
American Journal of Applied Sciences 11 (1): 57-68, 2014 
ISSN: 1546-9239 
©2014 Science Publication 
doi:10.3844/ajassp.2014.57.68 Published Online 11 (1) 2014 (http://www.thescipub.com/ajas.toc) 

Corresponding Author: Salvatore Calcagno, Department of Civil Engineering, Environment, Energy and Materials, 
 Mediterranea University of Reggio Calabria, Via Graziella Feo di Vito, I-89122 Reggio Calabria, Italy 
 

57 Science Publications

 
AJAS 

INDEPENDENT COMPONENT ANALYSIS AND DISCRETE 
WAVELET TRANSFORM FOR ARTIFACT REMOVAL IN 

BIOMEDICAL SIGNAL PROCESSING 

Salvatore Calcagno, Fabio La Foresta and Mario Versaci 
 

Department of Civil Engineering, Environment, Energy and Materials, 
Mediterranea University of Reggio Calabria, Via Graziella Feo di Vito, I-89122 Reggio Calabria, Italy 

 
Received 2012-10-04, Revised 2013-01-15; Accepted 2013-11-27 

ABSTRACT 

Recent works have shown that artifact removal in biomedical signals can be performed by using Discrete 
Wavelet Transform (DWT) or Independent Component Analysis (ICA). It results often very difficult to 
remove some artifacts because they could be superimposed on the recordings and they could corrupt the 
signals in the frequency domain. The two conditions could compromise the performance of both DWT and 
ICA methods. In this study we show that if the two methods are jointly implemented, it is possible to 
improve the performances for the artifact rejection procedure. We discuss in detail the new method and we 
also show how this method provides advantages with respect to DWT of ICA procedure. Finally, we tested 
the new approach on real data. 
 
Keywords: Artifact Removal, Discrete Wavelet Transform, Independent Component Analysis, Neural 

Networks, Surface EMG 

1. INTRODUCTION 

When the biomedical signals recordings are strongly 
corrupted by the artifacts, a preprocessing step is needed 
in order to extract some clinical information from the 
data (Mammone et al., 2012; Labate et al., 2011a; 
2011b; Campolo et al., 2011; Inuso et al., 2007a). 
Artifact removal is a key topic in biomedical data 
interpretation and then it is powerful in various 
applications. For these reasons, in the last years many 
researchers have studied the artifact removal and they 
have shown that it is a critical problem in the biomedical 
signal processing. In particular, the researchers have 
observed how contamination of Electroencephalographic 
(EEG) activity by eye movements, blinks, cardiac signals 
and muscle and line noise remains today a serious 
problem for EEG interpretation and analysis, especially 
for some patient groups since rejecting contaminated 
EEG segments may result in an unacceptable data loss. 

Parallelly, the authors worked to artifact 
modeling/removal in other fields of research maturing 
competences strongly helpful for the problem under 
study (Costantino et al., 2012; Cacciola et al., 2007; 
2009; 2010; Angiulli and Versaci, 2002; 2003). 
Recently, some works have shown that a successful 
artifact removal procedure in biomedical signals, like 
Electromyographic (EMG) or EEG recordings, can be 
performed using Discrete Wavelet Transform (DWT) or 
Independent Component Analysis (ICA). In particular, 
authors have discussed the effectiveness of their method 
based on DWT in order to perform the cancellation of 
Stimulus Artifact (SA) in the serosal recordings of 
Gastric Myelectric Activity (GMA). In this case DWT 
method allows obtaining successfully artifact 
cancellation because the SA is a superimposed signal 
that is a combination of periodic rectangular pulses width 
of 0.3 sec and frequency of 10% higher than the intrinsic 
gastric slow wave frequency. 
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This procedure fails when the artifacts do not have 
these properties, for example DWT approach cannot 
remove Electro Cardio Graphic (ECG) artifact present in 
some myoelectric recordings (Inuso et al., 2007b; La 
Foresta et al., 2005) because the spectral components of 
artifact overlap with the myoelectric signal spectrum. On 
the other hand, the ICA method, its implementations and 
its applications are well described in literature and a 
review on artifact identification and removal, with 
special emphasis on the ocular ones, can be also found. 
ICA was implemented in order to remove artifacts in 
EEG and Magneto Encephalogram (MEG) signals. Some 
problems can arise in some artifact removal techniques 
that may lead to the insertion of undesirable new artifacts 
into the brain recordings. Further methods are presented 
in literature. In these applications we need a considerable 
amount of data where the amplitude of the artifact is 
much higher than that of the EEG or MEG. Otherwise, it 
was shown that artifacts can indeed be estimated by 
using ICA alone. In fact, ICA is used with good results 
to remove the eye activity artifacts from visual Event-
Related Potentials (ERP) in normal and clinical subjects. 
This approach is able to perform the artifact removal 
only for multichannel recordings, in which it is possible 
to isolate the artifact by means of statistical 
independence theory. 

