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ABSTRACT

This study presents a study of bifurcation in aadgit power system model. It becomes one of the majo
precautions for electricity suppliers and thesdesys must maintain a steady state in the neighloorriod

the operating points. We study in this study theadyic stability of two node power systems theorg tire
stability of limit cycles emerging from a subcrdloor supercritical Hopf bifurcation by computirftetfirst
Lyapunov coefficient. The MATCONT package of MATLARas used for this study and detailed
numerical simulations presented to illustrate thpes of dynamic behavior. Results have proved the
analyses for the model exhibit dynamical bifurcasioincluding Hopf bifurcations, Limit point bifustions,
Zero Hopf bifurcations and Bagdanov-taknes biflioret.

Keywords:Power System Stability, Hopf Bifurcations, Limit iRb Bifurcations, Bagdanov-Taknes
Bifurcations

1. INTRODUCTION Bifurcation point.
The Hopf Bifurcation generates a limit cycles whate

Voltage control and stability problems in the tians ~ stable if it is supercritical or unstable if it ssibcritical,
regimes are becoming one of the most importanesssu  the limit cycle is asymptotically stable if all ethFloquet
the power system due the intensive use of therission ~ Multipliers lay within the unit circle.
network (Avaloset al., 2009; Echavarremt al., 2009). ~ The continuation method demonstrated also the
Voltage stability is defined by the capacity of {hewer limit point blfurcat[ons characterized by its petiand
system to maintain acceptable voltages at all nodése Normal form cczjefﬂzmryt.ﬂ f th iation by th
system under normal condition and after beingexutbj We can study the in uence o the variation by the
to a disturbance (Abro and Mohamad-Saleh, 2012;parameters of the Automatic Voltage Regulator (AVR)
Subramanét al., 2012) The concept of two node power system is applied to

o ' simplify the mathematical model of power systerbrief

The dynamic of this power system are generally > g _ ; : I>
described by the following Ordinary Differential review of bifurcation theory is used to investigtitis study

Equations (ODE) Equation (1): and several important simulations results are ptede
X = (X, a) (1) 2. MATERIALSAND METHODS
where, XIR" corresponds to the state variable$) R is The configuration of the power system presentetig

the bifurcation parameter. In a power system liteeg  Study can be described Bjg. 1. The power system model

the package Matcont based on the continuation rdetho consists of two bus which is composed by a synciusn

and applied to analyse the voltage collapse. Tindysbf machine connected to a load modeled with active and

the continuation of equilibrium point in a two node reactive power components+®), a transformer and a

power system demonstrated the existence of a HopfAAVR, as cited in (JiaKuan and Xin, 2007).
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Fig. 1. Power system model for two bus

The Voltage equations including the transient
variation of machine flux linkages using a two-axis

X .
v|E (Rco® +Qsir)) =0

-E’dco§ + E'qsinS -Vlsine -

, . ; 4
referential frame can be written as Equation (2): E,Sirs + E Co§_vlcosﬁ_§(_pl sird +Q co) =0 )
a |
E =(E +(x. -X)N)/T _ _
d d g "d"a" q0 2) Through the analysis above, we can re-write the
E’q = ('Eq (g XN gt Eg) ! Tyo Equation (4) as Equation (5):
Where: &V, = -E,cosS + E,sins - V,sing - ’%(Pl cod + Q sirp)
E’'sand E; = Respectively the direct and the . . XE .
, E.,sind + E| cos - V,cosh - = (-R simd + Q cod) 5
quadrature transient voltages d a ! VI( d Q cos) ®)
lgand |, = Respectively the direct and the
quadrature currents Where:
T'gand Tq= The open circuit time constants § = The rotor angle.
Xgand Xy = Respectively the synchronous and the 1o make the system (2, 4) have the same behaviour
_ transient reactance in d-axe as system (2, 5), a very small singular factor x is
Xq = The synchronous reactance in g-axe introduced. Where we select x = 0.0001 When x ialsm
= = The field voltage.

enough, systems (2, 4) and (2, 5) are expectedcie h

similar system behaviours (JiaKuan and Xin, 2007).
The d-q components of the synchronous machine The excitation for the generator is given by thepat

current are defined by Equation (3): of the AVR given by the diagrain Fig. 2.

