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ABSTRACT 

A steady two-dimensional MHD free convection of heat transfer in flow past a semi-infinite flat plate 
in transverse magnetic field with heat flux has been examined. The governing partial differential 
equation are non-dimensionalised and transformed into a system of nonlinear ordinary differential 
similarity equations, in a single independent variable η and using Runge-Kutta Gill method with 
shooting technique. The velocity and temperature distributions are discussed numerically and presented through 
graphs. Skin-friction coefficient and the Nusselt number are derived, discussed numerically and their 
numerical values for various values of physical parameter are presented through tabular form. The effects of 
magnetic parameter, permeability parameter and Prandtl number on the velocity and temperature profiles 
were displayed graphically for different values of parameters entering into the problem. Significant changes 
were obtained in heat transfer coefficient due to the parameters. In addition, the skin friction coefficient and 
Nusselt number were shown in tabular form. 
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1. INTRODUCTION 

Owing to their numerous applications in industrial 
manufacturing process, the problem of heat transfer in 
fluid-saturated porous media finds applications in a variety 
of engineering processes such as heat exchanger devices, 
petroleum reservoirs, chemical catalytic reactors and 
processes, geothermal and geophysical engineering, 
moisture migration in a fibrous insulation and nuclear 
waste disposal and others. Some of the applications areas 
are hot rolling, paper production, metal spinning, drawing 
plastic films, glass blowing, continuous casting of 
metals and spinning of fibers. In particular the extradite 
from the die is drawn and simultaneously stretched 
into a sheet, which is then solidified through 
quenching or gradual cooling by direct contact with 
water. Annealing and thinning of copper wires is another 
example. Lai and Kulacki (1990) used the series expansion 

method to investigate coupled heat and mass transfer in 
natural connection from a sphere in a porous medium. 

Magnetohydrodynamics flows have applications in 
meteorology, solar physics, cosmic fluid dynamics, 
astrophysics, geophysics and in the motion of earth’s 
core. In addition from the technological point of view, 
MHD free convection flows have significant applications 
in the field of stellar and planetary magneto spheres, 
aeronautical plasma flows, chemical engineering and 
electronics. An excellent summary of applications is 
given by (Huges and Young, 1966; Raptis, 1986) studied 
mathematically the case of time varying two dimensional 
natural convective flow of an incompressible, electrically 
conducting fluid along an infinite vertical plate 
embedded in a porous medium.  

Helmy (1998) analyzed MHD unsteady free 
convection flow past a vertical porous plate embedded 
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in a porous medium. Elabashbeshy (1997) studied heat and 
mass transfer along a vertical plate in the presence of 
magnetic field. 

In all the studies mentioned above, the heat due to 
viscous dissipation is neglected. Gebhart (1962) has 
shown the importance of viscous dissipation heat in 
free convection flow in the case of isothermal and 
constant heat flux at the plate. Gebhart and 
Mollendorf (1969) considered the effects of viscous 
dissipation for external natural convection flow over a 
surface. Soundalgekar (1972) analyzed viscous 
dissipative heat on the two-dimensional unsteady free 
convective flow past an infinite vertical porous plate 
when the temperature oscillates in time and there is 
constant suction at the plate. Israel Cookey et al. (2003) 
investigated the influence of viscous dissipation and 
radiation on unsteady MHD free convection flow past an 
infinite heated vertical plate in a porous medium with time 
dependent suction. The governing equations are solved 
numerically using the Runge-kutta method with 
shooting technique. The effects of various governing 
parameters on the velocity, temperature, skin-friction 
coefficient and Nusselt number are shown in Fig. and 
Table 1 and analyzed in detail. 

2. MATHEMATICAL ANALYSIS 

A steady, two dimensional, incompressible flow of a 
viscous fluid on a continuous flat surface, issuing from a 
slot and moving with a constant velocity U0 in a fluid at 
rest, in the presence of a transverse magnetic field of 
strength B0 is considered. 

Let the x-axis be taken along the sheet in the 
direction of motion of the sheet and y-axis normal to it with 
velocity components u and v directed along their axes 
respectively. A uniform magnetic field is applied in the 
direction perpendicular to the plate. The fluid is assumed to 
be slightly conducting and hence the magnetic Reynolds 
number is much less than unity and the induced magnetic 
field is negligible in comparison with the applied magnetic 
field. If σ is the electrical conductivity of the fluid then the 
flow and heat transfer are given by the following equations. 

