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ABSTRACT

Image fusion based on wavelet transform is the mmstmonly used image fusion method, which fuses the
source images’ information in wavelet domain actadto some fusion rules. But because of the
uncertainties of the source images’ contributiamshie fused image, how to design a good fusion tale
integrate as much information as possible intoftised image becomes the most important problens Thi
study proposed a image fusion algorithm based oveleatransform and fuzzy reasoning. The edges in
source images are detected using set of fuzzy. rlites hardware architecture for fuzzy based imag®h

is proposed. This proposed hardware architectuheces the hardware utilizations and best suitadyléofv
power applications. The design possesses only ime rhemory buffers with very low computational
complexity, thereby reducing the hardware cost appropriate for several real-time applications. The
proposed hardware architecture consumes 4179 gatiygsower consumption of 203.27 mW.

Keywords Fuzzy Reasoning, Fuzzy Rules, Image Fusion, LowdPo

1. INTRODUCTION image is more suitable for visual perception. We te

term image fusion to denote a process by whichiptalt
Image fusion is a tool to combine multimodal images images or information from multiple images is
by using image processing techniques. Specificilly ~combined. These images may be obtained from differe
aims at the integration of disparate and compleargnt tyPes of sensors. With the availability of the rmgbsor

data in order to enhance the information apparethe ~ dat@ in many fields, such as remote sensing, miedica

images, as well as to increase the reliability loé t imaging or mach|_ne vision, image fusion has emesed

interpretation. This leads to more accurate datd an a promising and important research area. In othdsy

. o o Image fusion is a process of combining multipleuin
increased utility. In addition, it has been stateat fused 9 P 9 P P

) X images of the same scene into a single fused image,
data provides for robust operational performan@ s \yhich preserves full content information and also

increased  confidence, reduced ambiguity, improvedyetaining the important features from each of triginal
reliability and improved classification. Image fosiis a images. The fused image should have more useful
procedure that aims at the integration of dispaeaté  information content compared to the individual irag
complementary data to enhance the information ptese As far as the knowledge of the author, none ofirfrege

in the source images as well as to increase thabildly fusion method has been reported which deals withi mu

of the interpretation. This process leads to memigte  focus and multi modal images simultaneously.

data interpretation and utility. So in this study we propose a novel region based
A fusion process is nothing but a combination of image fusion algorithm for multifocus and multiméda

salient information in order to synthesize an imaggh images which also overcomes the limitations of

more information than individual image and synthedi  different approaches.
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2. RELATED WORKS A wavelet-based medical image fusion scheme was
proposed by Yangt al. (2010). The medical images to

An algorithm based on Lifting Wavelet Transform be fused are decomposed by the wavelet transfodn an
(LWT) has been proposed in Gonzaktzl. (2013) to  then different fusion schemes are employed to coebi
fuse multi-modality medical images. LWT allows in- the wavelet coefficients, i.e., visibility-based timed
place implementation of wavelet transform thereby for coefficients in low-frequency band and variance
reducing the memory requirement and computationalbased scheme for coefficients in high-frequencydban
time. LWT ensures faster image fusion. Also, a loca Then, a window-based reliability verification prese
feature-based fusion rule to extract features fronti- is done to remove the noise and guarantee the
source images and improve fusion quality has beenhomogeneity of the fused image. The inverse wavelet
employed. Several experimentations were performedtransform with all the complex wavelet coefficients
for the fusion of registered medical CT/MRI, gives the fused image. Experiments on simulated and
CT/SPECT, MRI/PET images. Their results showed real medical images were done and compared with
that their scheme has a good performance to fuseexisting methods to prove that the proposed method
medical images effectively. effective than other fusion techniques.