The objective of this study is to examine the 
applicability of DWT and ICA methods for removing 
artifacts from a surface Electromyography (sEMG). The 
use of DWT and ICA in biomedical signal processing 
was analyzed by many researchers, who have proposed 
several studies and books about this topic. The aim of 
this study is to discuss the use of these methods in order 
to perform artifact removal. Thus, we focus our attention 
on the performance of the various algorithms and we 
show their behaviors in different kinds of artifacts 
discussing the advantages and drawbacks of these 
techniques and analyzing applications in which DWT 
and ICA cannot remove some artifacts. Therefore, we 
show some cases in which the application of DWT or 
ICA algorithms does not provide good results. We also 
show that in these cases, a joint use of DWT-ICA allows 
improving the quality of results; in the following we 
refer to this method by the acronym WICA. We prove 
that ICA method has very good performance when the 
recordings are redundant, i.e., the observed data 
(mixtures) are equal or larger in number than 
independent sources; otherwise, classic ICA shows poor 
performances. This problem is often called ICA with 
over complete bases and it was solved by modified ICA 

methods. These methods are computationally rather 
inefficient and much more. Thus we propose to perform 
artifact cancellation by using a WICA method rather than 
modified ICA methods. We also compare the obtained 
results by the proposed methods. Finally we show a 
clinical application in which only the proposed method 
allows performing successfully artifact cancellation. 

2. STATEMENT OF THE PROBLEM: 
ARTIFACT REMOVAL METHODS 

The artifact is a signal that hides some useful 
information in a measured signal. It is noticeable to 
classify the artifacts according to their features both in 
time and in frequency domains. There are some artifacts 
that are well localized in frequency, whereas their 
influence is spread over all the time axis of the original 
signal. Others typologies of artifacts, instead, are 
confined to a small temporal area, while their spectral 
components cover almost all the frequency spectrum of 
the original signal. Only in a few described cases, a classic 
filtering is suitable. Thus advanced methods are generally 
needed to obtain good results. In the next subsections, we 
briefly discuss the DWT and ICA methods and their 
applications for artifact cancellation. We also present a 
method based on the joint use of DWT and ICA. 

2.1. DWT Method 

The wavelet analysis is a time-frequency 
representation introduced in order to overcome the 
limitations in time and in frequency resolution suffered 
by the classical Fourier techniques. The Wavelet 
Transform (WT) is a Multi-Resolution Analysis (MRA). 
Here, a scaling function j is used to create a series of 
approximations of a signal, each differing by a factor 2 
(or by another fixed factor) from its nearest neighboring 
approximations. Additional functions y, called wavelets, 
are then used to encode the difference between adjacent 
approximations. In its discrete the wavelet transform is 
implemented by a bank of band-pass filters each having 
frequency band and central frequency half than the 
previous one. First the original signal S(t) is passed 
through two filters, a low-pass and a high-pass one. An 
approximation signal, A(t), is extracted from the low 
pass filter, whereas from the high-pass signal a detail 
signal D(t) is taken out. In the standard tree of 
decomposition only the approximation signal is passed 
again through the second stage of filters and so again 
until the last level of the decomposition. For each level 
the frequency band of the signal and the sampling 
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frequency are halved. The Wavelet Series Expansion (1) 
of a signal x(t)∈L2 (R) is Equation (1): 
 

( ) jk
k k

jbk j k0 jk
j= j0

x(t) = c t + dψ (t )
∞

ϕ∑ ∑∑  (1) 

 
Where: 
 

*
jk j,kd x(t) (t) dt

∞

−∞
= ψ∫  

 
are called the detail or wavelet coefficients and: 
 

j

jjj,k

1 t - k2
ψ (t) = ψ

22

 
 