The AVRmodel is given by Equation (6):

lg=(-E, +V,sin@-0))/x .
q=( K ©-0))/xg 3) TaVe = VR + K A (E g - Eg~ (K(Efy /T ) +Ry)
4= (E, - Vicos -0)) / xg . . (6)
TeEy = Bq *VRTIR =-R +KEq /T
Where: Where:
Vg = The voltage regulator
Xg = Xy + X+ X, Ta = The time constant
Ka = The gain
xr and x are respectively step-up transformer reactance and e and s = Respectively the exciter time constant and
transmission line reactance &d 6 are respectively the the reference voltage set point
magnitude and the angle of the load bus voltage. Rrand T = Respectively the state and the time constant
The algebraic equations are written by Equation (4) K = The gain of stabilizing feedback loop
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Fig. 2. Structure of

Hence, our system has six nonlinear differential
equations so as his model is given by the following
system of Equation (7):

Eqy

= (B + (g -%y)lg) / Tog
0 = (B - (xg = X)lg + Egg) / T
VR = ('VR+ KA(Eref' Es'(KfEfd/Tf) * Rf))/TA
Eu = (Eq +VR)/ T (7)

Ry =(Rf +KEy /T)/T

'E:

V) = (-E,cos + E;sirb - Vjsind - 1 (R cod + Q sirp)
i ' XE :
+E,simd + cho§ - V|cod) - V] (-Rsid + Q cod)) /&

We consider the vector of the variables state X'z [
E'q VrREwR:V ] anda = R is the bifurcation parameter.

2.1. A Brief Review of Bifurcation Theory

The voltage stability is a non-linear phenomenod an
it is natural to use non-linear method to study the
parameters that it is very slowly and predicts haw
power system becomes unstable.

2.2. The Hopf bifurcation

At this point, there is an emergence of oscillatory
instability, two complex conjugate eigenvalues srdse
imaginary axis (Jazaeri and Khatibi, 2008). TheirgaHopf
bifurcation (supercritical or subcritical) is detenate by
the sign of the first Lyapunov coefficien{(d) of the
dynamical system. The coefficient can be computed a
follows: Suppose that the system (1) have as aitibegum
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a DC1 regulator

point (¥, a) and [A] the Jacobian matrix which has a
distinct pair of complex eigenvalues on the imagirais,
M, = Eiwg a good example. w0 and these eigenvalues are
the only eigenvalues of fpwith zero real parts. The Taylor
expansion of f(% o°) Equation (8):

f(x°, %) =[ A, x +1/2B(x,x) +¥ 6C(x,x,X) + f j (8)

where, B(x,y) and C(x,y) are symmetric multi-linear
vector functions of x,y,z1 R"
With components Equation (9 and 10):

Bi(xy)= Y 92f,(5.09) /004 L:oxky. 9)

k,m=1

n
C; (x.Y.2) =k|z 1azfj €001 050500 xnzm (10)
,m=

where, j=1, 2...n.

2.3. Limit Point or Saddle Node Bifurcation
(SNB)

At the saddle node bifurcation the stable and brlesta
equilibrium points coalesce and disappear thedahebian
matrix J =0f0x is singular, thus one of the eigenvalues (or
singular variables) must be zero (Fang and YartR)20

24. Limit Cycle

A cycle is a closed orbit (Ghaffardt al., 2009)
corresponding to a periodic solution with periodkT0) =
x (T). By the definition, in a neighborhood of mit cycle
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they are not other cycles Since T is not knowndveace,
it is customary to use an equivalent system deforethe
fixed interval [0, 1] by rescaling time Equatiorijl

{dx/dt -Tf(x,a) =0 (11)

x(0) = x(T)

A phase shifted functiop (t) = x (t + s) is also a
solution of the system (1) for any valuesofTo obtain a

when the fixed point changes stability via a paimplex
eigenvalues with unit modulus.

