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ABSTRACT

Crude oil price forecasting is gaining increasedrngst globally. This interest is due mainly to de®nomic
value attached to the product. For this reason, foegcasting methods are proposed in the literatlings
paper proposes a novel technique for forecastindecoil price based on Support Vector Machines ($VM
The study adopts the data on crude oil price of tWesxas Intermediate (WTI) for its experimental
purposes. This is because many studies have pstyioged this same data and it will afford a common
basis for assessment. To evaluate the performantte anodel, the study employs two measures, RMSE
and MAE. These are used to compare the performaihte proposed technique and that of ARIMA and
GARCH methods for the most efficient in crude dilcp forecasting. The results reveal that the psepo
method outperforms the other two in terms of fosteacuracy while it achieved a forecast error.8684
that of ARIMA and GARCH were 0.9856 and 1.0134 esdjvely judging by their RMSE.
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1. INTRODUCTION

country and by extension the gross domestic product
(GDP). GDP has been defined by (Chrystal & Lipsay)

Forecasting crude oil prices is important as iectf
other key sectors of the economy including the kstoc
market. One of the important areas in economicarese
is forecasting the trend of price change of intdomal
crude oil. It is also a pointer in numerous indiestrifor
quick management intervention due to the
extreme fluctuations in the price of internatiocalide
oil. This makes it crucial to develop reliable mixdihat
would assist adequately in forecasting the fludtunabf
international crude oil price. This is aimed atilftating
the parties involved in taking appropriate actioravoid
associated risk. The increase in price of inteoma
crude oil and its daily changes does not only aftee
financial markets and economies, but it also affect
individuals too. This is because of price increafserude
oil impacts greatly on the price of petrol whichshits
attendant effect on goods and services producdtiein

the total goods and services produced in a coumthjn

a given year. The aforementioned reasons makes the
prediction of crude oil prices a very imperativakdo
decrease the impact of price fluctuations and tssis
policy makers and individuals to take informed demis

recentthat would help in coping with price fluctuationssing

from the energy markets. However, because of the
mentioned reasons predicting crude oil is not apkm
task. These have all made the prediction of thdenil
price a widely researched into area in the energy
market. The models found in the literature on crade
price forecasting include the popular Box-Jenkins
method as in (Liu, 1991; Chirat al., 2005; Agnolucci,
2009). Othermodels explored include GARCH-type
models as in (Ahmed and Shabri, 2013; Hou and Saudy
2012; Sadorsky, 2006). In this study, we attempt to
extend the models used in the study of crude ddkptio

Corresponding Author: Ani Bin Shabril, Department of Mathematical Sciendgsiversiti, Teknologi Malaysia,

Skudai, Johor, 81310, Malaysia

////4 Science Publications

425

AJAS



Rana Abdullah Ahmed and Ani Bin Shabri / Americanrdaatiof Applied Sciences 11 (3): 425-432, 2014

the realm of the artificial intelligence particdlar ~measures as Success Ratio, Heteroscedasticity
fitting a Support Vector Machine (SVM) to the foeest adjusted MSE, MAE and MSE.

such data of high volatility. Hou and Saudy (2012) an alternative approach
Section 2 that follows this introduction discusses jnvolving nonparametric method to model and

reviews of related works, Section 3 discusses theforecast oil price return volatility, the results
methodology in which we concentrate on the gemonstrate that the out-of-sample instability
mathematical formulations of the three methodshin t prediction of the nonparametric GARCH model defers
study and Section 4 discusses the results of theyeater performance qualified for a broad class of
findings, while Section 5 gives the conclusion bét parametric GARCH models

paper. Section 6 is devoted to acknowledgement in Ahmed and Shabri (2013) applied fited GARCH model

which we appreciated the assistance received fro . . . . .
corporate bodies and individuals towards making thin}0 crude oil spot prices. Th's was done in ordellustrate
the advantages of nonlinear models. In the study th

