 

z directions. Again PD-controller is used to determine 

the required control inputs based on the error between 

desired positions ( )* * *
,

I I I
andx y z  and actual positions (xI, 

yI and zI). For real-time application, the actual vehicle 

positions and velocities would be estimated by an inertia 

navigation systems or GPS receivers. The required rotor 

speeds are then calculated from the respective torques 

using Equation 16. Once again, rate of the desired 

positions ( )* * *
,

I I I
ay zndxɺ ɺ ɺ  are small and can be ignored. 

Controlling Altitude Motion 

The altitude is controlled by simultaneously applying 

the same speed, which in turn changes the thrusts, of all 

the four rotors, as illustrated in Fig. 5. For upward motion 

the total thrust, T, must be bigger than the weight, mg, of 

the quadrotor, taken into account the drag on the vehicle. 

The total thrust on the airframe is given by: 
 

( ) ( )

( ) ( )

* *

*

z z

z

z

z

p I I d I I o

d
p I I I o

p

T K z z K z T

K
T K

z

zz z T
K

= − + − +

 
=⇒ − − + 

 
ɺ

ɺɺ

 (26) 

 

where, the additive term is given as: 

 
2

4
o o
T mg aω= =  (27) 

 

ωo is the average rotor speed necessary to generate a 

thrust, To, equal to the weight of the vehicle. 

A feed-forward control approach-used to counter the 

effect of gravity, which otherwise is a constant 

disturbance to the altitude motion. The alternative 

approach would be to have very high gains for the PD-

controller. This second approach, not used in this 

research, often leads to actuator saturation and instability 

(Corke, 2011). 

Controlling Motion in the x and y Directions 

To move the vehicle in the x-direction (along XV its 

nose pitch down, which generates a force Corke (2011): 

 

( )

0

0 0
V

V

y V

V

Tsin

f R

T Tcos

θ

θ

θ

   
   

= =   
   
   

 (28) 

 

which gives the force component that accelerates the 

vehicle in the XV-direction as: 

 

V
x V V
f Tsin Tθ θ= ≈  (29) 

where, θv is small. The velocity in this direction can be 

controlled using the P-controller (Corke, 2011): 

 

( )* *

v x V V
x f x xf mK v v= −  (30) 

 

Combining Equation 29 and 30, the desired pitch 

angle required to achieve the desired forward velocity is 

obtained as: 

 

( )* *x

V V

f

V x x

mK
v v

T
θ = −  (31) 

 

For a vehicle in vertical equilibrium the total thrust is 

equal to the weight of the airframe, thus m/T = m/To in 

Equation 31 can be approximately substituted by g
−1
. 

Now, the desired velocity in frame {V} relative to 

frame {I} is then determined as (Corke, 2011): 

 
* * *( ) [ ] ( )
V I I

V I T

x I x V x
v R v R vϕ ϕ= =  (32) 

 

where, the desired velocity in frame {I} is given by the 

P-controller: 

 

( )* *

I xI
x P I I
v K x x= −  (33) 

 

Thus, to reach a desired x-position, the appropriate 

velocity is calculated and from that the appropriate pitch 

angle which will generate the force to move the vehicle 

is obtained. This indirection is consequence of the 

vehicle being under-actuated-the vehicle have just four 

rotor speeds to adjust but its configuration space is 6-

dimensional. Substituting Equation 33 into Equation 32 

and then the result into Equation 31, a compact form 

control algorithm for computing the desired pitch angle 

can be obtained as: 

 

( )( )* *
[ ] ( )

x x

I T

V P V I I D V
xK R x x Kθ ϕ= − − ɺ  (34) 

 

Similar analysis can be carried out to obtain the 

control algorithm to move the vehicle in the y-direction 

(along  YV). To reach the desired y-position, the 

appropriate velocity, *

V
y
v , is calculated and from that the 

appropriate roll angle, *

V
∅ , which will generate the force 

to move the vehicle is obtained. The compact form 

control algorithm for computing the desired roll angle is 

also given as: 

 

( )( )* *[ ] ( )
y y

I T

V P V I I D V
yK R y y Kϕ∅ = − − ɺ  (35) 

 

To move the vehicle forward or sideway its airframe 

must first pitch down or roll down respectively so that 
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the thrust vector has a horizontal component to 

accelerate it; the total thrust must be increased so that the 

vertical thrust component still balances gravity. As it 

approaches its goal the airframe must be rotated in the 

opposite direction, pitching up or rolling up, so that the 

backward component of the thrust decelerates the 

forward or the sideway motion. Finally, the airframe 

rotates to the horizontal with the thrust vector vertical. 

