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Abstract: The present paper proposes a novel economic-statistical design 
procedure of a dynamic c control chart for the Statistical Process Control 
(SPC) of the manufacturing process of semiconductor devices. Particularly, 
a non-linear constrained mathematical programming model is formulated 
and solved by means of the ε-constraint method. A numerical application is 
developed in order to describe the Pareto frontier, that is the set of optimal 
c charts and the related practical considerations are given. The obtained 
results highlight how the performance of the developed dynamic c chart 
overcome that of the related static one, thus demonstrating the effectiveness 
of the proposed procedure. 
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Introduction 

The quality control of a manufacturing process 

represents a crucial and critical issue in every modern 

manufacturing context. Statistical Process Control (SPC) 

and Process Capability Analysis (PCA) applications 

and procedures are widely considered to perform 

quality control of a manufacturing process (Lupo, 

2015a). These strategies appear to be important in the 

globalized business environment (Di Trapani et al., 

2014; Sgroi et al., 2014a; 2014b; Lupo, 2015b). 
Referring to SPC operations, control charts represent 

the main tool to analyze the inherent variability of a 
process output and to achieve and maintain the in-control 
process state (Woodall and Montgomery, 2014). Many 
charts schemes are available with reference to 
peculiarities of the under control process output 
(Montgomery, 2013). For example, considering the 
manufacturing process of semiconductor devices, the 
SPC operations mainly concern the evaluation of not-
functioning devices in a production run (Qin et al., 2006; 
Lee et al., 2006) and, in such a condition, the control 
chart for non-conformities numbers in inspection units, 
also called c chart, is typically considered. 

In the present paper, a novel multi-objective design 
procedure for an enhanced scheme of the c chart is 
developed. In particular, a dynamic c chart is considered, 

i.e., a chart scheme whose parameters can be changed 
during SPC operations to adapt chart characteristics to 
different process situations, in order to improve the chart 
effectiveness (Zimmer et al., 2000; Inghilleri et al., 
2015). In detail, the developed design procedure takes 
into account two objectives to be optimized: 
 
• The statistical one, to indirectly optimize the 

immeasurable or even hard to evaluate quality cost 
part, which is strongly related to the statistical 
performance of the employed chart (Lupo, 2014) 

• The economic one, to also take care of the 
measurable quality cost portion 

 
More in detail, the considered goal is to determine 

the parameters of a dynamic c chart in order to minimize 
both the hourly total quality costs (economic objective) 
and the out-of-control average run length of the chart 
(statistical objective), i.e., the expected number of points 
required by the chart to indicate an out-of-control state of 
the process. A non-linear constrained mathematical model 
is formulated to solve the treated multi-objective problem 
whereas the optimal chart configurations, that is the Pareto 
frontier, are obtained by means of the ε-constraint method. 
Finally, the effectiveness of the proposed procedure is 
shown in a numerical application as regards to SPC 
operations related to a manufacturing process of 
semiconductor devices. 
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The reminder of the paper is organized as follows: The 
theoretical aspects of the treated problem are presented first, 
followed with the description on the model to evaluate the 
economic performance of control charts; the multi-objective 
mathematical model is formulated next. Meanwhile, the 
application of the proposed procedure is presented in detail. 
Hence, conclusion of this study is provided as well. 

Fundamental Definitions 

A dynamic c chart to monitor the non-conformities 
number x of a manufacturing process output is 
considered. In detail, in such a type of chart the zone 
within the control limits [–k, k] is divided into three 
strips. Two zones are defined: The central zone, [–w, w] 
and the warning zones, [–k, –w) U (w, k] (Fig. 1). If the 
point representative of the tth sample statistic c is plotted 
within the central zone, then the next one will have a 
sample size of n1 and will be taken h1 time unit after the 
t
th one. On the contrary, if the point representative of the 

t
th sample c is plotted within the warning zone, then the 

next one will have a sample size of n2>n1 and will be 
taken h2<h1 time unit after the tth one. Finally, if the point 
representative of the tth sample is plotted outside of the 
control limits, then the out-of-control signal has to be 
considered as a false alarm or as a consequence of the 
occurrence of an out-of-control cause. 