 

 

 
are the wavelet functions. The approximation or scaling 
coefficients are: 
 

*

-jk j,kc = x(t)φ (t)dt
∞

∞∫  

 
Where: 
 

j

j,k jj

1 t - k2
(t) =

22

 
φ φ 

 
 

 
are the scaling functions the details and the 
approximations are defined in Equation (2): 
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and the final reconstruction of the original signal 
computed by the details and the approximations is 
described by Equation (3), for fixed N: 
 

N 1 2 NS(t) = A (t) + D (t) + D (t) + ... + D (t) (3) 

 
The Discrete Wavelet Transform (DWT) can be used 

in order to perform artifact removal (Inuso et al., 2007a). 
Its application is based on the spectral separation 
between the original signal and the artifact: a good 
removal is possible only if the artifact spectral content is 
well localized (compactly supported). Thus, the wavelet 
decomposition is able to remove the artifact by means of 
the denoising procedure applied to the single wavelet 
details D1(t), D2(t)…DN(t). If we have multichannel 
recordings the artifact removal must be performed 

separately, channel by channel, applying the same 
algorithm for each channel recording. 

2.2. ICA Method 

The Independent Component Analysis is a method to 
find underlying factors or components from multivariate 
(multidimensional) statistical data. What distinguishes 
ICA from other methods is that it looks for components 
that are both statistically independent and non-gaussian. 
The ICA solves the Blind Source Separation (BSS) 
problem to recover n independent source signals. Consider 
N samples of the observed data vector x, whose elements 
are the mixtures x1, x2, …, xm, modeled by Equation (4): 
 

n

j=1
j jx = As = a s∑  (4) 

 
where, A is the unknown m-by-n mixing matrix with 
column vectors aj, j = 1, 2, …… , n and s is an unknown 
n-dimensional source vector containing the source 
signals s1, s2, …, sn, which are assumed to be statistically 
independent. In general, the dimensionality m of the 
vector x and aj can be different from n. Usually it is 
assumed that there are at least as many mixtures as 
source (m≥n), the mixing matrix A has full rank and that 
at most one of source sj is Gaussian. The BSS techniques 
do not use any training data and do not assume any a 
priori knowledge about parameters of mixing systems 
(i.e., no knowledge about the matrix A). The ICA 
resolves the BSS problem under the hypothesis that the 
sources are statistically independent each others. In 
particular it consists in estimating a n-by-m matrix W 
such that Equation (5): 
 

m

j j
j=1

u = Wx = w x∑  (5) 

 
Such a model (5) can be used in different situations, 

for example in multidimensional signal processing, 
where each sensor receives an unknown superimposition 
of unknown source signals at time instants t = 1, 2, … , 
N. In the last ten years many algorithms were proposed 
in order to perform ICA. We investigate, in particular, on 
the INFOMAX algorithm implemented algorithm, we 
used the switching extended rule Equation (6): 
 

T T
∆W I - Ktanh(u)u - uu W ∞    (6) 

 
where, K is a n-dimensional diagonal matrix, which ki 
elements are: 
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k = 1: supergaussian

k = -1: subgaussian
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


 

 
We choose, ki related to the sign of the ui kurtosis: ki 

= sign (durt (µi)). ICA allows performing artifact 
cancellation. The procedure consists in the extraction of 
the Independent Components (ICs), to identify the ICs 
related to the artifacts; the cleaned signals reconstruction 
is obtained by setting to zero in (4) the columns, related 
to the artifacts sources, of the matrix A. ICA can often be 
simplified by means of the Principal Component 
Analysis (PCA) preprocessing lightening the 
computational charge and then reducing the 
computational time. PCA extracts from a signal mixing 
some uncorrelated sources: Uncorrelatedness is a lower 
property than independence, i.e., two signals can be 
uncorrelated without being independent; conversely, if 
two signals are independent, they are also uncorrelated. 
PCA can be also used to reduce the data dimensionality 
and/or to perform whitening process, to obtain some unit 
variance components. Unlike the wavelet analysis, ICA 
approach can be applied only to multichannel recordings. 

