
American Journal of Applied Sciences 11 (10): 1743-1756, 2014 
ISSN: 1546-9239 
© 2014 K. Wisaeng et al., This open access article is distributed under a Creative Commons Attribution  
(CC-BY) 3.0 license 
doi:10.3844/ajassp.2014.1743.1756 Published Online 11 (10) 2014 (http://www.thescipub.com/ajas.toc) 

Corresponding Author: K. Wisaeng, Department of Computer Science, King Mongkut’s Institute of Technology Ladkrabang, 
Bangkok 10520, Thailand 

 
1743 Science Publications

 
AJAS 

THE CLINICAL APPLICATIONS FOR AUTOMATIC 
DETECTION OF EXUDATES 

1K. Wisaeng, 1N. Hiransakolwong and 2E. Pothiruk 
 

1Department of Computer Science, 
King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand 

2Ophthalmology Unit, Khonkaen Hospital, Khonkaen 40000, Thailand 
 

Received 2012-10-22; Revised 2014-04-10; Accepted 2014-09-17 

ABSTRACT 

Nowadays, the retinal imaging technology has been widely used for segmenting and detecting the 
exudates in diabetic retinopathy patients. Unfortunately, the retinal images in Thailand are poor-
quality images. Therefore, detecting of exudates in a large number by screening programs, are very 
expensive in professional time and may cause human error. In this study, the clinical applications for 
detection of exudates from the poor quality retinal image are presented. An application incorporating 
function, including retinal color normalization, contrast enhancement, noise removal, color space 
selection and removal of the optic disc, was also designed to standardize the workflow of retinal 
analysis. Afterward, detection of exudate based on optimal global thresholding and improved adaptive 
Otsu’s algorithm was applied. Two experiments were conducted to validate the detection performance 
with local databases and a publicly available DIARETDB1 database. The first experiment showed the 
average sensitivity, specificity and accuracy of 93.8, 95.3 and 94.9%, respectively. The cross 
validation results of the second experiment, 60% (53) of the retinal images were used for training and 
40% (36) for testing, the sensitivity, specificity and accuracy are 84.2, 85.9 and 85.2%, respectively. This 
result indicates the proposed clinical application provides an effective tool in the screening of exudates. 
 
Keywords: Exudates, Retinal Image, Optimal Global Thresholding, Improved Adaptive Otsu’s Algorithm  

1. INTRODUCTION 

Exudate is the leading cause of blindness in the 
population around the world, especially in developing 
countries. Health care costs from exudates are also 
increasing around the world. Many patients are unaware 
of the problem before it diagnosed. With an automatic or 
semi-automatic application, the expert ophthalmologist 
demonstrates the existing problem to the patient, which 
make it faster and more easily. Therefore, the rapid 
increase of automatic application for detection of exudates 
has been presented. Sanchez et al., (2010) presented a 
method to detect of exudates by thresholding algorithm 
based on a global or dynamic gray level analysis. 
Sinthanayotin et al., (2002) describe a method based on a 

