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Introduction

Consider high order dynamical system (Duan, 2005;
Dedieu and Tisseur, 2003; Dedieu and Tisseur, 2001) of
the form:

k

d d
Mkﬁv(t)f..+MlEv(t)+M0v(t)=0 (L.1)

where, {M,, M.,...,M;, My} are real symmetric nxn
matrices and M, is positive definite and v(f) is a time-
dependent nx1 vector. Using v(f) = xe in equation (1.1),
where x is a real vector, then:

P(A)x=(A"M+ 2" M+ + AM,+ M, )x=0 (12)

Where matrix polynomial:
P(A)=A"M +2'M,_ +...+ AM, + M, (1.3)

Is very often referred to as A matrix, or matrix
polynomial of degree & (Dedieu and Tisseur, 2003;
Dedieu and Tisseur, 2001; Wang and Zhang, 2013;
2014; Ramadan and El-Sayed, 2010). lambda (A1) is the
characteristic roots of Equation (1.3), i.e., det(P(1)) = 0,
are known as eigenvalues. The vectors y # 0 and x # 0
are corresponding left and right eigenvectors
respectively which satisfy y* P(1) = 0 and P(A)x = 0,
where H is the conjugate transpose. The standard
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requires the knowledge of only a few eigenvalues and with corresponding
left eigenvectors of matrix polynomial. The numerical examples are done
to illustrate the proposed method.

Keywords: Partial Eigenvalues Assignment Problem, Time Delayed, High-
Order, Orthogonality Relations

eigenvalue problem 4Ax = Ax is the special case of (1.2)
for example, the references Wang and Zhang, 2013;
2014; Ramadan and El-Sayed, 2010).

The system modeled by (1.1) can be controlled with
the application of a forcing function Bu(t-t), BeR"™",
(m<n) (B the control matrix) and u(#-r) is a time-
dependent mx1 real vector and 7is a constant time delay.
The matrix B has full column rank, that is, rank(B) = m
in which case (1.1) is replaced by:

k k-1
M, ikv(f)+Mk-1%V(f)

dt dt (14)
+...+ Mlgv(t)+M0v(t) = Bu(t—r)

With the choice of the controlling force:

k-1
u(t-7)=F L v(i-7)
d (1.5)

+...+ﬂil%v(t— T)+ F/v(t-7)

Such that, Fy, F5,...,FreR"”" constant matrices, leads
to the closed loop system:

d* da d
M, Sv(t)+ My Sv(t) 4o+ My v(0) + M y(2)
k-1 .
=B(ET%v(t—r)+...+FkT_l%v(t—T)+Fkrv(t—r))
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Differential Equation (1.6) leads, with the separation
of variables v(r) = xe", to the problem of finding the
eigenvalues of the modified matrix polynomial:

P(A7)=2A"M +...+ M,

1.7
+M,=B(K A7+ + FLA+ F )e ™ (4.7

The partial eigenvalue assignment problem for the
time delayed system (1.6) is to find the control gain
matrices Fy, F5, ...,F; such that:

det(P.(4.7))=0, for i=12,....kn (1.8)

has the desired eigenvalues {u;, o, tims
Am+ls-o-shimy. That it contains m numbers of new
assigned desired eigenvalues {u;, us,...,uny without
affecting the remaining eigenvalues {1,:1,...,Aw} Of
the Equation (1.1). Throughout this paper, notion
(PEAP) is wused instead of partial eigenvalue
assignment problem.

PEAP arises from many practical situations such as
electrical circuit simulation and acoustic system,
vibration analysis of structural mechanical, fluid
mechanics, finite element model updating in
automobile industries and aerospace (Arévalo and
Lotstedt, 1995; De Boor and Kreiss, 1986; Sand, 2002;
Mackey et al., 2006).