2.3. Wavelet-Independent Component Analysis 

The WICA method, described in Fig. 1, encompasses 
the properties of the DWT and ICA methods. The main 
idea of WICA is to examine the statistical independence 
of the recordings by means of ICA algorithm applied 
only to corrupted wavelet details (Azzerboni et al., 
2002). In other words, the ICA algorithm works only on 
a fixed frequency range. In the next section we will show 
that this method improves the performances of ICA and 
it allows extracting successfully the artifact components 
with less distortion. Thus, we perform the wavelet 
decomposition at a fixed level for each channel. In this 
phase, a user interface is needed in order to choose the 
appropriate decomposition level and to select the details 
that concern the spectral range in which the artifact is 
localized. Next ICA minimizes a measure of statistical 
independence of new data set. We restrict the ICA 
application only on the frequency regions of interest, 
where the artifacts should be localized. A first advantage 
of this technique is avoiding that the signal part which is 
certainly artifact-free be corrupted by the source 
separation algorithm. The main steps of WICA approach 
are discussed as follows: (a) Wavelet decomposition. We 
apply DWT to every channel of the recordings. So we 
obtain signals that have non-overlapping spectra. (b) 
Identification and selection of corrupted details. We 
identify and select only the details that contain some 
artifact components. So, we organize the selected details in 

a new data set. In the selection step the user interface is 
needed. (c) ICA of selected details. We apply ICA 
algorithm to new data set. A preprocessing step, PCA 
and/or whitening, is performed in order to reduce the data 
dimensionality and to lighten the computational charge. 
Thus, we estimate the ICs and we remove the ones related 
to the artifacts. (d) Reconstruction of selected details after 
artifact removal. The selected details are cleaned by artifact 
components by means of the procedure described in ICA 
method. (e) Wavelet reconstruction. We perform the 
wavelet reconstruction by (3) using the non-selected details 
and the cleaned details after ICA step. Finally, we obtain the 
multichannel recordings in which the artifacts are removed. 

3. SIMULATIONS: ALGORITMS 
TESTING 

The simulations of the artifact removal by means of 
DWT, ICA and WICA methods are shown in this 
section. We test the performances on synthesized signals. 
Also the artifacts are synthesized in order to test the 
quality of the different approaches. In order to give a 
quantitative value to the goodness of the algorithm, we 
compare in both time-and frequency-domains the 
original signal (when the artifact is not yet added) and 
the reconstructed one after the artifact removal. 

3.1. Synthesized Signals 

We synthesized six myoelectric-like signals (surface 
EMG with of six electrodes). They are 12000 samples 
digital signals equivalent to 12 sec (sampling frequency 
1 kHz). We also synthesized three typologies of artifacts, 
an impulsive artifact, a similar ECG artifact and an 
impulsive-ECG artifact (Fig. 2). 

The impulsive artifact is composed by a periodic high 
frequency burst. This kind of artifact can be viewed like a 
stimulus signal. Moreover, its spectrum is well localized 
and it is almost all separated by the signal spectrum. 

The mean frequency of the artifact spectrum is higher 
than the maximum frequency present in the original 
signal. This is the most suitable kind of signal 
identifiable by the DWT. The ECG-like artifact is a 
signal that represents the cardiac activity. In sEMG 
recordings, this artifact is often present and it cannot be 
removed by DWT method, because its spectrum is 
overlapped to the EMG one. This is the most suitable 
kind of signal identifiable by the ICA algorithm. The last 
artifact, impulsive-ECG, is obtained by linear 
combination of the two previous typologies. Thus, we 
use these artifacts to corrupt the original sEMG 
recordings and we test the goodness of the methods. 
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Fig. 1. Wavelet-ICA method. The procedure consists of five steps: (1) wavelet decomposition, (2) identification and selection of 

corrupted details, (3) ICA of selected details, (4) reconstruction of selected details after artifact removal and (5) wavelet 
reconstruction 

 

      
 (a) (b) 
 
Fig. 2. (a) Synthesized six channels sEMG and (b) synthesized (1) impulsive artifact, (2) similar ECG artifact and (3) 

impulsive-ECG artifact 
 

 

 

Fig. 3. The first channel of synthesized sEMG corrupted by 
(a) an impulsive artifact and (b) a similar ECG 
artifact 