standard region growing to find the exudates, which is 
computationally expensive. A method based on template 
matching and edge detection was proposed by (Goldbaum, 
1989; Goh et al., (2001) presented the minimum distance 
discriminant technique directly in Red, Green and Blue 
(RGB) color space to detect of exudates pixel. A number 
of attempts have been made to use machine learning to 
automatically locate manifestations of exudates. Some of 
unsupervised methods such as Principal Component 
Analysis (PCA) by (Li and Chutatape, 2004), k-means 
clustering by (Sopharak et al., 2010, Osareh et al., 2002) 
and Gaussian mixture models by (Sanchez et al., 2009). 
Example of supervised learning algorithms has also been 
attempted, including Neural Networks (NN) by 
(Osareh et al., 2009; Garcia et al., 2009), naive bayes 
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classifier by (Wang et al., 2000; Sopharak et al., 2012) 
and Support Vector Machines (SVM) by (Zhang and 
Chutatape, 2005; Chutatape et al., 2004). Wang et al., 
(2003) used Fuzzy C-Mean Clustering (FCMC) to 
segment retinal image and then used NN with a train 
dataset and then used SVM to separate exudates and 
non-exudates areas. The applications work well only 
Luv color space. For poor quality retinal image, the 
evaluation performance is low. Mathematical 
morphology has been used to detect contours typical of 
exudates (Walter et al., 2002). This technique achieved 
predictive and sensitivity values are 92.4 and 92.8% 
against a set of 15 abnormal retinal images. The Back 
Propagation Neural Network (BPNN) has been used for 
the segmentation of exudates (Gardner et al., 1996). 
Comparing the results of BPNN technique with the 
expert ophthalmologist, the technique achieved 
sensitivity and specificity for the detection of exudates 
are 88.4% and 83.5%, respectively. A drawback of 
this technique was that did not work well with a poor 
quality retinal image. Sanchez et al., (2004) combined 
color and shape edge features to detect of exudates. They 
found yellowish objects and then they found sharp edges 
using various rotated versions of Kirsch masks on the 
green component of the original image. These techniques 
are highly sensitive to image contrast. Vijaya and Suriya, 
(2010) used mathematical morphology for extraction of 
exudate, blood vessels and optic disc. The one main 
problem of mathematical morphology technique is the 
size of structuring element suitable for train image is not 
be suitable for another test image. Overall, most of these 
attempts have been performed for detection of exudates, 
but they have limitations. Quality of retinal images affects 
the result of exudates and non-exudates by using 
unsupervised learning, while supervised learning techniques 
require intensive computing power for training and 
segmentation process. Therefore, we proposed a novel 
method for the detection of exudates based on the combine 
of Optimal Global Thresholding (OGT) and Improved 
Adaptive Otsu’s Thresholding (IAOT) algorithm. We train 
OGT algorithm to label individual pixels of the retinal 
image and then make an aggregate decision over the 
entire image based on the pixel level predictions by 
using IAOT algorithm. Our initial evaluation results are 
promising with regard to the prospect of developing a 
long term and robust algorithm. The rest of the paper is 
organized as follows: Section 2 provides a more 
thorough overview of the patient images, ground truth 
and their approach to tackling exudates. Section 3 
explains an automatic detection of exudates and how it 
can be recognized. Section 4 describes our validation of 
exudates recognition. Section 5 and 6 describe the 
results and conclusions of our efforts. 

2. PATIENT IMAGES AND GROUND 
TRUTH 

A necessary tool for reliable evaluations of the 
algorithm is a database of high quality retinal images 
which are representative of the problem and have been 
verified by expert ophthalmologists. An accurate 
algorithm should take the retinal image as input and 
produce output, which is consistent with the ground 
truth. In the following, we describe the local databases 
and public database (Kalesnykiene et al., 2014) for 
benchmarking the performance algorithms. 

2.1. Local Databases  

The database consists of 1,220 digital retinal images 
of which 252 are non-exudates (normal) and 968 
contain signs of the exudates (abnormal). The images 
were taken by the local hospital with single 45 degree 
Field Of View (FOV) digital retina camera and stored 
in JPEG format with lowest compression rates. Each 
image was captured using 24 bit per pixel at a 
resolution of 760×570 pixels. As can be seen, a normal 
image mainly consists of vascular, optic disc and the 
background (Fig. 1A), but the abnormal image 
indicates exudates components is shown in Fig. 1B. 

2.2. DIARETDB1 Databases 

The publicly available DIARETDB1 databases 
consist of 130 retinal images of which 108 contain 
signs of the exudate and 22 are non-exudate and it has 
the ground truth image collected from expert 
ophthalmologists. The image was taken in the Kuopio 
University Hospital with multiple 50 degree FOV 
digital retina camera with a varying imaging setting 
controlled by the system. The retinal images contain a 
varying amount of imaging noise, but the optical 
aberrations are the same. The images are Portable 
Network Graphics (PNG) format from where metadata 
and each retinal image in the database is accompanied 
by a text file that lists the diabetic lesion type in the 
image such as hard exudates, soft exudates, red small 
dots, neovascularisation and hemorrhages. 

2.3. Ground Truth 

For the medical image research, the more important 
to ensure that the automatically extracted exudate 
findings marked by expert ophthalmologists, that is, they 
appear at the same location in the image. Therefore, the 
ground truth is important to this study.  
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 (a) (b) (c) (d) 

 
Fig. 1. Example of color retinal images, (A) a typical normal retinal image; (B) abnormal retinal image containing exudates; (C) 

ground truth image show healthy eyes; (D) ground truth image with containing exudates (white value denotes 
 

To obtain a ground truth image, for each image, we 
used images processing software to hand label candidate 
exudates regions, then we asked the expert 
ophthalmologists to verify or reject each candidate of 
exudates region. Then, this first draft image is shown to 
experts ophthalmologists together with the original 
image. The expert then made some changes in adding 
some missing exudates pixels and/or removing some 
misunderstood non-exudates pixel until it is accepted by 
expert ophthalmologists. Examples of ground truth 
images of normal retinal images and retinal image 
containing exudates as shown in Fig. 1C-D.  