3.RESULTS

Using the parameters given ihable 1, we will
simulate and evaluate the analysis of dynamic gelta
stability of two node power systemiWWe show the
continuation of the equilibrium point x [0.39649

unique solution an extra constraint is needed. The1.01095 1.44761 1.44764 0.05567 0.9731] ard®7.

following integral constraint is often used Equat{d?2):
I
0

where, Xy is the derivative of a previous solution.

The stability of the branch of periodic solution
created from the continuation of the Hopf bifuroatis
determined by the monodromy matrix Equation (13):

éx(t),'xo|d fidt=0 (12)

i) - TF(x(1), 0)j(®) = 0,j(0) =1, (13)

2.5. Find Bifurcation of Limit Cycles (Period
Doubling PD)
The period doubling bifurcation is defining by the
following Equation (14) (Govaertt al., 2005):

dx/dt-Tf(x,a)=0
x(0)-x(1)=0

(14)

1
I(x(t),xo,d)dt: 0
0

G(x,T,a)=0

This is exactly the system defining limit cyclest bu
with one extra constraint G(xd),= 0.
where, G (x, T,a) is the solution of the following
Equation (15):

V() - T (x, V(D) + Gy, (1) = 0 v(0) + V(1) = 0 (15)

1
J'é\y(r),v(r)ﬁdr =1
0

2.6. Neimark-Sacker Bifurcation (SN)

The SN is the birth of the closed invariant curve from
a fixed point in dynamical systems with discretmdi
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The results are a Hopf Bifurcation point (labelad
H), two Saddle Node Bifurcation (labeled also byatiyl
a limit point bifurcation (labeled by LPFig. 3.

The detaliled results of each bifurcation point are
abstracts iffable 2. We can determin&he eigenvalues
of the bifurcations points to describe the stapiit these
points. The eigenvalues summarized Tiable 3 and
schematized bifig. 4.

3.1. Continuation of the Hopf Bifurcation

In the same condition, we draw the continuation in
the Hopf point.

Figure 5 indicates the time reponses of the voltage
VI, in the Hopf bifurcation point the system losis
stability and the excitation voltage presentedItz@n.

The continuation in Hopf bifurcation representraiti
cycles. So there are parentage of Neimark-Sackebea
represented b¥ig. 6, his period equal to 2.615936 and
his parameter equal to 8.785358e-001.

Table 1. The Parameters of a Power system model for two bus

Network parameters XT = 0.15 pu, xe = 0.3406 pu.
Machine parameters Xd =1 pu,
Xqg =1 pu,
X'd =0.18 pu,
Tdo=5s,
Tgq0=15s.
KA = 30,
TA=0.4s,
TE =0.56 s.

Voltage regulator parameters

0.5 =

VI (pu)

0.2

0 0.4 0.6

Pl (pu)

0.8 1

Fig. 3. Continuation of the equilibrium point
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When we simulate the continution in Hopf, we see Fig. 8. Continuation of the Hopf point in two axes
that the first Lyapunov coefficient a = 3.212180D@&t
is positive indicated that the Hopf bifurcation i
subcritical so it generates a limit cycle unstahke We represent the continuation of the limit point
shown inFig. 7 and 8. with liberate two parameters Pl and Ka, we found tw

S 3.2. Continuation of the Limit Point Bifurcation
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Zero Hopf (labeled by ZH) and a Bagdanov-Taknes
(labeled by BT) irFig. 9 and three Zero Hopf (labeled
by ZH) inFig. 10.

