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ABSTRACT 

The predictive capabilities of plate and shell theories greatly depend on their underlying kinematic assumptions. 
In this study, we develop a Cosserat-type elastic plate theory which accounts for rotations around the normal to 
the mid-surface plane (so-called drilling rotations). Internal loads, equilibrium equations, boundary conditions 
and constitutive equations are derived. The case of a Single Walled carbon Nanotube (SWNT) modelled as a 
Cosserat medium is taken here as a reference example. Material parameters are identified and the proposed theory 
is used to solve analytically the problem of a polymer-SWNT composite tube under torsion. Predictions such as 
an absolute size effect are compared to those of the classical Cauchy-de Saint-Venant results. 
 
Keywords: Plate Theory, Drilling Rotation, Cosserat Medium, Carbon Nanotube, Composite Microstructure  

1. INTRODUCTION 

SWNT are graphene cylinders that typically have 
diameters of about 1 nm with lengths of several microns 
(Selmi et al., 2007). Due to their extraordinary 
mechanical properties, SWNT have become objects of 
intensive investigation for different applications 
(Varthamanan, 2013). Because of the high aspect ratio 
(thousands) in addition to the mechanical strength, they 
have become very promising components for 
composites (Meoli and Plumlee, 2002; Partridge et al., 
2000). To improve the performance of a matrix or to 
achieve new properties, extensive studies have been 
devoted to the use of SWNT as reinforcing material. 
Indeed, there are researchers who have demonstrated 
improvement in properties of pitch and polystyrene 
(Quin et al., 2000) and poly (p-phenylene 
benzobisoxazole) (Kumar et al., 2002). 

In the mechanical study of SWNT material, 
computational chemistry models predict molecular 
properties based on known quantum interactions and 
computational solid mechanics models predict the 
macroscopic mechanical behaviour of materials idealized 

as continuous media based on known bulk material 
properties (Odegard et al., 2003). 

However, a corresponding model does not exist in the 
intermediate length scale range. If a hierarchical 
approach is used to model the macroscopic behavior of 
nano-structured materials, then a methodology must be 
developed to link the molecular structure and the 
macroscopic properties. An important component in 
molecular dynamics calculations of the nano-structure of 
a material is the description of the forces between 
individual atoms and the energies associated with bond 
stretching, angle variation, torsion and inversion. 

In order to simplify the calculation of the total 
molecular potential energy of molecular models with 
complex molecular structures and loading conditions, an 
intermediate model may be used to substitute the 
molecular model (Odegard et al., 2002; 2003). 

The mechanical representation of the lattice 
behaviour serves as an intermediate step in linking the 
molecular potential with an equivalent-continuum 
model. In the truss model, each truss element 
corresponds to a chemical bond or a significant non-
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bonded interaction. The stretching potential of each 
bond corresponds to the stretching of the 
corresponding truss element; see Fig. 1. 

In previous studies, the angle variation (associated to 
a drilling moment) phenomenon is related to in-plane 
forces giving the same energy associated with the angle 
variation; see Fig. 1. 

In the present work, the angle variation is considered 
by adding a new Degree Of Freedom (DOF): The 
drilling rotation. Then a drilling moment in the 
microstructure of the nanotube is introduced making the 
classical plate theory invalid. The theory presented in 
sections 2 and 3 will be applied to the nanotube 
microstructure. 

Shell and plate theories are the subject of a very large 
body of literature. These theories are greatly dependent 
on the models adopted to represent shell structures and 
the processes of their deformation. They differ with 
respect to the consideration of a linear or non-linear 
model, to the variations of the in-plane displacement 
components across the thickness and to the kinematic 
description (Rubin, 2000). Most of classical plate 
theories involve: An in-plane normal stress tensor, N, an 
in-plane moment tensor, (M11) and (M22) are bending 
moments, while M12 and M21 are twisting moments (all 
are per unit length). In this study, we will designate them 
collectively as ”in-plane moments”) and a shear stress 
vector, T

r
. The kinematics is defined by the 

displacement of the middle plane, U
r

 and the in-plane 

rotation of the normal fiber, 
ω
Ω
r

 (Fig. 2). 