research come to light. X
authors fit three GARCH models namely; GARCH-N,
2. REVIEW OF RELATED LITERATURE GARCH-t and GARCH-G to crude oil spot prices. The
results revealed that GARCH-N model is the bestehod
Liu (1991) employed Box-Jenkins technique to study for forecasting for Brent while GARCH-G model isth
the dynamic relationships between US crude oilgxic  best for forecasting of WTI crude oil spot prices.
gasoline prices and the stock of gasoline with  Morana (2001) showed how the oil price allocation
transferring function models US, while Kumar (1992) can be predicted by using the GARCH propertiesilof o
used time series models to investigate and comip@e price changes over short-term horizons. He used a
forecast accuracy of future prices of crude oile Btudy  semi-parametric approach to oil price forecasting @
fit an ARMA (1,2) model as the best fit model and was based on bootstrap approach. According to
compared with future crude oil prices with. Marimoutouet al. (2009), the GARCH (1,1) -model may
The merits of ARIMA models are twofold provide equally good results when compared to sbaued

(Wang et gl., 2005). Initiall_y, ARIMA models are a set gARCH and Extreme Value Theory (GARCH-EVT).
of typical linear models which are proposed forlthear Sadorsky (1999) showed that oil price instability
time series and captured linear characteristithértime alarms have dissymmetrical effects on the financial

SEeries. _qusequently, the theoretical base of ARIMAsystem. The fluctuations in oil prices influenceaficial
models is ideal.

Chinnet al. (2005) studied the predictive content of gctivity, but_ quification in financial activity Isalittle
energy futures. They examined the relationship betw MPact on oil prices. _
spot and futures prices for energy commodities. An ~ Most recently, Support Vector Machine (SVM) a
ARIMA (1,1,1) was used for crude oil prices foretcas novel neural network algorithm, was developed by

Sadorsky (2006) showed that the out-of-sample Vapnik (1995) has gained significant inroad in fiedd
forecasts of a single equation GARCH model are bestof forecasting. Amongst the unique properties oVsV
for those of Vector Auto-regression, state space an IS thatitis opposed to the over-fitting difficyland can
bivariate  GARCH models, are more superior in draw model nonlinear relations in a stable andcfit
forecasting the futures prices of petroleum. Agooiu  Wway. Additionally, SVM is instructed as a curved
(2009) utilized diverse kinds of GARCH models and optimization —problem resulting in the global
mentioned instability models to predict daily WTI explanation that in many cases defers exclusive
future price instability, but the empirical results explanations. Initially, SVMs have been expanded fo
exposed that their performances were incompatiblecategorization tasks (Burges, 1998). SVMs have been
with regard to diverse measures and statisticéd tes expanded to resolve time series prediction and

Marzo and Zagaglia (2010) applied numerous nonlinear regression problems, with the introduciid
GARCH models to predict the instability of daily Vapnik's e-insensitive loss function and they show
futures prices of crude oil traded on NYMEX. The excellent performance (Huargal., 2005; Mulleret al.,
authors concluded they have not found a contingousl 1997). Derived from this standard, SVMs will
greater model based on diverse statistical tests ag  ultimately produce better simplification performanic
DM test, direction accuracy test and performancecomparison with other neural networks. Due to such
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benefits, SVM method has been used in the area ofvhere, y is the actual value ang and 6; are the
economic time series forecasting (Tay and Cao, 2001 coefficients, p and q are integers that are frefyen
2002; Kim, 2003; Huanget al., 2005). Whereas, in submitted to as autoregressivg,s the random error
comparing with customary neural networks, the at time t and moving average polynomials, in that
outstanding application of SVMs is derived from the order. Fundamentally, this method has three stages:
state that the modeled data should have definiteModel classification, parameter evaluation and
consistency. Accordingly, for the time series daith diagnostic examination. For instance, the ARIMA
changing dynamics, a particular SVM model could not (1,0,1) model can be characterized as follows
achieve well in capturing such dynamic and Equation (2):
unstructured input-output relationship intrinsic tine
economic data. Khashman and Nwulu (2011a) showedY; =8, + @y, ,+€,~ 0., (2)
an intelligent system that forecasts the crudepdie.
This intelligent system is derived from SVM, the Equation (1) demands some significant particular
outcomes gained were very hopeful as it establishedcases of the ARIMA family of models. If g = 0, théh)
that SVM could be utilized with a high accuracy in pecomes an AR model of order p. When p = 0, the
forecasting the price of crude oil. model decreases to a MA model of order g. One
Xiao-Lin and Hai-Wei (2012) adopt three basic essential task of the ARIMA model building is to
kernel functions of SVM to build the prediction m&dd  conclude the suitable model order (p, q). Accordimey
of the crude oil price, it used a particle swarm previous work, Box and Jenkins (1976) developed a
algorithm to optimize the parameters. The resulivsh  practical approach to building ARIMA models, which
the prediction model whose parameters have beemas the fundamental impact on the time series aisaly
optimized by a genetic algorithm. Khashman and and forecasting applications.
Nwulu (2011b) investigated and compared the Box and Jenkins recommended to apply the Partial
applying of a back propagation neural network and a Autocorrelation  Function (PACF) and the
SVM  to the task of forecasting oil prices and the Autocorrelation Function (ACF) of the sample dasa a
outcomes propose the neural networks can bethe fundamental tools to recognize the order of the
competently applied to forecast future oil priceshw ~ ARIMA model. In the classification step, data
minimal computational expenditure. transformation is frequently necessary to make the
time series stationary. Stationarity is an esséstage
3. THE METHODOL OGY in creating an ARMA model applied for predicting. A