3. AUTOMATIC DETECTION OF 
EXUDATES 

Two main for proposed algorithm, its accuracy in 
comparison to ground truth and its speed performance of 
use a poor computer performance. The detection 
technique entails training based on OGT to recognize of 
exudate in retinal images. For training databases, 200 
unlabeled images from local hospital. In addition, we 
labeled another 53 retinal images at the DIARETDB1 
databases. Afterward, we focusing on the detection of 
exudate based on IAOT is presented. The positive value 
denotes the least one exudate in retinal images and a 
negative value denotes the lack of any exudates. 

3.1. Pre-Processing of Color Retinal Images 

Typically, one main problem in the detection of 
exudates is the wide variability in the color of retinal image 
from different patients and different time (Fig. 1A-B). To 
obtain a retinal image suitable, we put the original retinal 
image through four preprocessing stages before 
commencing the detection of exudates. 

3.1.1. Histogram Warping (HW) 

The color of exudates in some region of retinal 
image may appear dimmer than the background color 
of other regions. 

Therefore, the color of exudates can wrongly be 
detected as the background color. In this stage, HW is 
used to alter the overall color scheme of an image. The 
HW (Grundland and Dodgson, 2005) is a new histogram 
matching technique for use in color imaging, it’s the 
transformation of one histogram into another by 
remapping to the reference image distribution through 
HW algorithm. If the mapping Tr (v) for observed image is 
computed similarly then the intensity value v can be 
mapped to the reference image and defined as Equation 1: 
 

( ) ( )r rv
T v p v dv= ∫  (1) 

 
where, v is a continuous random variable supposed to take 
values in [0, 1], Pr(V) is the reference images probability 
density function with respect to an intensity value v then 
mapping Tr(V) (Coltuc et al., 2006). Example of HW with 
retinal image is shown in Fig. 2. 

3.1.2. Adaptive Local Mapping Algorithm 
(ALMA) 

From the previous section, the retinal image quality has 
a great impact on the features of exudates. However, the 
contrast is decreasing as the distance of pixels from the 
center, especially in the periphery. In this stage, we applied 
ALMA (Zhang and Kamat, 2008) to show all possible 
intensities and transformed of the values inside small 
windows in the image in a way that all values are 
distributed around the local mean. The ALMA is defined by 
Equation 2: 
 

( )
( )

min
out

max min

log L Ψ - log(L Ψ)
L =

log L - lo (L

+

g )+Ψ

+
 (2) 

 
where, Lout is the nonlinear output intensity image, Lmax 
and Lmin are the maximum and minimum values of 
intensity within the whole image. We set Ψ equal the 
average intensity of the image, can defined as Equation 3: 



K. Wisaeng et al. / American Journal of Applied Sciences 11 (10): 1743-1756, 2014 

 
1746 Science Publications

 
AJAS 

( )( )
yx

ave

x=0 y=0

1
L =exp log L x, y

M

 
 
 
 
∑∑  (3) 

 
Let Lave is the average of log encoded pixels, x, y 

represents the location of each pixel within window. The 
number of pixels in the intensity image, an order tern (x, y) 
of integers x, y is pixel within window, 0≤x <X and 0≤ y< Y. 
The size of window (M) should be chosen to be large 
enough to contain a statistically representative distribution 
of the local variation of pixels. In this study, the window 
size was empirically set to 69×69 for our image 
processing, although the other values may be also 
appropriate. After a local tone mapping, the class of center 
surround functions by Gaussian function (G) is used and 
expressed as Equation 4: 
 

2 2 21
G(x,y)= exp( (x +y )/2 )

2π
σ

σ
−  (4) 

 
where, σ2 is the size of G and it is small when the 
contrast is already high, while if the fixed it σ2 is large 
provide less increase enhancement in local contrast. In 
this stage, σ2 is fixed as 0.05. Fig. 3 gives some cases of 
retinal images treated with ALMA. 

3.1.3. Noise Removal 

While the ALMA improves the contrast of exudates, 
it may also enhance the contrast of some non-exudates 
pixels (e.g., noise or artifact). These pixels can wrongly 
be detected as exudates. Therefore, after process the 
local mapping enhancement, Median Filtering (MF) is 
used to remove noise from images. 