Continuity Equation 1: 

 

0
u v
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Momentum Equation 2: 
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Energy Equation 3: 
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The boundary conditions are Equation 4: 
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Here U0 is the uniform velocity of the plate and 

qw is the heat flux per unit area. u, v are the velocity 
components in x, y directions respectively, ρ the 
density of the fluid, k’ the permeability of the porous 
medium, T the temperature of the fluid, υ the 
kinematic viscosity, α = k/ρcp the thermal diffusivity, 
cp the specific heat at constant pressure, k the thermal 
conductivity of the fluid, B0 the magnetic induction, 
σ the electrical conductivity of the fluid. 

The Equation (2 and 3) are coupled, parabolic and 
nonlinear partial differential equations and hence 
analytical solution is not possible. Therefore 
numerical technique is employed to obtain the 
required solution. Numerical computation is greatly 
facilitated by non-dimensionalization of the equations. 
Proceeding with the analysis, we introduce the 
following similarity transformations and 
dimensionless variables which will convert the partial 
differential equation from two independent (x, y) 
variables to a system of coupled, non-linear ordinary 
differential equations in a single variableη. i.e., 
coordinate normal to the plate. 

In order to write the governing equations and the 
boundary conditions in dimensionless for the non-
dimensional quantities are introduced by the stream 
functionψ, defined by Equation 5: 
 

u and v
y x

ψ ψ∂ ∂= = −
∂ ∂

 (5) 

 
Which satisfy the equation of continuity and making 

the following substitution (assuming f, θ to be the 
functions of η only): 
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One finds that the boundary layer Equations (1 to 

3) become: 
 

''' '' ' '1
0
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With boundary conditions Equation 9: 
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Equations (7), (8) subject to the boundary conditions 

(9) were solved numerically on a computer for different 
values of magnetic parameter for air using shooting 
method. The effects of variation of M and K on 
temperature profiles have been plotted. Numerical values 
off (η) and f’(η) for different M values have been 
calculated and they are presented in a tabular form. 

The skin-friction coefficient and Nusselt number 
are important physical parameters for this type of 
boundary layer flow. 

Knowing the velocity field, the skin-friction 
coefficient at the plate can be obtained, which in non-
dimensional form is given by: 
 

( ) ( )
1

22 Re " 0fC f
−

=  

Knowing the temperature field, the rate of heat transfer 
coefficient can be obtained, which in non-dimensional 
form, in terms of the Nusselt number, is given by: 
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3. SOLUTION OF THE PROBLEM 

The set of coupled non-linear governing boundary 
layer Equation (7 and 8) together with the boundary 
conditions (9) are solved numerically by using Runge-
Kutta Gill method along with the shooting technique. 
First of all, higher order non-linear differential equations 
(7) to (8) are converted into simultaneous linear 
differential equations of first order and they are further 
transformed into initial value problem by applying the 
shooting technique. The resultant initial value problem is 
solved by employing Runge-Kutta Gill method. The step 
size ∆η = 0.05 is used to obtain the numerical solution 
with five decimal place accuracy as the criterion of 
convergence. From the process of numerical computation, 
the skin-friction coefficient and the Nusselt number, which 
are respectively proportional to f”(0) and-θ”(0) are also 
sorted out and their numerical values are presented in a 
tabular form. Extensive calculations have been performed to 
obtain the flow and temperature fields for a wide range of 
parameters 0.5≤ M ≤ 2, 0 ≤ K ≤ 2 and 1 ≤ Pr ≤ 5. 

4. RESULTS 

Table 1 shows numerical values of magnetic field 
parameter effects on (f”0) and θ’(0). The profiles for 
velocity and temperature are shown in Fig. 1-5 
respectively with various values of the parameters. 