Bhatnagar et al. (2013) presented a fusion Arunmozhi and Mohan (2013) has proposed a fusion
technique based on Non-Sub sampled Contourletalgorithm based on wavelet decomposition methogolog
Transform (NSCT). The source medical images areto fuse the hyper spectral images.This method has
first transformed by NSCT followed by combining provided lower PSNR value in terms of image quality
low- and high-frequency components. Two different Chenet al. (2011) has developed low-cost high-quality
fusion rules based on phase congruency and dieectiv adaptive scalar processing technique for real-time
contrast are proposed and used to fuse low- anla- hig multimedia applications. This method consumed more
frequency coefficients. Finally, the fused image is power due ti its complex architecture design. Jsaoét al.
constructed by the inverse NSCT with all composite (2007) has developed a technique such as line@nfo$
coefficients. Experimental results and comparativeimage sets for display. This methodology provided
study show that the proposed fusion framework optimum enhancement of image sets for image fusion.
provides an effective way to enable more accurateNagarajaret al. (2010) has proposed scalable approach to
analysis of multimodality images. Further, the fusing spatiotemporal data to estimate streamfloav av
applicability of the proposed framework is carrieast ~ Bayesian network. Tsagari al. (2005) has introduced
by the three clinical examples of persons affestéti ~ fusion technique of hyperspectral data using setgden
Alzheimer, sub-acute stroke and recurrent tumor. PCT for enhanced color representation.

Rana and Arora (2013) explored different medical An image fusion technique based on discrete
image fusion methods and their comparison to fintl 0 \yavelet transform using high boost filtering was
which fusion method gives better resullts ba.sedhmt fproposed in Zaveriet al. (2011). The proposed
performance parameters. Here medical images Ofyigorithm achieved an accurate segmentation for
Magnetic Resonance Imaging (MRI) and Comp“ted region-based fusion using graph based normalizéd cu
Tomography (CT) images are fused to form new Im""ge'algorithm. The regions were extracted from the tnpu

This new fused image improves the information conte registered source images using the resultant segahen
for diagnosis. Fusing MRI and CT images provide enor . 9 9 9

information to doctors and clinical treatment plargn :cmag?j._ffThent the_extract_ed (rje_zf?onstv]:/er_e proTéeE;sed to
system. MRI provides better information on sofsties use ditferent regions using ditterent fusion ruiesie

whereas CT provides better information on denserMethod was implemented on various registered images
tissues. Fusing these two images gives moreOf multi-focus and multimodality categories and the

information than single input image. In this study, fusion results were compared using standard re¢eren
wavelet transform, Principle Component Analysis based and non-reference based image fusion
(PCA) and Fuzzy Logic techniques are utilized for parameters. It has been observed from simulation
fusing these two images and results are comparieel. T results that the algorithm was consistent and pvese
fusion performance is evaluated on the basis oftRoomore information compared to earlier reported pixel
Mean Square Error (RMSE), Peak Signal to Noisebased and region based fusion methoBlased and
Ratio (PSNR) and Entropy (H). region based fusion methods.
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3. PROPOSED FUSION ALGORITHM convolution kernel is composed of the lower four
parameters of the cross-model and the inversed demo

Figure 1 shows the block diagram of the proposed convolution kernel is composed of the upper four

fusion algorithm. It consists of a spatial domailtef, parameters. In the proposed scaling algorithm, ioéh
fuzzy based edge detector, fusion block and meanT-model and inversed T-model filters are used to
filter. The spatial domain filter serves as a pifef to improve the quality of the images simultaneously.
reduce blurring and aliasing artifacts producedthoy The T-model or inversed T-model filter is simpldie

bilinear interpolation. First, the input pixels tlie from the 3x3 convolution filter of the previous wWor
original images are filtered by the spatial filtey (Chanet al., 2011), which not only efficiently reduces
enhance the edges and remove associated noiseéhe complexity of the convolution filter but alsoegtly
Second, the filtered pixels are filtered againnwsth  decreases the memory requirement from two to aree i
unwanted discontinuous edges of the boundarypyffer for each convolution filter. The T-model atite
regions. Finally, the edge detected images aredfuse jnversed T-model provide the low-complexity and low
into a single image and artifacts present in it arememory-requirement convolution kernels for the
removed using the mean filter. The details of e@@ft  gj5rpening spatial and clamp filters to integrage\(LSI
will be described in the following sections. chip of the proposed low-cost image scaling pramess

3.1. Spatial Domain Filter 3.2. Fuzzy Edge Detector
The spatial filter is a kind of high-pass filterdars .
used to reduce blurring artifacts. It is definedablernel The edges of the image are detected based on fuzzy

to increase the intensity of a centre pixel refatio its ~ rules formulatedFigure 3 illustrates the edge detection
neighboring pixels. The clamp filter, a kind of lppmss ~ Procedure based on fuzzy rule formulation.