Classical shell and plate theories based on the Love-
Kirchhoff assumption and the Green strain measure 
are fully developed by (Pietraszkiewicz, 1984). These 
two-dimensional theories are, in fact, 2D 
approximations to 3D elastic models based on a priori 
assumptions regarding the variation of the unknowns 
(i.e., the displacements and the stresses) across the 
thickness of the plate. 

A method called asymptotic expansion has been used 
to obtain two-dimensional models of thin elastic 
plates. In that method, a power series expansion of the 
three-dimensional solution is used by considering the 
thickness of the plate as the small parameter. The 
asymptotic approach has also been applied to derive 
the fully non-linear model of thin plates that are made 
of a general non-linear elastic material. In the study of 
Erbay (1997), there is an abstract of this study along 
with an asymptotic membrane theory of thin 
hyperelastic plates. 

Based on the Love-Kirchhoff model, the 
displacement components through the thickness were 
estimated to be linear or higher order series expansion 
(Kreja and Schmidt, 2006). Classical theories are 
unable to explain some phenomena at high frequencies 
and small wavelengths of surface waves, in addition they 
are insufficient in the elucidation of granular and large 
molecular materials such as polymers (Kreja  and 
Schmidt, 2006). Such limitations are due to the fact that 
the interaction cannot be described only by a force 
vector; a couple or moment vector is also needed. This 
interpretation led investigators to enrich the kinematical 
description and various theories have been proposed in 
recent years with various kinematic variables. 

The construction of a plate theory based on the linear 
theory of micropolar elasticity is not a new subject and it 
attracts considerable interest from researchers 
(Ambartsumian, 2002). To derive his micropolar plate 
theory, (Eringen, 1967) assumed that the stress and 
displacement fields do not vary rapidly across the 
thickness of the plate. The three-dimensional field 
equations of micropolar elasticity are integrated across 
the thickness and the balance equations of micropolar 
elastic plates are derived. Next, assumptions regarding 
the variation of the unknowns across the thickness of the 
plate are made. 

The asymptotic expansion technique was extended 
to obtain the two-dimensional dynamic equations of 
thin micropolar elastic plates from the three-
dimensional dynamic equations of micropolar 
elasticity theory (Erbay, 2000). It consists in scaling 
the field variables by an appropriate thickness 
parameter to reflect the expected behaviour of the 
plate. A power series expansion of the three-
dimensional solution is used by considering the 
thickness parameter as a small parameter. 

In the finite strain case, based on the polar 
decomposition theorem and the Love-Kirchhoff 
assumption, Atluri (1984) has developed a shell theory 
which includes a rotation tensor related the definition 
of the stress measure. Similarly, (Sansour and Bocko, 
1998) have developed a non-linear theory with exact 
description of the kinematic field, in which the 
rotation tensor describes the rotations DOF of any 
material segment and takes into account the drilling 
rotations in a natural way. 

In the classical plate theories, the drilling rotation 
(i.e., rotation around the normal to the mid-surface 
plane) and the drilling moment are nil (Reissner, 1985).  
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Fig. 1. Classical model for nanotube microstructure 
 

 
 

Fig. 2. Classical internal loads and generalized displacement 
 
In some applications, such as honey-comb structures and 
Carbon nanotube microstructures, an in-plane extension 
induces a drilling rotation and out-of-plane internal loads 
(moment and shear). Compared to classical theories of 
plates and shells, this coupling between extension and 
drilling rotation induces a non-symmetric normal stress 
tensor and new internal loads. A plate with a drilling 
rotation will be called “an out-of-plane Cosserat plate”. 

Existing theories which deal with drilling rotation 
are geometrically non-linear. However, in order to 
clarify the behaviour of granular and large molecular 

materials such as polymers in which the transmission 
of interaction may be not only through a force vector 
but also through a couple or moment vector and in 
which size effects could be important, considering an 
additional DOF like drilling rotation in the linear 
elastic domain has a great interest. 