The benefit of median filtering is simultaneously at 
removing noise while preserving edges. The MF works 
by moving through the image pixel by pixel, replacing 
each value with the median value of neighboring pixels. 
The MF algorithm is defined as (5), which proposed by 
(Kirchnera and Fridrich, 2010) Equation 5: 
 

(K+1) (m)
x

(K) (K+1)

X X ,      for N =2K+1
med( )=

1 X X ,  for N =2K2

=


+

 (5) 

 
The median value (med(x)) is a set of random 

variables X, the order statistics X1 ≤ X2,…, ≤ XN are 
random variables, m = 2K+1 denotes the median rank. 
For a grayscale input image with intensity values xi, j, the 
2D MF is expressed as Equation 6: 

( )i, j i+r, j+s
(r, s) W

y med x ,
∈

=  (6) 

 
where yi, j denotes the processed center pixel location, 
i refers to the vertical direction and j refers to the 
horizontal direction, W is a window over which the 
filter is applied. For the rest of this study, we assume 
symmetric square windows of size M×M with M = 
2L+1. This is probably also the most widely used from 
of this filter. 

3.1.4. Color Space Selection 

The RGB color space is widely used throughout 
computer graphics. However, there are several 
different color spaces in the literature and each has its 
own advantages. To select the most suitable color 
space, a quantitative analysis and applied a metric J to 
evaluate the performance of various color spaces 
(Osareh et al., 2009). The metric J represents the 
overall color difference of exudates and non-exudates 
pixels can be obtained as Equation 7: 
 

b

w

S
J = trace

S

 
  
 

 (7) 

 
where J is the overall color difference of exudates and 
non-exudates pixels, while the denominator denotes the 
variations of the color distribution for these two classes. A 
value of Sw represents the within-class scatter matrix 
indicates the distribution of pixels around their respective 
mean vectors while Sb represents the scatter of samples 
around the mean vector of class mixture. In this stage, we 
have experimented with various color spaces such as 
RGB, YIQ, HIS, HSL, Lab and Luv color space, it is 
obvious that Luv color space the most appropriate space 
for retinal image segmentation. Therefore, RBG color 
space was transformed into Luv space in this stage. 

3.2 Removal of the Optic Disc 

As in several previous works (Sopharak and 
Barman, 2009; Ravishankar and Jain, 2009) presented a 
method to remove the optic disc to detection of 
exudates, but they have limitations. Poor quality images 
have affected the result of detection of optic disc and 
require intensive computing power for detection. 
Therefore, to prevent the optic disc from interfering 
with exudates, a combine of morphology operator and 
Otsu’ algorithm by our proposed is used (Wisaeng et al., 
2014a), unlike previous attempts. 
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 (a) (b) (c) (d) 
 
Fig. 2. Color normalization based on HW, (A) original image, (B) reference image histogram, (C) poor quality retinal image 

histogram, (D) normalized image histogram 
 

 
 (a) (b) 
 
Fig. 3. An example of retinal image that needs an adaptive local mapping algorithm, (A) image after color normalized, (B) image by 

using ALMA 
 

4. VALIDATION OF EXUDATES 
RECOGNITION 

The performance of all algorithms is measured by 
sensitivity and specificity. Sensitivity and specificity of 
the test sets are calculated using discriminant analysis 
of exudates and non-exudates. These criteria quantify 
the algorithm performance according to the True 
Positive (TP, a number of exudates pixels that are 
correctly detected), False Positive (FP, a number of 
non-exudates pixels that are wrongly detected as 
exudates pixels), False Negative (FN, a number of 
exudates pixels which are not detected) and True 
Negative (TN, a number of non-exudates pixels that are 
correctly detected as non-exudates pixels). These two 
values are defined as Equation 8 and 9: 
 

TP
Sensitivity (SN) = 

TP + FN
 (8) 

 
TN

Specificity (SP) = 
TN + FP

 (9) 

So “SN” in this study is defined as percentage of 
exudates pixels correctly detected and “SP” is defined as 
percentage of non-exudates pixels correctly detected as 
non-exudates pixels. Also “AC” is overall per-pixel 
success rate of the algorithms. The accuracy value was 
derived using the following Equation 10: 
 

TP + TN
Accuracy (AC) = 

TP + FP + FN + TN 
 (10) 

 
5. DETECTION OF EXUDATES 

We analyzed the performance of several algorithms 
to select the one with the most accurate results to 
compare with the new proposed algorithm. We choose 
four algorithms from our previous work to detect of 
exudates, FCMC algorithm (Wisaeng et al., 2014b), 
FMM algorithm (Wisaeng et al., 2014a), an SVM 
classifier (Wisaeng et al., 2013) and naive bayes 
classifier to towards our detection of exudates task. To 
have a fair comparison between different algorithms, 
all feature in preprocessing of the retinal image stage 
are kept for all algorithms. 
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5.1. FCMC Algorithm 