filter, is a 2-D Gau33|ar_1 spatial domain filter and 3.2.1. Fuzzy Logic Matrix

composed of a convolution kernel array. It usually
contains a single positive value at the centre &nd Fuzzy is a set or combination of rules and decision
completely surrounded by ones. The clamp filteussd  The proposed fuzzy system is designed with 4 inputs

to reduce aliasing artifacts and smooth the unveante g 5 single output, such that the 4 inputs ineita¢ 4
dlscontlnuous e_dges of the .boundary regions. Thepixels present in the window mask. In this, the bem
sharpening §pat|al and clamp f||ters. can be repledg of fuzzy sets used for the input Black and Whiteis
by convolution kernels. A larger size of convolutio

kernel will produce higher quality of images. Howeva and for the output, 3 fuzzy sets are used. The Fuzz
larger size of convolution filter will also demamiore ~ 'Ules are formulated as shownTble 1 for the input
memory and hardware cost. For example, a 6x6and output variables. o _
convolution filter demands at least a five-linefeuf The accuracy level of edge detection in the image
memory and 36 arithmetic units, which is much more will be improved by using fuzzy logic. 16 Fuzzy esl
than the two-line-buffer memory and nine arithmetic are constructed for every 2x2 pixel sub-block. The
units of a 3x3 convolution filter. In our previousork, output value indicates to which fuzzy set (Blackziy
each of the sharpening spatial and clamp filters wa set, White fuzzy set or Edge fuzzy set) the oufpxel
realized by a 2-D 3x3 convolution kernel as shown i ‘P4’ pelongs to. The fuzzy matrix is shown Trable 2.
Fig. 2a. It demands at least a four-line-buffer memory The notation ‘B’ represents black pixel and ‘W’
for two 3x3 convolution filters. For example, ifeth represents white pixel and ‘E’ represents edgel pber

image width is 1920 pixels, 4x1920x8 bits of data y,qo congtryuction of 2x2 sub block, the edge piseldted
should be buffered in memory as input for Procegsin any pixel variation occurs in this sub-block
To reduce the complexity of the 3x3 convolution ’

kernel, a cross-model formed is used to replace the3.2.2. Register Bank
3x3 convolution kernel, as shown iRig. 2b. It ] ] )
successfully cuts down on four of nine parametars i _ The Register Bank (RB) includes 12 registers-
the 3x3 convolution kernel. Reg0 to Regl1, which stores the 3x3 pixel values of
Furthermore, to decrease more complexity andthe current maskrigure 4 illustrates the arrangement
memory requirement of the cross-model convolution of RB in which each 3 registers are connected in
kernel, T-model and inversed T-model convolution series to provide three pixel values of a row inskna
kernels are proposed for realizing the sharpenpadia and Reg4 keeps the luminance value of the current
and clamp filters. As shown iffig. 2c, the T-model pixel to be denoised.

////4 Science Publications 771 As



S. Anbumozhi and P.S. Manoharan / American Jowhapplied Sciences 11 (5): 769-781, 2014

Image 1 | | |
Spﬂtif_ll Fuzzy Fusion Tpendd Mean
domain edge algorithm [P . o P flter [ aned
Gltar detection &
—b o removed
Image 2 image
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Fig. 3. Architecture of fuzzy based edge detector
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: Register bank :
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Fig. 4. Architectural arrangement of register banks

Table 1. Fuzzy rules for input and output variables

Input /output Name Range MF type
Fuzzy input 1 = Pixel P1 Black [0 0 255] Triangular
White [0 255 255] Triangular
Fuzzy input 2 = Pixel P2 Black [0 0 255] Triangular
White [0 255 255] Triangular
Fuzzy input 3 = Pixel P3 Black [0 0 255] Triangular
White [0 255 255] Triangular
Fuzzy input 4 = Pixel P4 Black [0 0 255] Triangular
White [0 255 255] Triangular
Fuzzy output 1 = Pixel P4_out Black [035] Triaragul
White [249 252 255] Triangular
Edge [130 133 135] Triangular