In this Section, the paper discusses the threestatlonary time series is described by statistical

techniques that feature prominently in this stutllgese charactenstl.cs for mstance- the mean a.md the
are ARIMA, GARCH and SVM. Emphasis is laid on autocorrelation structure being stable ultimately.
how the proposed SVM technique would be While the experimental time series shows

implemented in crude oil price forecasting. heterqscedas.ticity and trend, power tran.sfprmation
) and differencing are used to the data to elimirithge
3.1. ARIMA Modeling trend and to become constant the variance befare ca

Box and Jenkins (1976) introduced the ARIMA DPe fitted an ARIMA model.
model and ever since then the method has turnetbout 32 GARCH Modeling
be one of the most famous approaches to predicTing.

future value of a variable in an ARIMA model is = 1"€ ARIMA (p, d, q) model cannot capture the
presumed to be a linear combination of past erao heteroscedastic outcomes of a time series procedure
past values, stated as follows: characteristically examined in the shape of high

kurtosis, or gathering of volatilities and the irdhce

effect. Engle (1982) initiated the Autoregressive
1) Conditional Heteroscedastic (ARCH) model, afterward
e =08 0L ,— "B Bollerslev (1986) generalized it thus the name

Ve =0+ QY 1t Y ot QY
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Generalized Autoregressive Conditional networks. Furthermore, the SVMs models create the
Heteroscedastic model (GARCH). The term revert function by concerning a set of high
“conditional” implies the level of association ohet dimensional linear functions. The SVM regression
past sequence of observations and the “autoregedssi function is formulated as follows Equation (5):
describes the feedback mechanism that incorporates

past observations into the present (Latal., 2011). y(x) =wa(x) +b (5)
The variance equation of the GARCH (p, q) model
can be expressed as Equation (3 and 4): where, ®(x) is named the feature, which is nonlinear
planed from the input space x. The coefficientsnd b
€ =20, 3) are evaluated by minimizing Equation (6 and 7):
Z~¥(0,2)
R(C)= Co 3, Le(d oy )+ o] v (6)

P p
ol =w+ Y aigl, +) Bioy,
i=1 =1

=w+a(B)el, + B(B)oxz—j

“) d-yl-¢ [d-y ¢

0 others

L(di,y)= { (7)

where, ¥, (0, 1) is the likelihood density function of

the residuals or innovations with unit and zero mea wnere, both C and are prescribed parameters. The
variance. Intentionally, T are extra distributional first term L(d;, y;) is named thee-intensive loss

parameters to explain the shape and the skew of theunction. The dis the actual stock price during the ith
distribution. The GARCH model can be reduced to the period. This function shows that errors below ao¢ n

