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Abstract: A new single-step hybrid block method with three off-step points 

for the solution of first order ordinary differential equations is proposed. 

The strategy employed to develop this method is interpolating the power 

series approximate solution at xn and off-step points and collocating the 

derivative of the power at xn+1. The class of linear multistep method derived 

is then simultaneously applied to first order ordinary differential equations 

together with the associated initial conditions. The numerical results 

generated are found to be better when compared with the existing methods 

in terms of error. Besides its excellent performance in term of accuracy, this 

method also possesses good properties of numerical method such as zero-

stable, consistent and convergent. 
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Introduction 

We are interested in finding the numerical solution 

of first order initial value problems of Ordinary 

Differential Equations (ODEs) in the following form: 

 

( ) ( )0 0, , ,y f x y y x y a x b′ = = ≤ ≤  (1) 

 

Several scholars such as Awoyemi et al. (2007), 

Badmus and Mishelia (2011), Sunday et al. (2013) 

developed numerical methods which were 

implemented in predictor-corrector mode for solving 

(1). The implementation of numerical method in 

predictor-corrector approach, however, has some 

setbacks which include lengthy computational time 

due to more function evaluations needed per step and 

computational burden which may affect the accuracy 

of the method in terms of error (James et al., 2012). In 

overcoming the setbacks mentioned above, Sagir 

(2014) developed a three-step block method without 

predictor where three points with a single off-step 

point were considered as interpolation points for 

solving first order ordinary differential equations. The 

numerical results generated when the method was 

applied to first order ordinary differential equations 

are still not encouraging. 

Therefore, in this study a single-step block method 

with three off-step points for solving (1) in order to 

improve the accuracy of the existing methods is 

proposed. This paper is divided into four sections; 

section 1 gives a brief introduction of our work, section 

2 explains the derivation of the method, section 3 

establishes the properties of the developed block method 

which include order, error constants, consistency, zero-

stability and convergence and finally section 4 presents 

the numerical results derived when the method was 

tested on first order initial value problems of ODEs. 

Derivation of the Method 

Let the power series of the form 

 

( ) 1
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i
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ii

x x
y x a

h

+ −

=

− =  
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∑  (2) 

 

be considered as the approximate solution to (1) where 

v represents the number of interpolation points and m is 

the order of ODE. The derivative (2) is given by: 
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Interpolating (1) at 
1 1 3

, 0, , ,
4 2 4

n ix x i+= =  and collocating 

(3) at x = xn+1 produces equations which can be presented 

in the following matrix form: 
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Gaussian elimination method is then applied to 

determine the values of the unknown variables aj, j = 

0(1)4, given as below: 
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Substituting the values of 
s

a′ into (2) to give a 

continuous implicit scheme of the form: 
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Evaluating Equation 5 at the non-interpolating point x 

= xn+1 yields: 
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Equation 5 is then differentiated and evaluated at the 

off-grid points 1 1 3
, , ,

4 2 4
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Combining Equation 6 and 7 give the following 

equations presented in a matrix form as below: 
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where: 
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Multiplying (8) with 
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We will get a block method of the form: 
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which can also be represented as: 
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Properties of the Method 

Based on the definition given by Lambert (1973) 

and Henrici (1962), the order of the developed method 

is [4, 4, 4, 4]
T
 with vector error constant: 

 

( 4) ( 4) ( 4) ( 4)
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The first characteristic polynomial of (8) is given by: 
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which satisfies the zero-stability condition stated by 

Lambert (1973) that is |τj|≤1 and when |τj| = 1, the 

multiplicity must not exceed 1.  
Since the order of method (8) is greater than 1, it is 

therefore consistent. Furthermore, the developed 
method is also convergent because it is zero stable and 
consistent. 

Numerical Examples 

The following problems available in the previous 
literatures were solved in order to compare the 
performance of the new method with existing ones 

 

Problem 1: 1.0,1)0(, ===′ hyxyy  

 Exact solution: 

2

2

x

y e=  

 
The numerical results of our method and the method 

developed by Odekunle et al. (2012) for solving Problem 
1 are tabulated in Table 1 below. 

 

Problem 2: y′ = 0.2y, y(0) = 10000, h = 0.1 

 Exact solution: 

2

21000
x

y e=  

 

The above problem is spatial case of differential 

equation of growth model which describes the growth 

rate of bacteria in a colony every hour by assuming that 

the bacteria grows continuously without any restriction. 

This problem was solved by Sagir (2014) using three-

step hybrid block method of order four. The numerical 

results comparing our method with Sagir (2014) for 

solving Problem 2 are depicted in Table 2 below. 

Table 1. Comparison of the new method with Odekunle et al. (2012) for solving Problem 1 

x Exact solution Computed solution Error in new method Error in Odekunle et al. (2012) 

0.1  1.005012520859401000  1.005012521195772800  3.363718 e−10  2398 e−7 

0.2  1.020201340026755800  1.020201341302355800  1.275600 e−9  1.6913 e−7 

0.3  1.046027859908716900 1.046027862194445400  2.285728 e−9  8.7243 e−7   

0.4  1.083287067674958600  1.083287069062809600  1.387851 e−9  3.0098 e−6   

0.5  1.133148453066826300  1.133148447836481300  5.230345 e−9  1.7466 e−6  

0.6  1.197217363121810200 1.197217339115218500  2.400659 e−8  4.1710 e−6  

0.7  1.277621313204886600  1.277621247849590700  6.535530 e−8  9.6465 e−6  

0.8  1.377127764335957000  1.377127618495140200  1.458408 e−7  6.7989 e−6  

0.9  1.499302500056766800  1.499302208459504200  2.915973 e−7   1.2913 e−5  

1.0  1.648721270700128000 1.648720727033248700  5.436669 e−7   2.6575 e−5  
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Table 2. Comparison of the new method with Sagir (2014) for solving Problem 2 

x Exact solution Computed solution Error in new method Error in Sagir (2014) 

0.1  1020.201340  1020.201340  00000000e+00 00000000e+00 

0.2  1040.810774  1040.810774  00000000e+00 00000000e+00 

0.3  1061.836547  1061.836547  00000000e+00 00000000e+00 

0.4  1083.287068   1083.287068  00000000e+00 00000000e+00 

0.5  1105.170918  1105.170919  1.000000000 e−6  00000000e+00 

0.6  1127.496852  1127.496852  00000000e+00 00000000e+00 

0.7  1150.273799  1150.273710  1.000000000 e−6  1.000000000 e−6 

0.8  1173.510871  1173.510872  1.000000000 e−6  4.800000000 e−5 

0.9  1197.217363 1197.217364  1.000000000 e−6  5.100000000 e−5 

1.0  1221.402758  1221.402759  1.000000000 e−6  6.600000000 e−5 

 

Discussion of the Results 

In Table 1, the results produced from the new method 

for solving Problem 1 have better accuracy when 

compared with the results in Odekunle et al. (2012). It 

can also be seen in Table 2 that the new method is more 

efficient in terms of error than Sagir (2014).  

Conclusion  

A new one-step hybrid block method of order four 

for solving first ODEs has been developed in this 

study. The numerical solutions are produced with less 

computational efforts when compared with non-block 

method. The new method is consistent, zero-stable 

and convergent. In term of accuracy, this method 

claims superiority over the existing methods. Hence, 

the new developed method should be opted to solve 

first order initial value problems of ODEs directly. 
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