The cost of the under-actuation is once again maneuver. 

The pitch and the roll angles cannot be arbitrarily set, 

they are means to achieve the translation control. 

Equation 34 and 35 can be combined as: 

 

( )
*

*

*
* [ ] ( )

x

xy

y

P
VI TV

V I I D

P VV

K
R p p K

K

x

y

θ
ϕ

      
= − −        ∅      

ɺ

ɺ
 (36) 

 

where, ( , )T
I I I

p x y= ,
x y xy

D D D
K K K= = and: 

 

( ) ( )1
[ ] [ ]
I T I

V V

c s
R R

s c

ϕ ϕ
ϕ ϕ

ϕ ϕ

−

− 
= =  

 
 (37) 

 

Simulation of the Control Algorithms 

The simulations were carried out using 

MATLAB/Simulink models to design and validate the 

control algorithms. Simulink block, Quadrotor 

Dynamics, as shown in Fig. 6, is used to implement the 

dynamics and kinematics of the quadrotor discussed in 

Section II. The block employs a MATLAB S-function to 

generate a continuous state output, x. 

S-functions (system-functions) provide a powerful 

mechanism for extending the capabilities of the Simulink 

environment. S-functions follow a general form and can 

accommodate continuous, discrete and hybrid systems. 

An algorithm in an S-function is implemented by 

following a set of simple rules and using an S-Function 

block to add it to a Simulink model. The block consists 

of a set of inputs, a set of states and a set of outputs, 

where the outputs are a function of the simulation time, 

the inputs and the states. 

The Quadrotor Dynamic block is connected to a 

Control Mixer block, whose inputs are the three torques 

and the total thrust acting on the airframe. The Control 

Mixer block is used to compute the four rotor speeds, 

which serves as inputs to the Quadrotor Dynamics block. 

These blocks were developed by using Simulink models 

in Corke (2011). 

Simulink Models for the Controllers 

This section discusses various Simulink models 

developed for the different control algorithms discussed 

in section III. 

 
 
Fig. 6. Quadrotor dynamics and control mixer Simulink 

blocks Corke (2011) 

 

Altitude Controller 

The Simulink model shown in Fig. 7 is the altitude 

control algorithm. For a given desired height, z
*
, the 

altitude control loop, based on Equation 26, is used to 

generate the required thrust, T, whiles the torque, ΓB, to 

the airframe is set to zero. 

Yaw Controller 

The Simulink model shown in Fig. 8 is the yaw 

control algorithm. The vehicle must first moved to a 

desired height before yawing, hence the altitude 

controller is combined with the yaw controller, with an 

if-else control blocks to implement the conditional 

statement. Thus, for a desired yaw, yaw*, the altitude 

control loop drives the quadrotor to a desired height, z
*
 

and based on Equation 25,  the yaw control loop is used 

to generate the required yaw torque, 
B

ϕτ , whiles 

keeping the other two torques on the airframe at zero. 