As well known, the under control non-conformities 
number x follows the Poisson probability distribution 
with parameter 0c > , which represents its mean and 
variance. However, when such parameter exceeds 10, the 
normal distribution ( , )N c c  can be considered as a 
satisfactory approximation of the Poisson distribution 
with parameter c . Therefore, in such a condition, the c 
chart can be plotted considering the standard normal 
distribution Z ~ (0,1)N  and, in particular, the following 
sample statistic can be considered: 

( )
i

i

x c
Z

c
n

−
=  (1) 

 

In which, xi is the observed average non-conformities 

number in the sample i composed by n inspection units. 

Finally, the process in-control time is assumed to be 

exponentially distributed with mean 1/λ and the of out-

of-control condition occurrence determines an 

instantaneous and persistent shift magnitude δ in the 

process mean c . 

Cost Model 

The total quality costs CT arising from the 

employment of a control chart can be expressed as: 
 

( )T LR QC C C δ= +  (2) 

 

where, CLR and CQ(δ) are the hourly labor resource and 

quality control costs over a system functioning cycle, 

respectively. In the next section, the system functioning 

cycle is defined and all the durations of its periods are 

evaluated, whereas computations of CLR and CQ costs are 

formulated next. 

System Functioning Cycle 

The process functioning cycle is supposed to be 

constituted by the following fundamental periods 

(Duncan, 1956): 

 

• The in-control period Pin 

• The out-of-control period Pout 

• The time T1 required to detect the assignable cause 
and the time T2 to restore the system 

 

 
 

Fig. 1. Dynamic c chart with two zones 
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The expected length of a system functioning cycle 
T(δ) represents the period between two successive 
starting of the manufacturing process, after detecting 
the out-of-control assignable cause and solving its 
related problems. 

The in-control period length Pin is given by: 
 

( )1 0

0

11
in

d s T
P

ARLλ

− ⋅ ⋅
= +  (3) 

 
where, λ is the failure rate of the manufacturing 
system, while the second term takes into account the 
false alarms effects over the in-control period. Let d1 

be a binary variable that takes 1 if the production 
continues during assignable cause searches and 0 
otherwise, T0 the expected search time associated to a 
false alarm of the chart, ARL0 the in control average 
run length, i.e., the expected number of points plotted 
on the chart before a point indicates a false out-of-
control condition and s the expected number of 
samples taken during the in-control period. 

To the contrary, the out-of-control period has a time 
duration Pout given by the following equation: 
 

( )( ) ( ) ( ) ( )
1out

IN

E n
P E h E h ARL

r

δ
δ δ δζ= − + ⋅ − +  (4) 

 
where, Eδ(h) is the out-of-control expected value of 
sampling interval, ARLδ is the out-of-control average run 
length of the chart and the last term represents the time 
to inspect the sample providing the out-of-control signal, 
i.e., the last sample in the system functioning cycle. 
Eδ(n) is the expected value of the sample size while the 
process is out-of-control and rIN the sample inspection 
rate. Thus, according to Equations 3 and 4, the expected 
length of the system functioning cycle T(δ) assumes the 
following expression: 
 

( ) ( ) ( )1 0

1 2

0

11

IN

d s T E n
T ATS T T

ARL r

δ
δδ

λ

− ⋅ ⋅
= + + + + +  (5) 

 

The functions of s, ARL0, ARLδ, ATSδ, Eδ(n), E0(h) 
and Eδ(h) are given with more details in Lupo (2014). 