In this study, using the virtual principle work, an 
elastic out-of-plane Cosserat plate theory is developed. 
The internal loads, the equilibrium equations, the 
boundary conditions and the elastic constitutive 
equations are derived.  
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The case of nanotube microstructures will be the 
reference application. An illustration of the drilling 
rotations effect will be presented in the examples of the 
torsion of SWNT and the torsion of SWNT/Polymer 
composite beams. 

2. EQUILIBRIUM EQUATIONS AND 
BEHAVIOUR OF A CONTINUUM PLATE 

WITH COSSERAT DRILLING EFFECT 

Let us consider a plate defined geometrically by a 
middle plane ω in which the position of a point is 
defined by the coordinates (x1, x2). For any material 
segment initially normal to ω, the kinematics is 
characterized by a displacement fieldU

r
and a rotation 

Ω
r

 defined by Equation 1: 
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The classical plate models consider that the plate is a 

two-dimensional in-plane Cauchy medium (Ω3 = 0). The 
model considered here takes into account the drilling 
rotation Ω3; the plate is then a two dimensional in- and 
out-of-plane Cosserat medium. 

The virtual work principle is used hereafter to derive 
the equilibrium equations and the boundary conditions of 
the continuum plate with a drilling Cosserat effect. 

2.1. Virtual Work of Internal Loads  

In the following and as classically considered, the 
virtual work is an integration of a volumetric density 
over the system or any subsystem. 

The internal virtual work is chosen as a linear 
functional of the virtual kinematic variables and their 
first gradients: 
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where, A
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 are internal efforts associated 

to the kinematic variables, introduced systematically and 
will be discussed later.  

The kinematic variable gradients )Ω,U(
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and the 

internal efforts (N,M,B)
r) )

are divided into in- and out-of-
plane components which are written in matrix form in an 
orthonormal basis as follows. Equation 3 to 7: 
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With decomposition to in-plane and out-of-plane 

parts, the internal virtual work takes the following 
expression Equation 8: 
 

3
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According to the first statement of the virtual work 

principle, the virtual work of internal loads associated to 
any virtual rigid body motion is equal to zero. This leads to: 

For a translation motion defined by: 0UU
rr

= , one 

obtains ),U()Ω,U( 00 rrrr

= . Then Equation 9 and 10: 
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For a rigid rotation defined by: 0U Ω x= ∧

rr r , where xr  
is the position vector and 0Ω

r
 is a constant vector, one 

obtains )Ω,xΩ()Ω,U( 00 rrrrr

∧= . 
Where: 
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Using the classical plate’s rotations defined by 

Equation 11: 
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The internal virtual work is reduced to Equation 12: 
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And leads to Equation 13: 
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Finally, for any virtual motion the internal virtual 

work takes the following expression: 
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Where:  
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Using Green´s integration, the internal virtual work 
takes the following expression: 
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where, ∂ω is the boundary of ω and ν

r
 is the unit normal 

vector of ∂ω and ν
r

 situated in the mid-plane. 

2.2. Virtual Work of External Loads  

The external virtual work is written as a linear form 
of the kinematical variables. Equation 17: 
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where, the external loads associated respectively with the 
middle surface and its boundary are the following: 
 

ω sωF and F
r r

: In-plane density forces 

F3 and Fs3: Out-of-plane density forces 

ω sωm and m
r r : In plane density moments 

m3 and ms3: Density moments of axis the normal n
r

 to 
the mid-surface plane 

2.3. Derivation of Equilibrium Equations and 
Boundary Conditions  

Assuming the continuity of the function fields(U,Ω)
rr

, 
using the divergence theorem and the second postulate of 
the virtual principle work, which is: 
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Equation 18 leads to the following equilibrium: 
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And the following boundary conditions: 
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Equation 20 gives an interpretation of the internal 

loads introduced in Equation 2 and Fig. 3 describes them. 
Let us consider an elementary plane surface whose 

facets have an outer unit normal ν
r

 equal to 1x±r or 2x±r . 