Six features from the image preprocessing stage are 
experimentally selected as input for FCMC algorithm. To 
determine the suitable number of clusters for FCMC 
algorithm, quantitative experiments with a parameter of a 
number of clusters varying from two to eight clusters are 
tested. The approximate time taken to running the whole 
process for each image with the number of clusters is 2, 3, 
4, 5, 6, 7 and 8 are 0.4, 0.58, 1.41, 2.15, 3.01, 4.15 and 4.52 
min, respectively. With the number of cluster equal 8, the 
SN, SP and AC are 96.70, 71.40 and 79.00%, respectively. 

5.2. FMM Algorithm 

In this experiment, we combine both FCMC 
algorithm and Mathematical Morphology Operator 
(MMO) for detection of exudates. The retinal image is 
coarse segmented based on FCMC algorithm and then 
fine segmentation by using MMO is applied. The results 
from section 5.1 are selected as the input for 
segmentation of the exudates; a fine segmentation using 
MMO is used to get a better result. Each image takes 
approximates 4.52 min for FCMC algorithm and another 
0.6 min for MMO. After fine segmentation, most of the 
detected of exudates regions are true exudates pixels. It 
found that FMM algorithm detects of exudates 
successfully with values of SN, SP and AC are 92.06, 
92.92 and 92.49%, respectively. 

5.3. Naive Bayesian Classifier 

We first estimate the model from a training set using 
all features, then evaluate the resulting classifier 
performance on a separate test set. The resulting 
classifier had an overall per-pixel SN, SP and AC of 
97.20, 85.40 and 85.60%, respectively. 

5.4. SVM Classifier  

We use normalized images, enhance image with 
contrast, filter images for noise, remove the optic disc, 
extract local features describing pixels or regions and 
then classify those features using a model built from a 
training set. For the SVM classifier, after feature 
selection achieves an overall per pixel SE of 84.53%, SP 
of 94.19% and an overall AC of 91.86%. 

5.5. Combination of OGT and IAOT  

From the previous section, the advantages of FCMC 
and FMM algorithm are a straightforward implementation 
and the ability to model uncertainty within the data. 
However, one main weakness of the this algorithm is that 

required many features or predetermined parameters. 
While the disadvantage of naive bayes and SVM classifier 
is to take a time to training process. Therefore, we aim at 
developing a better knowledge base to deal with the 
number of clusters and reduce the computation time. This 
study proposes a new algorithm call the OGT and IAOT 
algorithm. The feature of the OGT and IAOT algorithm is 
illustrated using a part of Global Thresholding (GT) 
algorithm and Otsu’s Thresholding (OT). Next, we review 
the theories in GT and OT algorithm and then studies in 
detail the speed of the OGT and IAOT for detecting of 
exudates. All the relation is very important in our study. 

5.5.1. Recognition of Exudates Based on the GT  

To classify the segmented pixels into non-exudates and 
exudates, the candidate regions of exudates were conducted 
using coarse segmentation based on the GT. The GT is used 
to extract a lesion from its background by assigning an 
intensity value (T) for each pixel such that each pixel is 
either classified an exudates point or a background point 
(Gonzales and Woods, 2002). A thresholding in a function 
of T is defined as an Equation 11: 
 
T=T x,y,p(x,y),f(x,y) ;

Global,     if T is a function of f(x,y)

Local,       if T is a function of both f(x,y)

                and local properties p(x,y) 

Adaptive, if T depends on the coordinates (x,

  

y)

 (11) 

 
where f(x,y) is the gray level of point (x,y) and p(x,y) 
denotes some local property of this point. The simplest 
of all thresholding techniques is to partition the image 
histogram by using a single and multiple global threshold 
T, is displayed in Fig. 4. 

Histogram shape can be useful in locating the 
threshold. However, it is not reliable for threshold 
selection when peaks are not clearly resolved. 

Choosing a threshold in the valley between two 
overlapping peaks and some pixels will be incorrectly 
classified by the thresholding. One way to overcome the 
uneven illumination problem is to first estimate the 
uneven illumination and then correct it rectification. 
Upon correction, OGT can be employed and composed 
of the algorithm the following steps: 
 
• Select an initial estimate of T 
• At step t, compute t

Bµ and t
Eµ as the mean 

background and exudates, respectively, where 
segmentation into the background and exudates at 
step t is defined as Equation 12: 
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∑
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• 3. Compute a new T by Equation 13: 
 

( 1)

2
B E
t t

tT
µ µ+ +

=  (13) 

 
T(t+1) now provides an updated background and 

exudates distinction 

• 4. If T(t+1) = T(t), stop; otherwise return to step 2. 