Labor Resources Cost CLR 

For the adaptive aforementioned policy, the needed 
labor resources capacity can vary at two levels, LR1 and 
LR2, according to the chart parameters stated at each 
sampling epoch. In particular, let i be the zone of the 
control chart which the point representative of the (t-1)th 
sample has been plotted in under the assumption that the 
entire sampling interval hi is used to inspect the sample 
of size ni. The amount of labor resources needed to 
inspect the next tth sample can be obtained by: 

 1,2i
i

i IN

n
LR for i

h r
=

⋅
=  (6) 

 

Therefore, the expected amount of Labor Resources 

E(LR) can be evaluated as the weighted sum of LR1 and 

LR2 by the related in-control probabilities that a point is 

plotted on the chart within the zone 1 or 2 (Lupo, 

2015c). Consequently, the expected labor resources cost 

CLR can be computed by the following Equation 7: 
 

( )LR LRC E LR c= ⋅  (7) 

 
Being cLR the hourly labor resources cost. 

Quality Control Costs CQ(δ) 

The hourly quality control cost related to the out-of-
control shift δ, CQ(δ), can be obtained by dividing costs 
arising from the quality control in a system functioning 
cycle Cδ by the system cycle time T(δ), that is: 
 

( )
( )Q

C
C

T

δδ
δ

=  (8) 

 
The costs Cδ can be computed by means of the 

following Equation 9: 
 

( ) ( )1 2 3 4C C C C Cδ δ δ= + + +  (9) 

 
Where: 
C1 and C2(δ) = The costs arising from the non-

conforming products manufactured 
during the system in-control and out-of-
control periods, respectively 

C3 = The cost due to the false alarms, the 
detection and the removing of out-of 
control causes 

C4(δ) = The cost arising from the sampling 
activities required by the control chart 

 
The costs C1 and C2(δ) represent the economic loss 

due to the deviation of the production output from its 
target value T. As suggested by Wu et al. (2004), such an 
economic loss can be effectively estimated by the 
quadratic representation of the quality loss function via 
the following relationships: 
 

( ) ( )2

1 in PR nc
T

C P r c x T f x dx
+∞

= −⋅ ⋅ ∫  (10) 

 

( ) ( ) ( )2

2 out PR nc
T

C P r c x T f x dxδδ
+∞

⋅ ⋅= −∫  (11) 

 

In which f(x) and fδ(x) are the probability density 

functions of normal distributions ( , )N c c  and N(cδ, cδ) 
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when the process is in-control and out-of-control 
respectively. The term rPR is the production rate (units/h) 
and cnc is a constant depending on the external cost 
associated with the production of non-conforming parts. 

The cost C3 in Equation 9 is given by the following 
Equation 12: 
 

3

0

s Y
C W

ARL

⋅
= +  (12) 

 
In which Y and W are the costs associated with the 

false alarms of the chart and the detection and the 
removal of out-of-control causes, respectively. 

Lastly, the sampling cost C4(δ) is given by: 
 

( ) ( )( ) ( )( )4 0 s'C a b E n s a b E nδδ = + ⋅ ⋅ + + ⋅ ⋅  (13) 

 
where, a and b are the sampling cost components, E0 (n) 
is the expected value of the sample size while the 
process is in-control and s and s’ are the expected 
number of samples taken during the system in-control 
and out-of-control periods, respectively. The formulation 
of s’ and E0 (n) are detailed in Lupo (2014). 

Multi-Objective Problem Formulation 

Aiming at optimizing the dynamic c chart 
parameters, the following mixed integer non-linear 
constrained mathematical model is formulated: 
 

( )1 2 1 2,min , , , ,TC n n h h w k  (14) 

 

( )1 2 1 2,min , , , ,ARL n n h h w kδ  (15) 

 
Subjected to the following constraints: 

 

0ARL L≥  (16) 

 

min 1 2 maxLR LR LR LR≤ ≤ ≤  (17) 

 

min 1 2 maxn n n n≤ < ≤  (18) 

 

min 2 1 maxh h h h≤ < ≤  (19) 

 

min maxk w k k≤ < ≤  (20) 

 
In detail: 

 

• (16) ensures a minimum required in-control average 
run length of the chart 

• (17) implies that a minimum part of the available 
labor resource should be employed to perform the 
SPC and, at the same time, that the labor resource 
does not exceed the available resource capacity 

• (18)-(20) assure the adaptive capability of the 
dynamic c chart and limit the sampling effort 

 
The considered objective functions (14) and (15) 

contrast one each other so that it is not possible to find 
out a single optimal solution corresponding to the best 
result for both the considered objectives. Thus, in 
Multi-Objective Optimization Problems (MOOPs), as 
that one considered here, the concept of solutions 
dominance has to be applied. More in detail, a generic 
solution X1 of a MOOP dominates the generic solution 
X2 if X1 is non-worse than X2 for each objective and X1 
is strictly better than X2 for at least one objective 
(Erfani and Utyuzhnikov, 2011). 