From Equation 20, we interpret that: 

N.ν
r

 = The in-plane force 
M.ν

r
 = The in-plane moment 

T.ν
r r  = The shear force 

C.ν
r r  = The drilling moment 
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Fig. 3. Description of the internal loads in the proposed Cosse-

rat-type theory 
 
2.4. Elastic Constitutive Behavior  

Using the following state variables: 
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Which are respectively the in-plane infinitesimal 

symmetric strain tensor, the total in-plane rotation, the 
in-plane infinitesimal symmetric rotation gradient 
tensor and the drilling rotation gradient. The 
deformation power density is Equation 22: 
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where, Ns stands for the symmetric part of the normal 
tensor N. 

The Clausius-Duhem inequality implies that for any 
evolution the dissipative power density has to be 
positive, that is Equation 23: 
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where, ψ  is the thermodynamic potential. An elastic and 
linear behaviour is then chosen as follows: 
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where, NC  and MC  are fourth order tensor, K  is a third 

order tensor, L , δ  and υ  are real constants. 
This choice includes a coupling between εω and λ3, 

this allows to take into account the coupling between in-
plane extension and drilling rotation. 

For a reversible process, the dissipative power density is 
nil. Thus, the behaviour  relations are: 
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In the case of 2D linear isotropic elastic theory, the third 

order tensor K  is nil, so the behaviour laws are written as: 
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The following decomposition is introduced: 
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where, Nss stands for the skew-symmetric part of the 
normal tensor N, “I" is the second-order identity tensor 
and L,,,( δηα , φ , ,ϕ υ)  are mechanical characteristics 
which will be identified later. 

Finally, the first constitutive equation in Equation 26 
is replaced as follows: 

 

ω ω 3N = αε + η(trε )I + β ∆   (28) 

 
Remark 

Compared to the literature where the normal tensor N 
is symmetric, from the behaviour laws derived for the 
developed theory, N (Equation 28) is not symmetric. We 
remark also the existence of two additional constitutive 
Equation 26d and 26e which are obviously satisfied 
when the drilling rotation β3 is nil. 

If we do not take the drilling rotation β3 into 
account, N will be symmetric see Equation 28) then D 
and C

r
 will be nil (see Equation 26e, 21e and 26d). 

Therefore we retrieve the constitutive equations, the 
equilibrium equations and the boundary conditions 
given by classical theories of Reissner (1985). 

3. APPLICATION: CARBON 
NANOTUBE MICROSTRUCTURE 

3.1. Introduction  

Nano-structured materials have generated 
considerable interest in the materials research 
community in the last few years partly due to their 
potentially remarkable mechanical properties. This is 

particularly true for Carbon nanotubes which are 
sheets of graphene which are rolled up and can be 
capped at their ends (Selmi et al., 2007). 

In micromechanical analyses, the method of unit 
cells has been used to determine the effective 
properties of heterogeneous materials by identifying 
and analysing convenient domains of repeating 
microstructure. In the current study, a repeating unit 
of nanotubes is defined as a truss microstructure and 
homogenized to a two dimensional continuum plate, 
as described in Fig. 4. 

To reduce the computational time associated with 
modelling the graphene sheet, a Representative 
Volume Element (RVE) for graphene is used in this 
study (Fig. 5). The selected RVE allows each DOF of 
the  Carbon  atom  associated with bond stretching 
and  bond-angle  variation  in  the hexagonal ring to 
be  completely  modelled by truss and continuum 
finite  element   model  nodal-displacement  degrees 
of  freedom.  Also, this RVE allows the displacements 
on  the  boundary  of  the proposed chemical, truss 
and continuum models to coincide exactly. 
Furthermore, macroscopic loading conditions applied 
to  a  continuous  graphene  plate can be easily 
reduced to periodic boundary conditions that are 
applied to the RVE. 

The elastic constants associated with the truss 
structure (Fig. 6) are determined using a computational 
program (SAP, 2000) with the following data: Distance 
between two successive atoms is constant and equal to 
Ra = 0.14 nm, the stiffness associated with rotational 

spring is θ -10

2

nJ
K = 8.76 10

angle.rad
×  and the rods are 

characterized by a Young modulus equal to 1.005TPa 
and a diameter equal to 0.34nm (Odegard et al., 2002; 
Natsuki et al., 2004). 