Table 2. Fuzzy logic matrix for each sub-block

Fuzzy inputs

Fuzzy output

P1 P2 P3 P4 P4_out
B B B B B

B B B W E

B B W B E

B B W W E

B W B B E

B W B W E

B W W B E

B W W W E

W B B B E

W B B W E

W B W B E

W B W W E

W W B B E

W W B W E

W W W B E

W W W W W
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Fig. 5. Architecture of the mean filter

The luminance value from the input device enters bit

| [ADD| | ADD)
Filtered
output
precision in the Iuminance channel. The

the RB and immediately the denoising process startsmetabolisms exposed by the PET scan are fused with

The twelve pixel values are stored in RB and thewlen

the anatomical structures shown in the MRI scan in

use by consequent extreme data detectors and noisthe final image which provides an enhanced spatial

filters for denoising. After the denoising is corefd,
the reconstructed pixel values produced by theterbi
are fed to the line buffer. Suppose if we denome2r
and all four selection signals are set to 0, tHees of
rowl and row2 will be stored in Line Buffer-odd and
line buffer-even, respectively.

3.3. Mean Filter

Figure5 shows the design of the mean filter in which
the |ADD| unit finds the absolute sum of two inpdtee
mapping module helps in locating the four optimal
directions entirely consisting of noise-free pixelhe
directional differences for the four directions are
computed and the least value is decided by the ®I1V/
unit. The last block gives the filtered output,.,i.the
mean of two pixel values.

4. RESULTS

4.1 Evaluation Details of Proposed Algorithm
using MATLAB

The dataset used for our experimentation includes

relationship. It has been proven that the fusedgiema
obtained by the proposed method has a better visual
quality than others and is shownFkig. 6 and 7.

Entropy is an important evaluation parameter to
estimate the quality adherence of the fused infagopy
is a statistical measure of randomness that carsée to
characterize the texture of the fused brain image.

The values of PSNR and MMSE are represented
mathematically as given below Equation (1 and 2):

i MAX
PSNR= 20i0g, 2=t (1)
MSE=$Z:_1Z;‘_1H f(i,) - (i i) IF (2)

where, ‘m’ represents width of the fused image amd

represents height of the fused image Equation (3):

Entropy=->" pOlod f (3)

color PET scan images and normal brain MRI images.where, ‘p’ represents histogram counts of each Ipixe

Both scan images have a resolution of 256x256 84th
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4.2.Evaluation Details of Hardware Architecture 90 nm CMOS technology. The post layout resultshef t

The results of proposed fusion algorithm shows thatproposed fusion architecture are summarized@lable 7

the system incorporated with its hardware architect and the chip layout is shown Fig. 12. The gatg co_unt is

leads to lower power consumption in terms of slices @P0ut 4179 gates and the power consumption is 203.2

Look Up Tables and Flip Flops. The various devites mW. The parameters considered for investigation

the Spartan-3 family are tested against their powerinclude Current and Power Consumption (PC) andfusi

consumption and tabulated ihable 3 to 6 and also latency. The performance of Spartan devices isyagdll

graphically plotted irfFig. 8 to 11. based on Junction temperature and is tabulatddhlimhe
The proposed fusion architecture is implemented in9. The same is graphically illustratedRig. 13.

Fig. 7. Simulation results: (2) MRI brain image (b) PE&ibrimage and (c) fused brain image
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Fig. 8. Graphical illustration oT able 3
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* Current (mA)
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Fig. 9. Graphical illustration oT able 4

Fig. 10. Graphical illustration of able 5
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Fig. 11. Graphical illustration oT able 6
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Fig. 12. Simulation results of proposed technique: (a) Rthesnatic view (b) Technology schematic view andCGh)p layout of
proposed fusion IC
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Device specification
Fig. 13. Graphical plot for performance based on junctempgerature
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Table 3. Comparison of power consumptions of spartan-3lfami

FPGA family Device specifications Power consumption
Spartan-3E Xc3s500E 81.37 mW
Spartan-3E Xc3s1200E 158.95 mW
Spartan-3E Xc3s1600E 203.27 mW

Table 4. Quiescent parameters evaluation in spartan-3EL28e family

Parameters Current (mA) Power (mW)
Quiescent form at 1.2V 52.86 63.43
Quiescent Yaxat 2.5V 35.00 87.50
Quiescent Y psat 2.5V 3.000 7.50