PEAP for high-order linear systems without time
delay introduced in many paper (Wang and Zhang, 2014;
Ramadan and El-Sayed, 2010). Prattand and Singh
(2009) were solution PEAP for second order linear
system with known time delay in single-input case. Also
Singh et al. (2014) were solution the same problem but
in Multi-input case and study its stability with known
time delay. Wang and Zhang (2013) were introduced the
direct method of PEAP for high order systems in single
input case using receptance method with known time
delay. In this paper, we proposed a method to solve
PEAP for high order control systems in single input case
and multi-input case with known time delay, using
orthogonality relations between the eigenvectors of
matrix polynomial. This solution requires only a partial
knowledge of the eigenvalue and the corresponding
eigenvector of the matrix polynomial which allows the
partial assignment of desired eigenvalues with no
spillover. The numerical examples illustrate that the
proposed method.

Orthogonality Relations between the

Eigenvectors of Matrix Polynomial
In this section, we introduce some Orthogonality

relations which are play role important for solving our
problem.

1007

Theorem 1: (Sarkissian, 2001) Orthogonality of the
Eigenvectors of a Matrix A

Let Ay, A3,...,4, be the eigenvalues of a matrix 4 eC™™"
and let X and Y be respectively the right and the left
eigenvector matrices of A. Assume that {1,
Ao e ishiny Aty Amizs.osdny = @ and m<n. Partition
f(:(f(l,f(z) and?=(ﬁ,fz),
B= (o) s = 3,) and Y, = (50 5,).

Then:

where X, =(%,...%,),

7%, =0 @.1)

And:

YHAX, =0 2.2)
If, in addition, 4 is real symmetric, then:

YAX, =0and V" AX, =0 (2.3)

The following theorems establish the orthogonality
relations between the eigenvectors for the matrix
polynomial using its connection with the standard
eigenvalues problem.

Theorem 2 (Ramadan and El-Sayed, 2010) A scalar
AeC is an eigenvalue of the matrix polynomial

PQY= M M4+ AM M, with the
corresponding right eigenvector x and the left eigenvector
yif and only if A is an eigenvalue of the knxkn matrix:

0 1 0 0
0 0 1 0
A= : : : (2.4)
0 0 0 1
MM =-MM MM, MM

With the corresponding right eigenvector x and left
eigenvector y such that:

x
Ax
x=| A’x |and
)uk.'lx
(MY + Z2ME 4 M)y 2.5
(A’“'ZM[’+)L"‘3M£1+~-+MZH)y
y= (AHM[I + AM +~-+M3H)y
(M)y
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Theorem 3 (Ramadan and El-Sayed, 2010)
(Orthogonality of the Eigenvectors of the Matrix
Polynomial)

Let A4y, 4s,...,44n be the eigenvalues of the knxkn
matrix polynomial P(1) = 2 MAFY My MM,
and let X and Y be respectively the right and left
eigenvector matrices.

Assume that {1,....4,,}{Apr1s...., iy = @. Partition
X= (Xla Xz), Y= (Yla Yz) and 4 = diag(/ll, /12) where X] =
(xl,...,x,,,), XZ = (xmﬂawkan)a Yl = (V1,~-~,J’m) and YZ =
Wmitse- Vi) With Ay = diag(hy,.....,) and A, =
diag(Apits- - Pin)-

Then:

k

1 i
Z[Z[AfYIHMk-,H]]XZAé' ~¥"M,X, =0 (2.6)

i=1 | =1

And:

i{i[Af 'IYI"MW]}X A =0 2.7

i=l| j=1

PEAP for High Order Control Systems in a
Time Delayed System in Multi-Input Case

Write Equation (1.2) in the following form:

j'lkjuk + irk_le—l
+o A+ AM + M,

s

jx1=0i=1,2,...,kn 3.1

Or in the matrix form:
M XAS+ M, XA+ +MX =0 (3.2)

where, X = (x1, %2...xX,)€C"™ and A = diag(l,,
Do M) €C ¥ where A, are all distinct. Where Ay, ..., A4,
are the eigenvalues of matrix polynomial:

P(A)=AM, + A7 M+ o+ M, + M, (3.3)

Let us partition the nxkn right eigenvector matrix X,
the knxn left eigenvector matrix Y7 and knxkn
eigenvalues matrix A as follows:

H
X =(X.X,), YH=[§H)and A =diag(A,,\,) 34
2
Where, Xl = (xl,...,xm) X2 = (xm+1,...,xkn), Yl = (yl,...,ym)
and Y2 = (Vm+1,~-~,)’kn) with /11 = diag(il,...,im) and /12 =
diag(Qmsts- - - n)-
Given m complex numbers py, iy,...,1, closed under
complex conjugation, m<n and a matrix BeR™™ with

known time delay 7, we are required to find Fi,
F,...,FreR"™" such that the modified matrix polynomial:

P(A7)=2"M +...+ M,
) 3.5
+M,=B(K A7+ + LA+ F)e ™

has spectrum {uy, to,-.-stlms Amrts---Ainy- PEAP for
high-order linear systems in Multi-input case with time
delay in which we use the matrices Fy, F»,...,F,eR"" to

replace the eigenvalues {l/}il of the matrix polynomial

PQ) = 2 Met2"! Miy++AM+M, by {g,}" . while

J=1
leaving the other eigenvalues unchanged. Next, we
introduce the following theorem for solving PEAP of
high order linear systems with time delay.

Theorem 4

Let the feedback matrices {F}

i=1

and F}, be defined by:

F=l ML YA o,
i ;[ k-i+j 11 1:|(/7 (3.6)

F,=-M Yo", i=12...k-1peC™"
Then for any choice of ¢ we have:

MX,AS +. + M X,

3.7
~(BR' X, A+ + BE X, )e ™ =0 37

In words, this theorem assures us that any choice of ¢

with the feedback matrices {F, }; as in (3.6) guarantees

that the last kn-m eigenpairs (A4,, X;) of the matrix
polynomial P(1) are also eigenpairs of the modified
matrix polynomial P, (1, 7).

Proof

Our goal is to prove that:

MX,AS +. + M X,
T k-1 T —AyT (3'8)
—(BR' X, A+ + BE X, )e ™ =0

Expanding the left hand side of (3.8) by substituting
(3.6) in (3.8), we obtain:

M X NS+ o+ M X,
k=1 i

-B (pzz[Al]YlHMk"” :| -Ay7

i=1 j=1 e (3.9)
XA — oYM X,

k=1 i

ZZ[A{ YlHMk*H/ :| e—AZr

=-Bp| ‘T
XzAr - YlHMoxz
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Since (X3, Ay) is an eigenpair of the open loop pencil
(3.2) we have:

M XA+ M, XA+ 4 M X, =0 (3.10)

And furthermore:
k-1 i
Z|:Z|:AleHMkz+;:|:|XzA§_I _YlHMon =0 (3.11)
i=l| j=1

From theorem 3. Thus:

MX, A+ +MX

k<2422 0“2 (312)

—(BR X,AS 4.+ BF X, )e ™™ =0

The theorem is then proved.
In order to use theorem 4 to solve PEAP, we need to

choose ¢ which will change eigenvalues {ﬂvj}:; of the

matrix polynomial P(1) to { ’“-7}11 in P, (4, 7), if that is

possible. If there is such the matrix ¢', then there exist

an eigenvector matrix ZeC™™ such that Z = (zy, z,...,z,,),
z#0, j = 1,2,...,m and matrix D = diag(u, tts,....um) and
e =diag(e™",e™",....e ") which are such that:

MZD + ...+ M, Z ~(BF'ZD"" + ...+ BF/ Z)e™™ =0 (3.13)
Substituting {F,}f'=l form (3.6) in (3.13) and after
rearranging, we obtain:

M ZDF + M, ,ZD" " +...+ M,Z

k=1 i

AYIM, ., 3.14
= Bp ;;[ k- l:| e T =B¢WH ( )
ZD —Y" Mz
Then:
M, ZDF + M, ,ZD"" +...+ M,Z = BT (3.15)

k-1 i

where, W" =(ZZ[A{Yl”Mk_Hj:|ZD"’—YIHMOZJeD and
i=1 j=1

We" = ' is matrix that will depend on the scaling
chosen for the eigenvectors in Z. To obtain Z, we
choosing the matrix 7/~ in the following form I" = (y,,
¥2,.-.,Ym)- Then the equation (3.15) becomes:

M ZD" + M, \ZD"" + .. + M\ Z = B($1. 735

) (3.16)

We can solve for each of the eigenvectors z; using the
equations in such a way that x4, =z implies y, =7, for

i=1,2,...,m and solve for zy,...,z,,:

1009

(Mpdy + M ™+ M)z, = By, j=1.2...m  (3.17)

So, we computed the eigenvectors Z and hence we
computed the matrix W from:

(3.18)

) (Ei[Af KM, |20 XM,z }D

i=1 j=1
We solve the mxm square linear system for ¢:

Wo" =(htases?) (3.19)

Finally, determine the control gain matrices F;, i =
1,2,....k are obtained from (3.6).

PEAP for High Order Control Systems in a
Time Delayed System in Single-Input Case

For single-input control application, the system (1.1)
is modified by applying a controlling force bu(z-t) as:

dt =
M, —v(t)+ M,  ——v(t
E v(t)+ M, 2 v(t) @

o+ Mlgv(t)+ M,v(t) = bu(t —7)
t

where, beR™", (b is the control vector) and control force
u(t-1), is defined as:

u(t=7)= 1" 1-7)

)+ flv(t-7)

dkl

(4.2)
o+ ST —v(t-
ot feay

Such that, £, f£,...
system:

Ji vectors, leads to the closed loop

dk O+ M d L () ..+ M, —v(t)+M 0
di' (4.3)

k-1

dll T)+fkv(t— )

L= (e PO (B

where, 7 is the known time delay with the separation of
variables v(f) = xe”, to the problem of finding the
eigenvalues of the modified matrix polynomial:

P(A7)=A"M, +...+ AM,

T k-1 T T\ —ir (4’4)
M, =b(fT A+ A S e

PEAP with the time delayed system (4.4) is to find
the control vectors fi, f,....f; such that det(P,. (1;,)) = 0
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for i = 1,2,...,kn, has the desired eigenvalues {u,
U2y e sty Ametse--my- That it contains m numbers of
newly assign need desired e igenvalues uy, po,....tn}
without affecting the remaining eigenvalues {4,,11,...,44}
of the open loop system (1.1).

Theorem 5

Let the feedback vectors {7, }: and f; be defined by:

f=2 ML RN S =M o
i=12.,k-1. peC"™"

(4.5)

Then for any choice of ¢ the following relation holds:

M XA +.. .+ MX,

4.6
—(BA XA+ b )e M =0 “46)
Proof
Our goal is to prove that:
M XA ++. + M X
k<t 2 0“*2 (47)

—(B XA b X )e T =0

Expanding the left hand side of (4.7) by substituting
(4.5) in (4.7), we obtain:

k=1 i

, @ ANYM, .
M X,AS +...+ M X, —b ZI;[ (M) e
XA — oY M X, (4.8)

=—b¢[§2[Am”Mk,+,]X2A§" —YIHMOXZJe'AZ’

i=l j=1

Since (X5, 4,) is an eigenpair of the open loop pencil
we have:

MXAS+ M, XA + 4+ M X, =0 4.9

And furthermore:

k-1 i
Z{Z[AM’MM ]]XZA?' 1M, X, =0 (4.10)
i=l| j=1
From theorem 3. Thus:
MX A+ +MX
k 24%2 0“2 (41 1)

—(BA XA+ b )e M =0

The theorem is then proved.