A simple program that uses the OGT is linked to below. 
Here, source images is initailly resized to fixed image size 
of 500×500 pixels. Resized image is Luv color space. 
Afterward, u color space is extracted from resized image 
because retinal images are almost always saturated in the L 
color space and have very poor contrast in the v color space. 
 
% First program with fix threshold 
 img_o = imread(‘retinal.jpg’); 
 img_o = imresize(img_o, [500 NaN]); 
 img_o = double(img_o); 
 img_o = img_o./255; 
 img = rgb2luv_(img_o); 
 imshow(img_o); 

% histrogram 
 his_1 = img_o(:,:,1); 
 his_2 = img_o(:,:,2); 
 his_3 = img_o(:,:,3); 
 figure; imhist(his_1); 
 figure; imhist(his_2); 
 figure; imhist(his_3); 
% L is not change 
 img_l = img_o(:,:,1); 
 img_l(find(img_l<=1)) = 1; 
 % u is change 0-0.50 
 img_u = img_o(:,:,2); 
 img_u(find(img_u<=0.46)) = 1; 
 % v is not change 
 img_v = img_o(:,:,3); 
 img_v(find(img_v<=1)) = 1; 
 figure; 
 imshow(img); 
 

Figure 5B shows the result of applying the global 
threshold to Fig. 5A. In OGT, a criterion function is 
devised that yields some measure of separation 
between regions. 

A criterion function is calculated for each intensity and 
that which maximizes this function is chosen as the 
threshold. The OT chooses the threshold to minimize the 
intraclass variance of the threshold black and white pixels. 

 

 
 (a) (b) (c) (d) 
 

Fig. 4. (A) image after optic disc localized, (B) histogram of L channel, (C) histogram of u channel, (D) histogram of V channel 
 

 
 (a) (b) 
 

Fig. 5. Detection of exudates (A) image after optic disc detected (B) thresholding of yellowish objects (exudates) 
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5.5.2. Seed Segmentation of Exudates Lesions 
Based on OT Algorithm 

The OT algorithms involve iterating through all the 
possible threshold values and calculating a measure of 
spread for the pixel levels each side of the threshold, i.e., the 
pixels that fall in exudates or background. The aim is to find 
the threshold value where the sum of exudates and 
background spreads is at its minimum. The OT by dividing 
the image into small 36 blocks (6×6), which overlay the 
image without overlap. To simplify the explanation, Fig. 6 
shows a 6 by 6 images divided into 36 blocks. 

The OT is used to binary each block. The algorithm 
searches for the threshold that minimizes the within-class 
variance which is defined as the weighted sum of variances 
of the two classes (Deguchi et al., 2003). The Within-Class 
Variance (WCV) is computed as Equation 14: 
 

2 2 2: w B B E EWCV W Wσ σ σ= +  (14) 
 
where, the function 2

wσ denotes the within-class variance, 
WB and WE are the weight of background and exudates, 
while 2

Bσ and 2
Eσ indicate the mean of background and 

exudates. The OT has proven that minimizing the within-
class variance is the same as maximizing between-class 
variance (Greensted, 2010). The calculate the Between-
Class Variance (BCV) is computed as Equation 15: 
 

2 2 2

2 2 2

2 2

:

           = W ( ) W ( )

           = W W ( )E E

B W

B B B E B

B B B

BCV σ σ σ
σ µ µ µ µ
σ µ µ

= −

− + −

−

 (15) 

which is expressed in terms of class probabilities Wi and 
class means µi, which in turn can be updated iteratively. 
Equation (15) is simpler than Equation (14), therefore, 
we maximize Equation (15) to get the Adaptive Otsu’s 
Threshold (AOT). The procedures of AOT can be 
composed the following steps: 
 
• Compute histogram and probabilities of each 

intensity value 
• Set the initial value of Wi(0) and µi(0) 
• Loop for all possible threshold (t) 
• Update Wi(t) and µi(t) 
• Compute 2( )B tσ  

• Choose the threshold (t) corresponding to the 
maximum of 2( )B tσ  

• The binarization image fB is defined as Equation 16: 
 

0,  if f(x,y) < t
( , )

1,   if f(x,y) tBf x y


=  ≥
 (16) 

 
Here 0 denotes black representing the exudates and 1 

denotes white representing the background.  