Pitch Controller 

The Simulink model shown in Fig. 9 is the pitch 

control algorithm. The vehicle must first moved to a 

desired height before pitching, hence the altitude 

controller is combined with the pitch controller, with an 

if-else control blocks to implement the conditional 

statement. Thus, for a desired pitch, pitch
*
, the altitude 

control loop drives the quadrotor to a desired height, z
*
 

and based on Equation 23, the pitch control loop is used 

to generate the required pitch torque, 
B

θτ , whiles keeping 

the other two torques on the airframe at zero. 
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Fig. 7. Simulink model for altitude control Corke (2011) 
 

 
 

Fig. 8. Simulink model for yaw control Corke (2011) 
 

 
 

Fig. 9. Simulink model for pitch control Corke (2011) 
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Roll Controller 

The Simulink model shown in Fig. 10 is the roll 

control algorithm. The vehicle must first moved to a 

desired height before rolling, hence the altitude 

controller is combined with the roll controller, with an if-

else control blocks to implement the conditional 

statement. Thus, for a desired roll, roll
*
, the altitude 

control loop drives the quadrotor to a desired height, z
*
 

and based on Equation 24, the roll control loop is used to 

generate the required roll torque, 
B

τ
∅
, whiles keeping 

the other two torques on the airframe at zero. 

Position Controller 

The Simulink model shown in Fig. 11 is the x and y 
directions control algorithms. The vehicle must first 
moved to a desired height before moving to the desired 
position in the xy-plane and the yaw angle, ϕ, is also 
needed, hence this model combines the altitude controller, 
yaw controller and the xy-plane motion controller. 

 

 
 

Fig. 10. Simulink model for roll control Corke (2011) 
 

 
 

Fig. 11. Simulink model for position control Corke (2011) 
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Fig. 12. MATLAB GUI used to implement the various control algorithm simulations 

 
Table 1. Parameters used for the quadrotor 

Parameter Symbol Value Units 

Mass m 1.5000 kg 

Thrust constant a 4.3248e-05 Ns2 

Torque constant b 5.9693e-08 Nms2 

Inertial matrix Ixx, Iyy and Izz 

0.0125 0 0

0 0.0125 0

0 0 0.0287

 
 
 
 
 

 kmg2 

Distance between rotor and center of mass d 0.2319 m 

 

MATLAB GUI for the Simulations 

A screenshot of a robust and interactive MATLAB 
GUI interface developed to implement the various 
control algorithms simulations discussed above is 
shown in Fig. 12. 
The GUI interface has five sections: Initialization 

and information about the quadrotor settings, selecting 
the type of controller and its parameter settings, 
displaying the quadrotor current attitude and position 
values, displaying some performance index values of a 
run simulation and plotting the quadrotor’s response 
and trajectory. 

The GUI interface works by first initializing the 

quadrotor’s parameters and then selecting the type of 

controller and its parameter settings required for the 

simulation. The selected controller is then simulated 

using its parameter settings selected. The quadrotor 

attitude and position real-time state values and 

responses can be displayed and the 3D trajectory of the 

quadrotor can also be visualized. An animated 

quadrotor is graphically designed, which receives the 

data from the simulation and execute the response in 

real time. After the simulation some performance index 

values are displayed. 



Stephen Armah et al. / American Journal of Applied Sciences 2016, 13 (6): 779.793 

DOI: 10.3844/ajassp.2016.779.793 

 

789 

The quadrotor real-time response and trajectory 
plots, shown in the GUI, were achieved by using S-
function block in the Simulink models. The quadrotor 
real-time attitude and position state values, displayed in 

the GUI, were also achieved by using MATLAB 
Output block run-time object and an event-listener 
mechanism add_exec_event_listener command and 
then synchronizing the run-time object with the 
Simulink execution. The state output, x, is the input to 
the two blocks. 
Table 1 gives a summary of the basic physical 

parameters used for the quadrotor Becker et al. (2012). 

Results and Discussion 

Simulation of Individual Controllers Results 

All the time domain Simulink simulations were 

carried out under 10 sec duration for each model (refer 

to the simulation setups in the Fig. 7-11). The 

responses, using the various control algorithms, are 

shown in the Fig. 12-16. The PD-gains in this research 

were obtained by tweaking the various values to obtain 

the satisfactory responses. The various PD-gains, some 

performance indicators. 