From theorem 5, we need to choose ¢ which will
change eigenvalues {ﬂvj}:; of the matrix polynomial P(1)

to {y/} in P, (4,7), if that is possible. If there is such

the matrix ¢, then there exist an eigenvector matrix
ZeC"" such that Z= (zy, z,,...,2,), z#0,j = 1,2,...,m and
matrix D = diag(u,, Uy sflm) and
e =diag(e™",e™",....e*"") which are such that:

m
J=1

MZD +...+ M Z—(bf ZD* ...+ bf Z)e ™ =0 (4.12)

Substituting {£,}" ~form (4.5) in (4.12) and after
rearranging, we obtain:

M ZD" +...+ M, Z

k=1 i
ANY'™M, . 4.13
b zz[ M — (4.13)
ZD" -Y"M 7
Then:
M ZD" + M, \ZD"' +...+ M, Z =bC (4.14)

k-1 i
where, W/ = (ZZ[A{K”Mk_,+] zpt - YIHMOZJeDT and
i=1 j=1

We" = " is matrix that will depend on the scaling
chosen for the eigenvectors in Z. To obtain Z, we
choosing the vector C in the following C = (1,1,...,1).

Then the equation (4.14) becomes:

MZD" + M, \ZD"™ +...+ M,Z =b(L1,...,1) (4.15)
We can solve for each of the eigenvectors z;:
(Mystf + M g™+ 4 M)z, =b.j=1.2.....m (4.16)

So, we computed the eigenvectors Z and hence we
computed the matrix W from:

k-1 i
" =(ZZ[Afﬂ”Mk-y+f]ZDk’ —Y{’MOZ}DT 4.17)

i=1 j=1
We solve the mx1 linear system for ¢:
W' =1,....1)" (4.18)

Finally, determine the control vectors f;, i = 1,2,....k
are obtained from (4.5).
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Numerical Examples
Example (1) (Multi-Input Case)

Let the randomly matrices M, M,, M| and M, (size 4)
as follows:

[0.9501
0.2311
0.6068
0.4860

0.9218]
0.7382
0.1763
0.4057 |

0.8913
0.7621
0.4565
0.0185

0.8214
0.4447
0.6154
0.7919

0.4966 ]
0.8998
0.8216
0.6449 |

[0.3046
0.1897
0.1934

0.6822

0.3028
0.5417
0.1509
0.6979

0.3784
0.8600
0.8537
0.5936

0.8318]
0.5028
0.7095
0.4289 |

[0.4451
0.9318
0.4660
10.4186

0.8462
0.5252
0.2026
0.6721

0.8381
0.0196
0.6813
0.3795

0.2722]
0.1988
0.0153
0.7468 |

[0.9355
0.9169
0.4103
10.8936

0.0579
0.3529
0.8132
0.0099

0.1389
0.2028
0.1987
0.6038

And a randomly matrix B (the control matrix), is:

8.1797¢ - 001 8.1797¢ - 001
3.4197¢-001 2.8973¢ - 001
" [3.4119¢-001 5.3408¢—001
7.2711e =001 3.0929— 001

And 1 0.1 eigenvalues of P(1)
M2+ My >+ MA+M, are: 1, = 1.1687+0.8481i, 15,4 =
0.0375+£0.91014, 455 = -0.2044+0.5375i, A, = 0.1275, g
= 06132, 19 = 09085, ),10 = -09321, )“11 = -16155, 112
=-2.1822.

Now, we reassign the first two m = 2 eigenvalues 4, ,
=1.1687+0.8481i to the conjugate pair p;, = -1+i.