3.2. Artifact Removal using DWT Method 

First, we corrupt the first channel of synthesized 
sEMG recordings with impulsive and similar ECG 
artifact, respectively. Figure 3 shows the corrupted 
signals. In Fig. 4 the six-level wavelet decomposition by 
DWT algorithm) is shown. This figure confirms the high 
ability of this method to separate the EMG signal by the 
impulsive artifact, which is almost all included in the first 
detail (that contains the highest frequencies). The kind of 
wavelet function used in this application is the fourth 
“Daubechies”. On the other hand, we can see that the 
separation is bad for the EMG signal corrupted by similar 
ECG artifact. The original and reconstructed EMG signals 
are represented in Fig. 5. It is easy to see that the DWT 
method fails in the case of a corrupted ECG signal. Figure 
5 also shows the goodness of the DWT method. 
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Fig. 4. The wavelet decomposition of corrupted channel by (left) an impulsive artifact and (right) a similar ECG artifact. In the first 

case the DWT allows to isolate the artifact contribution on the first detail, whereas in other case the DWT method can 
 

 
 
Fig. 5a. Performances of DWT method applied on the corrupted signals by the different artifact typologies shown in Fig. 3. 

Comparison after artifact removal in time domain: (ch 1) first channel of synthesized sEMG, (1) reconstructed signal after 
impulsive 
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Fig. 5b. Performances of DWT method applied on the corrupted signals by the different artifact typologies shown in Fig. 3. On the 

top: Comparison on the time- and frequency-domain between the uncorrupted EMG signal and the reconstructed one after 
impulsive artifact cancellation. The linear regression coefficient is very near to 1 (r = 0.98) with low data dispersion and 
there is a good agreement between their spectra. On the bottom: comparison on the time- and frequency domain between the 
uncorrupted EMG signal and the reconstructed one after similar ECG artifact cancellation. The linear regression coefficient 
is far from 1 (r = 0.72) with high data dispersion and there are meaningful differences in the frequency range of the spectra 
in which the artifact is localized 

 

 

 

Fig. 6. Synthesized sEMG channels corrupted by impulsive-
ECG artifact 

 
Comparing the uncorrupted signal with the reconstructed 
one after the artifact removal, we note that this algorithm 
works very well with the first typology of artifacts, 
whereas it is enable to completely remove the second 
typology of artifacts. 

 
 

Fig. 7. Independent Components after PCA dimensionality data 
reduction. IC3 and IC5 represent the artifact contributions 

 
3.3. Artifact Removal using ICA Method 

Let’s consider the synthesized sEMG recordings 
corrupted by impulsive-ECG artifact, as shown in Fig. 6. 
This artifact is more difficult to deal with. First, its 
spectrum is not compactly supported, but it is nonzero in 
almost all the frequency axis. Moreover, its time shape is 
different for each recording channel Fig. 7. Independent 
Components after PCA dimensionality data reduction. 
IC3 and IC5 represent the artifact contributions 
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This is the most suitable kind of signal identifiable 
by the ICA method. We can see that this approach is 
able to separate the artifact from the recordings. 
Figure 7 shows that the 3rd and the 5th components 
represent the artifact contributions that corrupt the 
sEMG. Thus, suppressing these components and 
reconstructing the cleaned channels, we can remove 
the artifact. Figure 8 shows the performances of the 
ICA method for the first channel. The same results are 
obtained for the other channels. 

This simulation confirms that the ICA method has a 
very good performance when the recordings are redundant. 
Let’s consider the similar case, but now we suppose to have 
only three recordings (Fig. 9 and 10) shows that ICA 
algorithm is not able to isolate the artifact contribution. This 
occurs when there are more ICs than observed mixtures. 
In fact, the signals in Fig. 9 are three mixtures of four 
synthesized independent EMG signals (ICA with over 
complete bases) and it was solved by modified ICA 
methods. These methods are rather inefficient and much 
more complicated. We propose to perform artifact 
cancellation by WICA rather than modified ICA. 

3.4. Artifact Removal using WICA Method 

The WICA approach is an alternative method to 
perform artifact removal with respect to ICA with over 
complete bases. In fact we show that WICA allows 
performing artifact removal also in the case in which we 
have no redundancy in sEMG recordings. 

Let’s apply this method to the corrupted sEMG 
recordings in Fig. 10. For these corrupted signals the 

approach has revealed the best ability to separate the 
original signal by the artifact. Figure 11 shows the 
identified artifact by WICA. Figure 12 includes the 
performance of the proposed method in the time domain 
and it shows the comparison between the spectra. 