 

 
 

Fig. 13. Yaw control: Ramp response 
 

 
 

Fig. 14. Pitch and roll control: Pulse response 
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Fig. 15. Position control trajectory: Step response 

 

 
 

Fig. 16. Position control:  Step response 
 

 
 

Fig. 17. Effect of p-gains on the altitude response 
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Fig. 18. Effect of d-gains on the altitude response 

 

Table 2. Effects of PD gains on the altitude response with a desired height of 4m 

Kp Kd/Kp Maximum overshoot Settling time (s) Rise time (s) Peak value (m) 

-200.0 1.0 0.0000 3.3914 1.8278 3.9999 

-150.0 1.0 0.0724 2.9407 1.7048 4.0029 

-100.0 1.0 2.9775 4.0636 1.5818 4.1191 

-80.00 1.0 6.0702 4.6391 1.5520 4.2428 

-100.0 0.9 5.8473 4.2467 1.4405 4.2339 

-100.0 0.5 27.3765 7.2984 1.0993 5.0951  

 

Even though there were steady-state errors in the various 

values obtained, the results were encouraging. The errors 

in the steady state can be due to using PD-gains which 

were not determined from classical control design 

approach but by tweaking. Another possible cause of 

error in the steady state is in the modeling of the 

dynamics and the kinematics of the quadrotor such as 

unmodeled aerodynamic effects and uncertainties (e.g., 

wind disturbance and saturation). Furthermore, 

according to Brockett’s conditions Brockett (1982), 

feedback control law, which is a continuously 

differentiable, time-invariant, cannot be used to obtain 

error-free stabilization. 

Effect of the PD Gains on the Altitude Response 

Table 2 above and Fig. 17 and 18, shows how changes 

in the values of the PD-gains affect the altitude control 

response during 8 seconds of simulation. Theoretically, 

the values in the table conforms the literature 

http://www.cds.caltech.edu/~murray/courses/cds101/fa0

2/caltech/astrom-ch6.pdf 2015. For example, as the Kp 

increases at constant Kd, the overshoot increases and the 

rise time decreases. Also, as the Kd increases at constant 

Kp, the overshoot decreases and there are minor changes 

in the rise time. 

Conclusion 

This study demonstrated design of feedback 

controllers for position and attitude regulation of 

quadrotor UAVs. Also, MATLAB/Simulink models 

are used to design and validate the control algorithms. 

The simulation results are presented graphically and 

quantitatively. A robust and interactive MATLAB 

GUI interface for implementation of the various 

control algorithms simulation models is developed. 

Even though the final steady-state values obtained 

from the experiments are affected by unexpected 

disturbances, noise and modelling errors, the 

simulation results were encouraging. 

In future, the authors will implement these PD-

feedback controllers developed on the Parrot AR. Drone. 

In fact, an attempt has been made at the implementation, 

but challenges and difficulty were encountered. The 

main difficulty was in using the S-function to implement 

the dynamics and kinematics of quadrotors. The problem 

is in C-code generation for real-time application. 

In order to address this problem, linearized models 

are being developed to represent the dynamics of the 

quadrotor for the different controllers. Another approach 

being study is to use system identification to determine 

the models based on data collected from the Parrot AR. 
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Drone. These approaches will allow the use of a classical 

control design approach to determine robust control laws 

instead of the tweaking approach used in this research to 

determine the PD-gains. 

Performance, in terms of efficiency and accuracy, 

will then be compared of controllers such as pole-

placement, Linear Quadratic Regulator (LQR), Linear 

Quadratic Gaussian (LQG), Model Predictive Controller 

(MPC) and Model Reference Adaptive Control 

(MRAC). In addition, robust control algorithm 

considering time delays will be studied. 
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Nomenclatures 

{V} Vehicle Frame/Coordinate System 

{B} Body Frame/Coordinate System 

{O} or {I} Global Inertia Frame/Coordinate 

System 

A System (State) Matrix 

B Input Matrix 

C Output Matrix 

D Feed forward/Feed through Matrix 

s Laplace Transform Operator 

z Z Trans form Operator 

ℜ Real Plane 

C Complex Plane 

CONT Controllability Matrix 

OBSER Observability Matrix 

t Time 

x State Vector 

y Output Vector 

u Control Input Vector 

e Error 

r Reference Input 

Kp Proportional Gain 

KI Integral Gain 

KD Derivative Gain 

ξ Plant Damping Ratio 

ξf Filter Damping Ratio 

ωn Plant Natural Frequency 

ωf Filter Natural Frequency 

K Control Gains Matrix 

K Real Constant Tuning Parameter 

I Identity Matrix 

I Desired Closed-loop Poles (DCLP) 