3.2. Results  

Using models described by Fig. 6, the constitutive 
parameters associated with the continuum model are 
identified. For example, for the determination of a and 
δ , Fig. 6b and c, from the constitutive Equation 28 
and 29, we have: 

 

12 1,2 2,1 3

21 2,1 1,2

α
N = (u + u )+ δβ

2
α

N = (u + u ) - δβ
2







  (29) 
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Fig. 4. Present model for nanotube microstructure 
 

 
 
Fig. 5. Truss and continuum Representative Volume 

Element (RVE) 
 

So we apply the shear load N12 (Fig. 6c), by the finite 
element method: (SAP, 2000) program, the nodal 
displacements are given and finally the kinematic 
variables u1,2, u2,1 and 3β  are obtained by the discrete 
element method then we apply the shear load N21 (Fig. 
6b) and we obtain again u1,2, u2,1 and 3β . Finally, the 
resolution of the system of 2 equations for two 
parameters gives α  and δ . We follow the same way 
to search for the other parameters. The following 
values are found. Equation 30: 

 

 [ ]
[ ]

[ ]

6

6

11

11

α 190 12

1046 59

345 29

3 482 10

3 482 10

8085

0 0 89 10

0 89 10 0

N
.

m

N
η .

m

N
L .

m

φ . Nm

. Nm

υ Nm

. N
∆

m.

φ

  =  
 

  =  
 

  =  
 

 = ×


= ×
 =
  ×   =       − × 



 (30) 

 
3.3. Discussion  

From the values of the material constants, we remark 
that the matrix N is neither symmetric nor skew-symmetric 
and the contribution of the rotation to the normal load might 
be considerable. Compared to the in-plane moment, for the 
Carbon nanotube case the drilling rotation induces a drilling 
moment which is not negligible.  

4. EXAMPLES 

The examples of the torsion of a straight SWNT tube 
and a straight composite tube made of polyimide 
reinforced with SWNT are studied. In both cases, SWNT 
layer is modeled with the proposed cosserat-type theory. 
The results illustrate the applicability of the proposed 
plate theory and the effect of the drilling rotation on the 
torsional rigidities and displacements. Comparisons with 
the torsional rigidities and displacements obtained with 
classical Cauchy-de Saint-Venant media, are presented.  

4.1. Torsion of SWNT  

A straight SWNT beam of axis (x) and length l is 
subjected to a uniform load θ

A
θxeN
r

at its end (x = 1) (Fig. 
7), while the y and z displacements of the other end 
section (x = 0) are prevented. The beam has a uniform 
section which is delimited by closed circles. 

The method of resolution starts similarly to the 
classical Cauchy-de Saint-Venant approach (Doghri, 
2000). The displacement U

r
of a material point is 

assumed to be the sum of an infinitesimal rotation θ’ in 
the (y, z) plane and an axial displacement u: 
 

,r(U
r

=),xθ θ xrθ e ue′ +r r
 (31) 
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Fig. 6. Models for the determination of the elastic constants 
 

where, r  is the average radius equal tov cR + R

2
 

The infinitesimal rotation is assumed to be 
proportional to the axial distance (x) of a cross section 
from the (x = 0) section; i.e., θ kx′ = , where k[1/m] is 
an angle of torsion per unit length. 

It is supposed that the axial displacement is 
independent of (x), i.e., ),( θrkFu = , where ),( θrF is a 
warping function to be determined. 