Thus, we conclude that the performances of WICA 
method are better than the ones obtained by the DWT or 
ICA method. So, the joint use of these techniques allows 
to perform the artifact cancellation to a wider set of 
corrupted recordings. In the next section, we will discuss 
a clinical application in which only the WICA is able to 
remove the artifacts. 

4. RESULTS: A CLINICAL 
APPLICATION 

Here, four active electrodes performing a sEMG were 
put on the pectoral muscles of a healthy subject. We put two 
electrodes on the right muscle and the other electrode on the 
left one. In Fig. 13 we show 10 sec of the recordings by 
sEMG; during the registration session a notch-filter 50 Hz 
and a low-pass filter (cutoff frequency 500 Hz) were 
applied; the sampling frequency is fs = 1 kHz. 

Various cycles of simultaneous muscle contraction 
(both side muscles are contracted synchronously) are 
recorded by the sEMG. Note that the recordings are 
highly corrupted by the cardiac artifact. The features of 
this artifact are comparable with the peculiarities of the 
synthesized artifact shown in Fig. 9. In order to perform 
a good analysis of muscle activity, firstly we must 
remove the artifact corrupting the EMG signals. 

 

      
 
Fig. 8. Testing ICA method. Comparison on the time- and frequency-domain between the uncorrupted first EMG channel and the 

reconstructed one after impulsive-ECG artifact cancellation. (left) The linear regression coefficient is very near to 1 (r = 0.99) with 
low data dispersion and (right) there is a good agreement between their spectra. Similar results are obtained for the other channels 
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Fig. 9. Three channels of synthesized sEMG signals (channels 

1, 3, 5 shown on the top of Fig. 2) corrupted by 
impulsive-ECG artifact 

 
 
Fig. 10. Independent Components of signals shown in Fig. 

9. The ICA algorithm cannot isolate the artifact 
contributions 

 

 

 
Fig. 11. The artifact identification by the WICA method. The figure shows the identified and removed artifact 
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Fig. 12. Testing WICA method. (left) Comparison on the time-domain between the uncorrupted sEMG recordings and the 

reconstructed ones after impulsive-ECG artifact cancellation. The linear regression coefficients are very near to 1 (r = 0.98 
for 1st and 2nd channel and r = 0.96 for 3rd channel) with low data dispersion. (right) Comparison on the frequency-domain 
between the uncorrupted sEMG recordings and the reconstructed ones after impulsive-ECG artifact cancellation. There is a 
good agreement between the spectra 

 

 
 
Fig. 13. The pectoral muscles activity recordings performed by 

sEMG with four electrodes. All the channels are 
corrupted by a cardiac artifact 

 
 
Fig. 14. The reconstructed sEMG recordings after artifact 

removal by WICA method 
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Fig. 15. Comparison among WICA, DWT and ICA method for 

the most corrupted signal (third channel). WICA 
reveals 98% ECG reduction, with respect to the 90% 
of the ICA, and to the 73% of the DWT method 

 
The WICA method allows removing successfully the 

ECG artifact, as shown in Fig. 14 and 15 shows the 
comparison among WICA, DWT and ICA method for 
the most corrupted electrode (third channel): only our 
proposed method gives the best results. WICA reveals 
98% ECG reduction, with respect to the 90% of the ICA 
and to the 73% of the DWT method. 

5. CONCLUSION 

In this study, we have presented a comparison among 
different methods to perform artifact cancellation in 
biomedical data signal. By synthesized sEMG signals 
and artifacts, we have compared the performances of the 
various approaches showing that each approach is 
suitable for an appropriate kind of artifact. All the 
presented approaches are based on two algorithms: DWT 
and ICA. The first is a good method to separate signals 
which have non-overlapped spectra, whereas the latter is 
an optimal method to split signals that are statistically 
independent. We have also studied the performances of a 
further method, based on a joint application of DWT and 
ICA, which encompasses the features of both methods. 
In the final part of the study, the presented algorithms 
were tested on a real-world signal, which is a sEMG signal 
from pectoral muscles of a healthy human subject. The 
results show that the ICA approach allows extending the 
artifact removal in those clinical applications in which 
both DWT and ICA, when applied separately, have poor 
performances. In the future, the proposed technique could 
will be used together entropy analysis (Morabito et al., 
2012; Mammone et al., 2011a; 2011b). 
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