β1 Real Part of DCLP 

β2 Imaginary Part of DCLP 

Jc Cost Function 

Jr Rotational Inertia 

J Rotational Inertia Matrix 
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Br Aerodynamic Damping 

Gp Plant Transfer Function 

Gr Plant Transfer Function without Time 

Delay 

Gm Reference Model Transfer Function 

Gmt DC Motor Dynamics Transfer Function 

θ MIT Rule MRAC Updating Parameter 

γ MRAC Tuning Parameter 

Td Time Delay 

∆m Added/Perturbed Mass 

mq Quadrotor’s Total Mass 

mar AR.Drone 2.0 Overall Mass (Indoor) 

me Mass at End of Cross Arm of 

Quadrotor 

mc Mass of Quadrotor Center 

Ts AR.Drone 2.0 System Sampling Time 

dq Distance between Quadrotor’s Rotor 

and Center of Mass 

ωB/ωB/I Quadrotor’s Angular Velocity w.r.t. {B} 
B

V
R  Rotational Matrix from {V} to {B} 

vB Quadrotor’s Linear Velocity w.r.t. {B} 

FB Total Force on Quadrotor w.r.t. {B} 

ΓB Applied Torque on Quadrotor w.r.t. {B} 

hB Angular Momentum on Quadrotor 

w.r.t. {B} 

ωi, i = 1, 2, 3, 4 Quadrotor Rotors Angular Velocity 

Ti, i = 1, 2, 3, 4 Quadrotor Rotors Upward Thrust 

τi,i = 1, 2, 3, 4 Aerodynamic Torque on Quadrotor 

Rotors  

g Gravitational Strength 

(Jxx, Jyy, Jzz) Quadrotor Moments of Inertial About 

the x, y and z axes 

a Thrust Constant 

b Torque Constant 

(x, y) DDWMR Position 

(ρ, α, β) Polar Coordinates 

xg Desired x-value 

yg Desired y-value 

xg Desired Goal State 

xo Initial State 

xf Final State 

 

 

 

 

 

 

 

 

 

 

 

 

ϕg Desired Heading or Yaw or Turn 

ϕobs Obstacle Heading/Yaw/Turn 

∅ Roll 

θ Pitch 

ϕ Heading/Yaw/Turn 

ω Heading/Yaw/Turn Rate 

ωr Right Angular Velocity 

ωl Left Angular Velocity 

kv, kα, kβ Control Gains 

kρ, kh, kd 

R Radius of the DDWMR Wheels 

L Distance the Between Wheels of the 

DDWMR 

ν Linear Velocity 

νo Constant Linear Velocity 

τs Time at Last Switch 

τ(s) Torque Input Signal 

s

dτ  Distance Between Goal and Point at 

Last Switch 

αB Blending Function 

βB Tuning Parameter for the Blending 

Function 

uGTG Go-to-goal Mode 

uAO Obstacle Avoidance Mode 
c

FW
u  Clockwise Follow-wall Mode 
cc

FW
u  Counterclockwise Follow-wall Mode 

∆o Distance Between Robot and Obstacle 
∆x/∆y Change in x/y 
e′ Corrected Error 
Kg Quadrotor DC Motor Dynamics 

Steady-State Gain 
τ Quadrotor DC Motor Dynamics Time 

Constant 
rℜ Real Stability Radius 
∆ Perturbation Matrix 
E and F Scaling Matrices for ∆ 

g
k

∆  Perturbation in Quadrotor DC Motor 

Dynamics Steady-State Gain 

g
τ

∆  Perturbation in Quadrotor DC Motor 

Dynamics Time Constant 