5. DISCUSSION 

We now discuss the results. As a result of the numerical 
calculations, the dimensionless velocity and temperature 
distributions for the flow under consideration are obtained 
and their behavior have been discussed for variations in the 
governing parameters viz., magnetic field parameter M, 
Permeability parameter K, Prandtl number Pr. The 
influence of magnetic field parameter M on the velocity is 
presented in Fig. 1. It is observed that there is a decrease in 
the velocity as the magnetic field parameter M increases. 
This result qualitatively agrees with the expectations, since 
the magnetic field exerts a retarding force on the free 
convection flow. Also, as M increases, the peak values of 
the velocity decreases rapidly near the porous plate and 
their decays smoothly to the stream velocity. 
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Figure 2 presents typical velocity profiles in the 
boundary layer for various values of the permeability 
parameter K while all other parameters are kept at some 
fixed values. The parameter K is inversely proportional to 
the actual permeability K’ of the porous medium. An 
increase in K will therefore increase the resistance of the 
porous medium which will tend to decelerate the flow 
and reduce the velocity. The fluid velocity decreases as 
the permeability parameter K increases. Also as K 
increases, the peak values of the velocity decreases 
rapidly near the plate and decreases smoothly to 
approach the free stream velocity. 

Figure (3a and b) illustrate the velocity and 
temperature profiles for different values of the Prandtl 
number Pr. The Prandtl number defines the ratio of 
momentum diffusivity to the thermal diffusivity. The 
numerical results show that the effect of increasing values 
of Prandtl number results in a decreasing velocity. From 
Fig. 3b, it is observed that an increase in the Prandtl 
number results a decrease of the thermal boundary layer 
thickness and in general lower average temperature within 

the boundary layer. The reason is that smaller values of Pr 
are equivalent to increasing the thermal conductivities and 
therefore heat is able to diffuse away from the heated plate 
more rapidly than for higher values of Pr. Hence in the 
case of smaller Prandtl numbers as the boundary layer is 
thicker and the rate of heat transfer is reduced. 

Figure 4 presents the temperature profile for 
various values of magnetic field parameter M while 
all other parameters are kept at some fixed values. An 
increase in Magnetic field parameter M results in 
increase in temperature profile. 

It is observed that from Fig. 5 the increase in the 
permeability parameter K increases the temperature profile. 

The effects of various governing parameters on the skin 
friction coefficient Cf and Nusselt number Nu are shown in 
the Table 1. It is observed from the Table 1 that as M and 
K increases, there is a fall in the skin-friction coefficient but 
there is an increase in Nusselt number. As the Prandtl 
number increases there is no change in the skin-friction 
coefficient but there is a decrease in the Nusselt number. 

 

 
 

Fig. 1. Effect of Magnetic field parameter M on non-dimensional velocity f’ 
 
Table 1: Magnetic field parameter effect on f”(0) and θ’(0) 
M K Pr f”(0) θ’(0) 

0.5 0.5 0.71 -0.4438 1.6466 

1.0 0.5 0.71 -1.0828 2.1758 

2.0 0.5 0.71 -1.4733 2.8471 

0.5 0.5 0.71 -0.4439 1.6458 

0.5 1.0 0.71 -1.0828 2.1729 

0.5 2.0 0.71 -1.4734 2.8314 

0.5 0.5 1.00 -0.4444 1.3312 

0.5 0.5 1.25 -0.4444 1.1647 

0.5 0.5 5.00 -0.4444 0.5370 

0.5 0.5 100 -0.4444 0.3721 
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Fig. 2. Effect of Permeability parameter K on non-dimensional velocity f' 
 

 
 
Fig. 3(a). Effect of Prandtl number Pr on non-dimensional velocity f' (b) Effect of Prandtl number Pr on non-dimensional velocity 

temperature θ 
 

 
 

Fig. 4. Effect of Magnetic field parameter M on non-dimensional temperature θ 
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Fig. 5. Effect of Permeability parameter K on non-dimensional temperature θ 
 

6. CONCLUSION 

Using the similarity transformation a set of ordinary 
differential equations has been derived for the 
conservation of mass and momentum in the boundary 
layer. These nonlinear, coupled differential equations 
have been solved physically valid boundary conditions 
using Runge-kutta method along with shooting 
technique. The conclusions of the study are as follows: 
 
• The velocity decreases with an increase in the 

magnetic parameter and permeability parameter 
• A positive increase in Prandtl number is shown to 

reduce the velocity and temperature in the flow 
• The temperature decreases with an increase in 

magnetic parameter and permeability parameter 
• An increase in M and K leads to fall in the skin-friction 

coefficient but there is an increase in Nusselt number 
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