In the literature, various resolution methods have 
been developed to point out optimal solutions of a 
MOOP (Certa et al., 2014). The simplest and probably 
the most widely used approach to solve a MOOP is the 
ε-constraint method (Marler and Arora, 2004). The latter 
consists in reformulating the considered MOOP by 
taking into account only one of its objectives and 
restricting the remaining ones within user-chosen values 
of the parameter ε. By applying this resolution method, the 
MOOP is thus reduced to a single-objective optimization 
problem and the set of non-dominated solutions can be 
obtained in more than one optimization steps. Particularly, 
in order to describe the Pareto frontier for the MOOP here 
considered the Lexicographic Goal Programming (LGP) 
method (Deb, 2001) is initially used to find out the 
extreme Pareto frontier solutions. For example, these 
sequential steps allow to find out the extreme solution 
(A) of the minimum total quality costs (Fig. 2): 
 

• Minimizing CT function (Equation 14) as a single 
objective optimization problem obtaining CT,min 

• Minimizing ARLδ function (Equation 15), by 
imposing that CT has to take a value not greater than 
CT,min, obtaining ARLδ,max 

 
This procedure is analogously applied changing the 

objectives hierarchy to find out the other two bounds 
(ARLδ,min, CT,max) of the extreme solution (B). 

Once the extreme points of the Pareto frontier are 
determined, the ε-constraint method has to be recursively 
applied. In the first step, the CT function is minimized 
and the ARLδ is forced to take a value smaller than the 
ARLδ,max previously obtained. In this way, the optimal 
solution (1) (ARLδ,1; CT,1) belonging to the Pareto 
frontier can be found. In the next step, such a procedure 
is repeated minimizing the CT function and imposing that 
the ARLδ function has to take a value smaller to that one 
corresponding to the solution previously found. The 
procedure is repeated until the other Pareto frontier 
extreme (B) is obtained. In such way, the ε-constraint 
method ensures the determination of the whole Pareto 
frontier (Certa et al., 2011; Lupo, 2015d). 
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Fig. 2. ε-constraint multi-step optimization procedure 
 

 
 

Fig. 3. Optimal Pareto frontiers of dynamic and static c chart schemes (ARL0 = 600; δ = 1) 

 

Application: Control Quality of 

Manufacturing Process of Semiconductor 

Devices 

The manufacturing process of semiconductor 

devices, such as diodes, transistors, integrated circuits, 

microprocessors and different kind memories (RAM and 

ROM), follows a multi-step sequence of photo 

lithographic and chemical processing steps during which 

electronic circuits are gradually created on a wafer made 

of pure semiconducting material. Normally, the 

fundamental process parameters are monitored during 

manufacturing operations to promptly diagnose incipient 

process faults or malfunctions and SPC operations are 

performed on the process output by monitoring the non-

conformities number in the whole production outcome or 

in its samples. Such an activity, which is considered a 

significant overall measure of manufacturing process 

effectiveness, is commonly performed by means of the 

classical static c control chart (Cubberly and Bakerjian, 

1989; Bhatt, 2000; May and Spanos, 2006). 
In this section, the multi-objective design procedure 

previously developed is adopted to point out the optimal 
configurations of the dynamic c chart. In particular, a 
firm working in the memories manufacturing field for 
Solid State Devices (SSD) in herein considered. Table 1 
reports the related operating and costs parameters. 

The non-linear Generalized Reduced Gradient 
Algorithm (GRG) implemented by the Microsoft Excel® 

solver has been used to solve the multi-objective 
optimization problem. By minimizing both objective 
functions, namely the total quality costs CT (Equation 14) 
and the expected out-of-control average run length ARLδ 
(Equation 15), the chart parameters have been obtained.  