From  theorem 3, we  obtain A,
diag(1.1687+0.8481i, 1.1687-0.8481):

—0.1014+0.6844; —0.1014—0.6844i

u | 0.0808-0.3962i  0.0808+0.3962i
"1 -0.6505-0.3211i  —0.6505+0.3211i
0.7606-0.0701;  0.7606+0.0701;

And D = diag(-1+i,-1-i). By following the procedure
in the section 3 and assume that:

1011

0.83850-0.37041;

0.83850+0.37041; 0.56807 + 0.70274i

F=(wz)=[

0.56807 — 0.7027411

We compute:

0.0350+0.1648i

- {—0.0791 +0.3293i

—0.0791-10.3293i
0.0350—-0.1648i

And:

[1.0117—1.78741‘

3.2719-1.4419i
1.0117 +1.7874i

3.2719+1.4419i

From which we compute the feedback matrices, F,
F, and F3; in view of (3.6):

~1.8746
| -0.7359

"1 -0.8857
-1.5998

-3.4758
-3.0500
—0.3800
—-1.4270

>

—-2.9836
1.3408
0.9684

-1.2031

[-1.8799
-0.7359

0.6590
| -0.5921

And

-2.3275]
2.2204
—-2.4381
-3.4316 |

[—0.4984
-0.2848
-0.9992

| -0.9263

Once the control gain matrices are obtained, by
computing:

M+ M, + AM, +M, - B
det(P.(4.7))=det| =~ N
(RA+F 4+ F e
Fori=1,2,...,12. Where 4, {uy, s, A3, A4...,A12}, it is
verified that |det(P. (4, 7))|<107"? validating the desired
partial eigenvalue assignment.

Example (2) (Single-Input Case)

Let the randomly matrices Ms, M,, M} and M, (size 4) as
in example 1 and a randomly vector b (the control vector):

0.8180

b=10.6602 |and 7=0.1
0.3420
0.2897
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Eigenvalues of P(1) = M3+ MoA*+MA+M, are A=
1.1687+0.8481i, 34 0.0375£0.9101i,  As6=-
0.2044+0.5375i, 2, = 0.1275, A3 = 0.6132, 1o = 0.9085,
A0 =-0.9321, 2y, =-1.6155, 1, = -2.1822.

Now, we reassign the first two m = 2 eigenvalues 4,
=1.1687+0.8481i to the conjugate pair u;, = -1+i.

From  theorem 3, we  obtain A,
diag(1.1687+0.84817, 1.1687-0.8481):

—0.1014 - 0.6844i
0.0808 +0.3962i
—0.6505+0.3211;
0.7606 + 0.0701;

~0.1014 + 0.6844i
.| 0.0808-0.3962i
"] 20.6505-0.3211i

0.7606—0.0701i

And D = diag(-1+i,-1-i). By the procedure in the
section 4 we compute:

[0.0198-0.0937i  0.0887 +0.0889i
- {0.0887 ~0.0889; 0.0198+ 0.09371}
[10.4513-0.7334i
7= {10.45 13+ 0.73341}

We compute the feedback vectors, f, /> and f; in view
of (4.5):

-7.9192 -5.7201 —8.3155
fi1=1-10.5668 |, f,=| 1.5189 |and f;=| 10.9586
1.8435 1.6624 —6.8112
0.0530 —2.9669 —11.4977

Once the control gain vectors are obtained, by
computing:

M+ M, + AM, + M, —b
det(P.(4.7))=det| "~
(K2 + A+ )e
Fori= 1,2,. . ,12 Where /I,E {,U], U, /13, /14.. .,}\.12}, it is
verified that |det(P, (4, 7))|<10™"* validating the desired
partial eigenvalue assignment.

Conclusion

We derived a solution to PEAP for high-order linear
systems (1.4) in both multi-input and single-input case
by using orthogonality relations between eigenvectors
for matrix polynomial P(1). The approach needs the
knowledge of only a few eigenvalues and with
corresponding left eigenvectors of matrix polynomial
P(2) without turning high order systems into first order
form. When 7 = 0 is a special case of our results see the
reference (Ramadan and El-Sayed, 2010).
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