ARCH model if all the coefficienfsare zero. Similar

to ARMA models a GARCH requirement frequently
guides to a more economical representation of the o 1
chronological dependencies and therefore presents 41& eémpirical error. The next tern,

comparable additional flexibility over the linear of the function. C assesses the trade-off betwéen t
ARCH model when parameterizing the conditional f5tness of the model and the empirical ri§kand £*
variance. Bollerslev (1986) has demonstrated that t \yere introduced as the positive slack variablesichvh
GARCH (p, q) procedure is wide-sense stationary if signify the distance from the actual values to the

penalized. Also the termQ(V N)ZN: L, (d;,y )measures
i=1

wl’is the flatness

the following conditions hold: corresponding boundary valuessfube. Equation (4)
is converted to the following constrained formation
e E()=0 Minimize:
wW
. var(e, )=

-a0-BO) L
«  cov, £,),t# sifandonlyif (I (LK : R(W.g &) =2ww+C (Tl o) (8)

The simple GARCH (1, 1) model has been  Subjected to Equation (9 to 11):
established to offer a good demonstration of aaresive

diversity of volatility procedures in most applicats, w@(x,)+b —d <e+& (9)

(Bollerslevet al., 1992).

3.3. Support Vector Machines d —wo(x )-h <e+§ (10)
Vapnik (1995) proposed the Support Vector . _

Machines (SVMs). According to the Structured Risk where & = 0,i= 1,2,...,0 (11)

Minimization (SRM) principle, SVMs look for
reducing an upper bound of the generalization error Finally, introducing Lagrange multipliers and
rather than the empirical error as in other neural maximizing the dual function of Equation (8) we dav
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R@, ~a)=3d @ -6 )-e> @ )

(12)

1 N N . X
_E;jzl(ai _aj)x(ai _GJ)K(Xi ,Xj)

With the constraints Equation (13 to 15):
N
(@, -a;)=0 (13)
i=1
O<a, <C (14)
0<a <C
-y (15)
i=1,2,...,N

In Equation (12),0; and a; are called Lagrangian
multipliers. They satisfy the equalities Equatidg);

ol =0
a; " O (16)

f(x,a,a*)zll @, —o )K(x,% )+ b

Here, K(x, %) is named the kernel function. The
amount of the kernel is equivalent to the innerduat
of two vectors x and xin the feature space(x;)
and @(xj), such that K(x, 3 = @x)*@(x;). Any
function that fulfilling Mercer’s condition Vapnik

(1995) can be applied as the kernel function. The

Gaussian kernel function:

K(x;.X;) :exp(—Hx - X HZ /sz)

scenario, testing and validating data require data
collection. Although, the data collected from aieayr

of sources must behosen along with the equivalent
norms. Sample preprocessing is the second phase tha
comprises of two steps: First step involves data
normalization and second step is data divisionthin
process of developing any model, familiarity witret
accessible data is one of the greatest significance
SVM is no exception to this rule, as well; data
normalization n can influence model performance
significantly. Subsequently, data collection shobkl
divided into two sub-sets: First in-sample data and
second out-of-sample data which are applied for
model development and model evaluation in that
order. SVM training and learning is the third phase
This phrase comprises three major tasks:
Determination of SVM architecture, sample training
and sample validation, which is the center procedur
of the SVM model.

[ Data sample ]

4

[ Data selection ]

v

[ Data normalization
l Data division }

v

Determination of SVM
architecture division

)

v
Is specific in this study. The SVMs were used to [ Sample training ]
evaluate the nonlinear behavior of the predictiatadset v
because Gaussian kernels aim to present good ~
performance under common efficiency assumptions. Sample
validation
3.4. Proposed SVM Implementation L )
The flowchart of the proposed SVM technique is v ~
shown inFig. 1. This gives a vivid illustration of the Simulation and
procedure for expanding an SVM for time series prediction
predicting. The flowchart irFig. 1 can be split into \ J