Table 2 the Pareto frontier compared with the one 
related to the typical static scheme of the c chart is 
shown in Fig. 3. 
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Table 1. Numerical application data 

a ($) 0 T0 (h) 0.083 
b ($/measure) 0.001 T1 (h) 0.083 
cnc ($/non-conforming part) 20 T2 (h) 0.750 
cLR ($/h) 10 d1 1.000 
rPR (units/h) 100 d2 0.000 
rIN (measures/h) 5 Y ($) 2.000 
λ (failure/h) 0.05 W ($) 700.000 
ARL0 600   

c  10 δ 1.000 

Bounds of the design variable 
nmin; nmax 1; 50 
hmin; hmax(h) 0.1; 50 
wmin; wmax 1; 5 
Kmin w + 0.2 
LRmin; LRmax(Resource number) 0.01; 3 

 
Table 2. Optimal dynamic c chart configurations (ARL0 = 

600; δ = 1) 

 Chart parameter value 
Optimal ------------------------------------------------------------- 
solution n1 n2 h1 h2 w k 

1 1 8 0.32 0.32 1.79 3.14 

2 1 9 0.36 0.36 1.70 3.14 

3 1 11 0.44 0.44 1.69 3.14 

4 1 12 0.48 0.48 1.56 3.14 

5 1 14 0.56 0.56 1.46 3.14 

6 6 6 1.24 0.36 1.86 3.14 

7 7 7 1.48 0.41 1.92 3.14 

8 8 8 1.73 0.46 1.93 3.14 

9 10 10 2.12 0.58 2.09 3.14 

10 11 11 2.62 0.50 1.84 3.14 

11 14 14 3.21 0.57 1.95 3.14 

12 20 20 4.31 0.80 2.09 3.14 

 

From Fig. 3, the Pareto frontier regarding the herein 

proposed dynamic c chart dominates that one 

corresponding to the related typical static configuration. 

In detail, from the economic point of view, the optimal 

dynamic c chart scheme is represented by the solution 

(1) with ARLδ = 11.83 and CT = 89.58 $. To the contrary, 

from the statistical performance point of view, the 

optimal solution (12), with ARLδ = 1.23 and a CT = 132.2 

$, represents the related best one. In addition, Table 2 

shows that with the increasing of the statistical 

performance required to the optimal chart configurations, 

from solution (1) on, also the sample sizes (n1 and n2) 

and the sampling intervals (h1 and h2) increase with no 

severe changes in the chart control limits w and k. 

Finally, if the Pareto optimal frontier includes lots of 

solutions, the decision maker could be supported by a 

decision multi-criteria method as the Analytic Hierarchy 

Process (AHP) (Saaty, 1990) or the ELimination Et 

ChoixTRaduisant la REalitè (ELECTRE) (Roy, 1978) in 

order to select the chart configuration that represents the 

best compromise among the considered objectives. 

Conclusion 

A multi-objective design procedure for a dynamic 
c chart has been developed with the aim to point out 
the suitable optimal chart configurations to perform 
SPC operations on a manufacturing process of 
semiconductor devices. The problem has been 
formulated by a non-linear constrained mathematical 
model and the ε-constraint method has been employed 
to describe the Pareto frontier. The knowledge of this 
frontier will provide useful information to the 
decision maker about the decisional process that 
cannot be directly obtained by the typically 
considered design procedures. For instance, if a 
budget constraint is added, the sub-set of the optimal 
feasible solutions on which restricting the selection 
can be immediately individuated. Moreover, the 
frontier analysis could address the decision maker to 
discard some solutions which imply small cost 
reductions with meaningful statistical performance 
decreases (such as solutions (1), (2) and (3)) or, to the 
contrary, small statistical improvements with 
significant cost increments (such as solutions (11) and 
(12)). Finally, the developed approach is simple to be 
used, it is fully supported by an Excel macro and it 
requires short computational time. 
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