The BT bifurcation is a bifurcation of an equilitann

Applied 8ates 11 (4): 541-547, 2014

4. DISCUSSION

In Table 2, the first Lyapunov coefficient a

3.212181e-001, the Hopf bifurcation is positive iyipg

point in a two parameter fam"y of autonomous ODE a that there are |nStab|l|ty limit CyCIeS bifurcate

We can analyze the distribution of eigenvalues of

which the critical equilibrium has a zero eigenealof ) { | ] i
algebraic multiplicity (Perez-Londaai al., 2010). point bifurcation Table 3. In Hopf point, conjugate

Figure 9 and 10 represent the continuation of the €igenvalues purely imaginary. The other points have
limit point with liberate two parameters Pl and Ka SOME positive eigenvalues, so theses points a@&bies

which have as result two Zero Hopf type Neutral We used the matcont package based
Saddle (labeled by ZH) at x = [0.246293 0.634812 continuation method, we arr|v_ed to |dent_|fy the
1.149790 1.149790 0.044223 0.496083]with Pl = critical voltage and the various bifurcation poirtsd

2.089901, the second ZH is at: x = [0.225613 0.6675 (0 analyze the behavior of these points in a dycami
1.001060 1.001060 0.038502 0.462152 1.681792] withPOWer system. That it is difficult with another thed
Pl = 0.27542%nd a Bagdanov-Taknes (labeled by BT) of resolution such as Newton-Raphson that is uged i

on

at x = [0.206451 0.511255 0.879727 0.879727 0.08383 & load flow (Acha and Kazemtabrizi, 2010).
0.430007 1.384128] with Pl = 0.221489 and the
coefficient (a,b) = (2.836047e+000, 1.764005e+001).

3.3. Continuation in Zero Hopf Bifurcation (ZH)

The Zero Hopf Bifurcation (ZH) is a bifurcation of
an equilibrium point in a two parameter family of
autonomous ODE at which the critical equilibriunsha
a zero eigenvalue and a pair of purely imaginary

Power-voltage curve provides very important
information for voltage stability analysis (Kumkoat
2012), the importance appear in the results fouhdnwv
we analyse the continuation in Hopf, limit pointnda
zero Hopf bifurcation point.

e

eigenvalues (Perez-Londebal., 2010). —
In the continuation Zero Hopf, there are two o
bifurcation point HH at x = [0.352036 0.927452 0 02 04 g 08 1 1.2 14
1.710645 1.710645 0.065794 0.701325]=F).734401 Pl (pu)
and x = [0.392989 1.035336 1.909621 1.909621
0.073447 0.782913], Pl = 0.9151P%. 11. Fig. 11. Continuation in Zero Hopf bifurcation (ZH)
The HH is the Hamiltonian Hopf bifurcation, the ) )
collision of pairs of eigenvalues on the imaginaxys. Table 2. Bifurcation results -
X
H [0.4306791.0513781.732737, a=3.212181
_ 1 1.7327370.0666440.925803] 0.910066 e-001
= H [0.425481]1.1550842.173420,
E 0.3 H 2.1734200.0835930.837902] 1.127743
. BT H [0.37371.31122.690836
0 5 10 15 20 25 30 33 40 2.69080.103490.70359] 1.177072
Ka LP [0.3737421.3112212.690836, A=-5.880

Fig. 9. Continuation of the limit point bifurcation withblerate
the parameter Ka

1.5
=1
= 05 — 7H
7 £H
00 0.2 0.4 0.6 0.8 1 12 14
Pl (pu)

Fig. 10. Continuation in limit point bifurcation with libeta the
parameter Pl
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2.6908360.1034940.703594] 1.226435e-001

Table 3. Eigenvalues of the bifurcation points

Point

bifurcation Eigenvalues

H -622.1, -4.3429, -1.24882, -0.8201,
-1.8537e-008+2.43913, -1.8537e-008-2.43913

H - 5.4235+3.8268, -5.4235-3.8268, -1.4557,
-0.77209, 1.4557, 153.918

H -3.7495+2.9168, -3.7495-2.9168, -1.5010,
0.7533, 437.102

LP -2.9455+2.1289, -2.9455-2.1289, -1.5726,

-0.6830, -4.5715e-008, 1160.12
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