four phases. The first phase is data sampling. To

expand an SVM model for a predicting training,
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SVM-based crude oil price forecasting involves four foundation of many crude oil price codes. The crude

steps: oil price data utilized in this study are daily dand

are generously available from the energy informatio

« Data sampling. For this research various data caredministration (EIA).The data covers the period
be collected, for example NYMEX, WTI. Data January 1, 1986 to September 30, 2006, thereby
collected can be classified into diverse time 9iving a total of 5237 observations. The data is
scales: Daily, weekly and monthly. For daily data, presented irFig. 2. A difference in unit can result in a
there are a variety of missing points and differ_er?ce indata magr_litude, which tends to affect
inconsistencies for the marketplace has beenPrediction accuracy in the long run. The
blocked or stopped because of unexpected eVemglormahzatlon processing can resolve this issuehis
or weekends. Consequently, weekly data andStUdy_’ the data_ was normalized t(.) a scalable raige
monthly data should be approved as alternatives [0.1] in th? tralnlng_se.t and prediction set, usihg

» Data preprocessing. It may require to be transfdrme normalization equation:
the collected oil price data into a definite suliéab
range for network learning via logarithm
transformation, variation or other methods. After
that the data should be split into out-of-sample&ada
and in-sample data 3.6. Evaluation of Volatility Forecasts

e Training and Igarnmg. In this step_the training This study adopted two very popular measures for
results determine the SVM architecture and gy5)yating the forecast accuracy of the series and
parameters. There are no norms in choosing thehese are: Mean Absolute Error (MAE) and Root
parameters other than a trial-and-error basishi; t Mean Square Error (RMSE). These measures are
study, the RBF kernel is applied because the RBFevaluated by assessing their returns. The one thith
kernel tends to provide good performance underlowest error measure is judged the best. These

Xn = (XI _X min)/ (X max _X min)

The normalized data is shownHig. 3.

common softness assumptions measures are defined as follows.
« As aresult, it is particularly constructive if eatra Mean Absolute Error (MAE) is given by:
information of the data is accessible. In conclasio
an acceptable SVM-based model for oil price MAE :%il (Xt _X)z ey
t=1

predicting is attained.
» Future price forecasting

80

Selecting corresponding SVM parameters is the \
modeling: Kernel function and penalty factor c, eHni 10 I
influence significantly on the predicting outcomes. g4 -
Statistical software was used to create evaluation i
among sigmoid kernel function, radial basis funetio 30-
kernel function and polynomial kernel function. In . ﬁ
conclusion, the radial basis function was seledted \ f
the high prediction accurateness and concurrently 30- Jlk# Hw//j
through many trials of the parameter computation. 20 A A‘I | A‘“’M\'\. A WA f,ﬁ ¥
3.5. Data i W v Wy

For this study, the West Texas Intermediate (WTI)

crude oil spot price was adopted for experimental 1000 2000 3600 4000 5000

purposes. The reason of choosing the oil pricessign
that, the crude oil prices are the most well-known
standard prices, which are extensively appliedhat t Fig. 2. The time series for WTI daily
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Scatter plot of Var 1 against Var 2
Spread sheet2 2v#5235¢
Var 1 =0.3235-0.0108%x:0.95 pred int.

0.8

Var |

-0.2
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Var 2
Fig. 3. The normalized data for WTI
Table 1. The evaluation of forecasting results for WTI crude 4. CONCLUSION
oil price
Methodology RMSE MAE In this study a novel approach based on artificial
ARIMA 0.9856 0.7204 intelligence for crude oil price modeling is propdsThe
GARCH 1.0134 0.7392 proposed technique forecast accuracy performance wa
SVM 0.8684 0.6304 evaluated using two measures of error RMSE and MAE
o and compare with some other well-known techniques i

and Root Mean Squared Error (RMSE) is given by: crude oil spot price forecasting like ARIMA and GER.

The results reviewed that the proposed SVM method

1k 2 L \H? outperforms the others. The study therefore recamsie
RMSA:[N;((Xx -X) -7, )} that the proposed SVM method be employed in futire
) crude oil price forecasting.
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