5.5.3. IAOT Algorithm 

Consider Fig. 6(B) the calculations for finding the 
exudates or background WCV for a single 
thresholding explained below. In this case the 
threshold values are three: 

 

   
( )
(

)

2 2 2

2 2 2

2

2

:

            W (8 6 3) / 36 0.472

            M (0 8) (1 6) (2 3) / 17 0.705

             (0 0.70) 8) ((1 0.70) 6)

                   = (2 0.70) 3) /17

              = 0.560

w B B E E

B

B

B

B

WCV W Wσ σ σ

σ

σ

= +
= + + =
= × + × + × =

= − × + − × +

− ×

 

 

   

( )
(

)
2 2 2

2

2

: (6 9 4) / 36 0.527

            (3 6) (4 9) (5 4) /17 4.35

            (3 4.35) 6) ((4 4.35) 9)

                  = (5 4.35) 4) /17

             0.804

               

E

E

E

E

WCV W

M

σ

σ

= + + =
= × + × + × =

= − × + − × +

− ×

=
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where, the function MB denotes mean values in the 
background, while ME denotes mean values in the 
exudates. To calculate the WCV, the sum of two 
variances multiplied by their associated weights by 
Equation 17 and explained below. 
 

2 2 2

2

 :

                  = 0.472 0.56+0.527 0.804

            0.68

w B B E E

w

WCV W Wσ σ σ

σ

= +
× ×

=
 (17) 

 
The final value is the sum weighted variance in the 

threshold value. This same calculation needs to be 
performed for all the possible threshold values 0.3, 0.4 
and 0.68. The Table 1 shows the results of these 
calculations. 

The highlighted column shows the values for the 
threshold calculated above. It can be seen that for the 
threshold equal to 0.68, as well as being used for the 
example, also has the lowest sum of weighted variance. 
Therefore, this is the final selected threshold. Fig. 7 shows 

an example of retinal image segmentation based on IAOT 
algorithm. All pixels with a level less than 0.68 are 
background, all those with a level equal to or greater than 
0.68 are exudates. Here are a number of examples of the 
AIOT algorithm in use, its work well with retinal images 
have those with two distinct regions. A simple program 
that uses the AIOT algorithm is linked to below. 
 
 img_o = imread(‘retinal.jpg’); 
 level (t) = graythresh(img_u); 
 i_tmp = im2bw(img_u, level);  
 t = 0.68  
 figure;  
 imshow(i_tmp);  
 
where, function level (t) = graythresh (img_u), graythresh 
compute OGT using IAOT algorithm. Level is a 
normalized intensity value that lies in the range [0, 1]. 
In this stage, a level (t) value of 0.68 is used to 
separate between exudates and background.

 

 
 (a) (b) 

 
Fig. 6. Example of histogram for the image (A) a 6 by 6 level gray scale image divided into 36 blocks (B) histogram image 

 

 
 (a) (b) (c) (d) 

 
Fig. 7. Example of retinal image segmentation, (A) image after optic localized, (B) thresholding of exudates based on the OGT, 

(C) segmentation based on an IAOT algorithm with t = 0.68, (D) edge detection with Sobel edge operator 
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Table 1. The results for three threshold values 
Threshold T = 0.3 T = 0.4 T = 0.68 

    
WB 0.46 0.41 0.472 
MB 0.47 0.26 0.705 
σB

2 0.52 0.78 0.560 
σW

2 0.414 0.54 0.680 
 

Fig. 8 is shown the flowchart of IAOT algorithm. 
If  

2
Bσ is higher than a given threshold, the block is a 

normal block, otherwise is an adaptive block. After 
two hundred of the experiment, the threshold is 
determined as 0.68. The resulting of exudates 
detection with variety thresholding on DIARETDB1 
databases is shown in Fig. 9. Figure 9 shows the 
inputs and output of the combination stage. These 
results indicate the algorithms achieves the best 
performances using a segmentation threshold of 0.68. 
Using this segmentation threshold by local hospital 
databases with 1,220 retinal images, the algorithm 
achieved an average sensitivity, specificity and 
accuracy of 93.80, 95.30 and 94.90%, respectively. In 
additional, the cross validation results of the second 
experiment on a DIARETDB1 database, the SE, SP 
and AC are 84.2, 85.9 and 85.2%, respectively. Fig. 
9A-D failures to find the exudates are shown. Failures 
to detect of the exudates are mostly caused by a 
complete failure to fit the model in the image. The 
problem within the initial coarse segmentation stage 
are usually to blame; the simulated GT gets low 
performance in image with the small lesion region. 
Fig. 9C illustrates a typical correct result. The feature 
selection procedure turned out to be very beneficial 
for application performance. Moreover, computation 

time decreased enormously. In the case of Fig. 9D this 
failure is probably caused by the fact that the image space 
optimization procedure tried to find the optimal location 
within the retinal image for t = 0.68, as these were 
detected inside the field of view after the fourth parameter 
optimization stage. An example images of exudates and 
the detected result on four retinal images were 
superimposed on the original image are shown in Fig. 10. 