Table 5. Quiescent parameters evaluation in Spartan-3E A633E family

Parameters Current (mA) Power (mW)
Quiescent form at 1.2V 69.4 83.27
Quiescent Vauat 2.5V 45.0 112.50
Quiescent Ygosat 2.5V 3.00 7.50

Table 6. Quiescent parameters evaluation in spartan-3E %035 family

Parameters Current (mA) Power (mW)
Quiescent form at 1.2V 25.82 30.98
Quiescent Vauat 2.5V 18.00 45.00
Quiescent Ygosat 2.5V 2.000 5.000

Table 7. Post layout results of proposed architecture that of images obtained by other state of arts pukth
Technology CMOS 90 nm employing various set of MRI and PET images.
Clock frequency 100 MHz Similarly, the proposed fusion algorithm and its
Gate count 4179 hardware architecture system is designed and tested
Power consumption 203.27 mwW various version of Spartan-3E family device usingdd
Memory size 54492 kB

sim 6.1 and Xilinx 9.2i. This proposed scheme z&ii 17
LUTs and 9 slices at a maximum frequency of 200 MHz
5. DISCUSSION The proposed fusion architecture has been
implemented in 90 nm CMOS technology. The post
Our proposed fusion method is quantitatively layout results are previously summarizedTiable 7.
evaluated using MATLAB R2012b and compared in The present research is focused on the design and

terms of subjective testing, i.e., visual qualiyhere  geyelopment of efficient hardware architecture for
recommended parameters are used. All the fusedtgesu low power applications. The parameters considered

are assessed by three clinicians who all have fiver for investigation include Current and Power

years work experience in the relevant field. The : .
original image and the fused image are compared b onsumption (PC) and fusion latency. The gate count

the two quality metrics such as Peak Signal to dlois [Of our method is about 4179 gates and the power

Ratio (PSNR), Minimum Mean Square Error (MMSE), consumption is 203.27 mW.
entropy and elapsed time. In this section, the comparisons of proposed method

For the quantitative testing of the fused images, w Wwith existing methods in terms of certain paransetze
make use of the Peak Signal-to-Noise Ratio (PSNR) i being discussedTable 10 illustrates the variation of
a prime evaluation factor. From the results, it is PSNR, MSE and Entropy andlable 11 shows the
observed that our proposed fusion methodologytime taken for fusionFigure 14 and 15 graphically
performs very well. To prove the visual qualityeth represent the variation of PSNR, MSE and Entropy
fused image of proposed method is compared withand elapsed time variation in fusion, respectively.
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Fig. 14. Graphical representation of the performance coispas in terms of PSNR, MSE and ENTROPY
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Table 8. Chip summary of FPGA devices

Family 3E 3E 3E

Device Xc3s 1600E Xc3s 1200E Xc3s 500E
Package FG320 FG320 PQ208
Speed Grade -4 -4 -4

Table 9. Performance analysis based on junction temperature

Device Junction temperature
Xc3s 1600E 29.29°C
Xc3s 1200E 28.64°C
Xc3s 500E 22.11°C

Table 10. Performance comparison of proposed fusion methderims of quality metrics

Methodology PSNR MSE ENTROPY
Proposed Methodology 56.23 27.41 2.0958
Group-Sparse Algorithm (Lét al., 2012) 29.54 32.56 1.7864
Bivariate Laplacian mixture model (Rabba&hal., 2009) 22.16 37.19 1.9652

Table 11. Performance comparison of proposed fusion methaerims of fusion latency

Methodology Elapsed Latency (ms)
Proposed Methodology 0.17
Group-Sparse Algorithm (L6t al., 2012) 0.38
Bivariate Laplacian mixture model (Rabba&hal., 2009) 0.45

Table 12. Performance comparison based on hardware utdizati

Methodology Logic elements Bonded 10Bs Elapsed time
Proposed work 51 80 12.67 ns
Besiris and Tsagaris (2012) 2828 - 7.56 ms
Arunmozhi and Mohan (2013) 890 85 -
Gonzalezt al. (2013) 1933 - 1301.2 s

6. CONCLUSION proved that the proposed method is more efficient

than most other methods.
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