According to these assumptions, the displacement is 
written as: 

 
,r(U

r
=), xθ xθ erkFexrk

rr
),( θ+  (32) 

 
We assume that the plate theory equations are valid 

for the thin tube by simple transformation into 

cylindrical coordinates, the mid-surface being described 
by (θ,x) coordinates. The strains are obtained by simple 
differentiation of the displacements. Equation 33: 
 



















+
∂

∂

+
∂

∂

=
0

1

2

1

1

2

1
0

)rk
θ

(kF)

r
(

)rk
θ

(kF)

r
(

ε  (33) 

 
The constitutive equations of section 3 give 

Equation 34: 
 



















−+
∂

∂

++
∂

∂

=

++=

0
1

2

1

2
0

δβ)rk
θ

(kF)

r
(
α

δβ)rk
θ

(kF)

r
(
α

∆βη(trε)IαεN

r

r

r

 (34) 
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Fig. 7. Straight SWNT beam under A

θxN load 
 

In the classical Kirchhoff-Love plate theory, the 
internal load tensor is written as: 
 

2

Eν
N = h 2µε+ trεI

1 - ν
 
 
 

 

 
where, h designates the thickness of the tube. 

Similarly, the equation for N of Equation 34 can be 
written as: 
 

r
cN = h 2µ ε+ trεI + β Λ ξ   (35) 

 
Where:  

 
h

∆
Λ,

h

η
ξ,

h

α
µ c ===     

2
 

 
The equilibrium equation )f(divN w 0=+

r

 gives 

Equation 36: 









=
∂
∂

−
∂
∂

=

0
2

)(θ

2

2

θ

β
δ

θ

F

r

αk

ββ

r

rr

 (36) 

 
On the end section (x = 1), we shall write that the 

load applied is equal to A
θxN : 

 

δβ)rk
θ

(kF)

r
(
α

   N  eNeN r
A
θxθ

A
θxx ++

∂
∂=⇒= 1

2

rr
 (37)

  
 

Thus the normal fort tensor can be written as: 
 

A
θx

A
xθ r

0 N
N =

N - 2β δ 0

 
 
 

  (38)

 
 

In summary, the problem is the following: find a 
function θ),rF( which satisfies: 

 















++
∂
∂=

=
∂
∂

−
∂
∂

=

δβ)rk
θ

F

r

k
(
α

N

θ

β
δ

θ

F

r

αk

ββ

r
A
θx

r

rr

2

0
2

)(

2

2

θ

 (39) 

 
The system (39) shows that the drilling rotation βr 

is constant. 
The Equation 39 gives Equation 40: 

 

)r(Fθrδ)β(N
αk

r
F r

A
θx 1

22 +






 −−=  (40) 

 
For a circular cylindrical tube, there is no warping in 

the classical Cauchy-de Saint-Venant solution. Similarly 
in the case of Cosserat medium, we assume that the 
warping function is nil: 
 

020 1 =
−

=⇒= )r(Fand       
δ

rαk
N

βF

A
θx

r  (41) 

 
The stress vector resultant over the Carbon phase 

thickness is: 
 

∫=
cR

vR
θx

A
θx drσN  
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For a circular cylindrical tube, in the classical 
Cauchy-de Saint-Venant solution, the stress σθx is equal 
to rµk . In the Cosserat medium, which differs from the 
Cauchy one in the drilling rotation, in addition to the 
stress due to the symmetric strain ε, there is stress related 
to the drilling rotation. Therefore, we assume that the 
stress σθx can be split in two parts: 
 

1 2
θx θx θxσ = σ +σ  

 
Where: 

1 c
θxσ = kµ r  = The stress due to the symmetric strain ε 
2
θxσ  = The stress related to the drilling rotation 

Because A
θxN = Constant, 2

θxσ  only depends on the 

coordinate (r), hence it can be taken equal to kcf(r) 
Therefore: 
 

1 2 c
θx θx θxσ = σ +σ = kµ r + kcf(r)  (42) 

 
where, the constant c and the function f(r) are to be 
determined. 

The applied tangential load is: 
 

c

v

c

v

R
A c
θx R

c
R2 2

c v R

N = (kµ r + kcf(r))dr

kµ
= (R - R )+ kc f(r))dr

2

∫

∫
 (43)  

 
From Equation 41: 

 
c

A c 2 2
θx r r c v r

r kµ
N = kα + β δ= kµ hr + β δ= (R - R )+ β δ

2 2
 (44) 

 
Which implies that Equation 45: 

 
c

v

R

r R

kc
β = f(r)dr

δ ∫
 (45) 

 
Knowing that the torque per unit length of the 

average circle due to the tangential load Nθx is 

θxN .2r thus the resultant torque is 
θxN .2r.2πr . 