5.6. Comparative Study 

According to experimental results, a fair 
comparison of our results against the other work is 
difficult. There is another difficulty in carrying out 
other people’s algorithms due to lack of necessary 
details. Thus, to evaluate the accuracy of our method, 
we define two necessary assessment criteria, i.e., SE 
and SP. Here, we compare our results with the related 
works in the literature. These are the works by 
(Osareh et al., 2002; Wang et al., 2000; Zhang et al., 
2004; Sinthanayothin, 1999; Li, 2003; Garcia et al., 
2007). A comparison results with other literature is 
shown in Table 2. 

 
Table 2. Compare results with other literature with local area 

databases. Note: NI denotes the number of retinal 
images and NIEX denotes the number of retinal 
images with exudates 

Authors NI/NIEX SE (%) SP (%) 

Osareh et al., (2002) 300/300 96.0 94.6 
Wang et al., (2000)  154/54 100 71.0 
Zhang et al., (2004) 213/213 88.0 84.0 
Sinthanayothin (1999) 30/21 88.5 99.7 
Li, (2003) 35/28 100 71.0 
Garcia et al., (2007)  50/25 84.4 62.7 
Our proposed 1,220/968 95.3 94.9

 

 
 

Fig. 8. Flow chart of IAOT algorithm 
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 (a) (b) (c) (d) (e) 

 
Fig. 9. Exudates detection results based on OGT and IAOT algorithm (A-F) retinal image after optic disc detected, (A1-F1) 

exudates detection result based on OGT with t = 0.1, 0.2, 0.3, 0.4, 0.46 and 0.5 respectively, (A2-F2) exudates detection 
result based on IAOT algorithm, (A3-F3) edge detection result with Sobel edge operator, (A4-F4) results from edge detection 
superimposed on an original image 
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 (a) (b) (c) 
 

 
 (d) (e) (f) 
 
Fig. 10. Result of exudates detection (A-C) three original test set images, (D-F) perimeters of the exudates regions detected by our 

method, superimposed on original images (A-C) 
 

6. CONCLUSION 

In this study, we explore methods toward the 
development of a new method for automated detection 
of exudates in poor quality retinal images. Past works 
on the detection of exudates mainly relies on Grey-level 
information and were assessed of diagnostic accuracy 
on a small data set. The FCMC and FMM algorithm 
have been proposed as possible solutions to detect of 
exudates. However, one main weakness of these 
algorithms is that required many features or 
predetermined parameters. While the disadvantage of 
naive bayes and SVM classifier is to take a time to 
training process. To solve the problem, we have 
presented a combine of the OGT and IAOT algorithm, 
relies on the careful preprocessing stages could be used 
for detecting of exudates and non-exudates pixel on 
poor quality in retinal images. The performance of the 
algorithm is validated by against manually labeled 
ground truth produced by an expert ophthalmologist. 
Inaddition, SE, SP and AC value are used as the 
performance measurement of detection of exudates. On 
this difficult data set, our proposed algorithm can 
achieve accuracy with SE, SP and AC of 93.8%, 95.3% 
and 94.9% for the detection of exudates with local 
hospital databases and 84.2%, 85.9% and 85.2% with 
DIARETDB1 databases. The results will to be able to 
integrate the presented algorithm in a tool for detection 
of exudates symptoms faster and more easily. 

However, the algorithm is not a final result, but it can 
be a preliminary diagnosis tool for decision support 
system for expert ophthalmologists. 

6.1. Algorithm Limitations 

Although, the proposed algorithm performs better 
than other techniques, but it needs image more 
enhancement for the better segmentation of exudates. 
So, in some case of the poor quality retinal image 
from developing countries, the evaluation 
performance may be low. 

6.2. Future Work 

Future work will address an issue of improving the 
accuracy by improving the results of other tasks, such as 
the detection of optic disc and also try to detection of 
small exudates with local databases and a publicly 
available DIARETDB1 database. The clinical application 
will be expand the detection system to recognize area 
being either a microaneurysms and haemorrhages. 
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