The torsional rigidiy is then: 
 












+−+=

=

∫
cR

vR
vc

c

cv

A
θx

f(r)drc)R(R
µ

)Rπ(R      

k

rπ.r.N

k

M

222

2

22

 (46) 

The stress 2
θxσ  related to the drilling rotation is 

assumed to be parabolic (Fig. 8). Equation 47: 
 

2 2
θx v c v cσ = kcf(r)= kc(r - (R + R )r - R R )  (47)  

 
The constant c is computed by equating the values of 

θxσ

k
for Cauchy and Cosserat solution for a given value 

of 0r = r  chosen rather large but physically acceptable. 

This gives Equation 48: 
 

c
02

4
c = (µ - µ)r

h
 (48) 

 
Therefore the torsional rigidity and the drilling 

rotation are obtained as follows. Equation 49 and 50: 
 

2
v c

c 3 3 2 2
2 2 v c v c c v
c v

M
= π(R + R )

k

µ R - R R R - R R
(R - R )+ c( + )

2 6 2

 
 
 

 (49) 

 
And:  

 3 3 2 2
v c v c c v

r

kc R - R R R - R R
β = ( + )

δ 6 2

 
 
 

 (50)

 
 

When the drilling rotation is nil, the stress due to βr is 
also nil, one has Equation 51: 
 

c
2 2 2

v c c v

M µ
= π (R + R ) (R - R )

k 2
 (51) 

 

 
 
Fig. 8. Representation of the stress related to the drilling rotation 
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The expression (51) corresponds to that of SWNT    
considered as a Cauchy medium. 

4.2. Torsion of SWNT/Polyimide Composite Tube  

We now consider the example of a straight 
composite tube made of polyimide reinforced with 
SWNT. The graphene layer is modeled as a Cosserat 
medium (Fig. 9). The composite tube of axis (x) and 
length l is subjected to a uniform load θ

A
θxeN
r

at its end 

(x = l), while the y and z displacements of the other 
end section (x = 0) are prevented. The tube has a 
uniform section which is delimited by closed circle. 

Adopting the cylindrical coordinates, the stress 
tensors in the matrix and the Carbon phases are taken 
respectively: 
 

m m
m

m m

0 k µ r
σ =

k µ r 0

 
 
 

 (52) 

 

θxc

xθ

0 σ
σ =

σ 0

 
 
 

 (53) 

 
Using the results of section 4.1, the stresses in the 

Carbon layer are: 
 

c c c 2
θx v c v cσ = k µ r + k c r - (R + R )r + R R    (54) 

 
In the matrix phase, the strains are given by isotropic 

linear elasticity as: 
 

m

m

m

r
0 k

2
ε =

r
k 0

2

 
 
 
 
  

 (55) 

 
The matrix displacement is:  

 
m m

θ
u = k rxe
r r  (56) 

 
The continuity of the traction at the matrix/Carbon 

interface is satisfied: 

 
c m

rσ - σ e = 0  
rr

  (57) 

 
The Carbon phase displacement is taken as:  

 
c c

θ
u = k rxe
r r   (58) 

 

 

Fig. 9. Straight SWNT composite tube under AθxN load 

 
At r = Rc, the displacement continuity at the 

matrix/Carbon interface implies Equation 59: 

 
m ck = k = k  (59) 

 
So, in the Carbon phase, the strains are derived as: 

 
r

0 k
2

ε=
r

k 0
2

 
 
 
 
  

 (60) 

 
The stress vector (traction) on any cross section of 

outward normal xe
r  is i i

θx θ
t = σ e
r r , with i = c or m. It is 

easily checked that its resultant is nil. The resultant of 
the stress vector over the thickness of the Carbon 
layer gives: 
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rr

=
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







 −
+

−
+−=∫ 262

2233
22

 (61) 

 
where, [ ]Ac

θxN N / m is the load applied to the SWNT 

phase. 
The resultant of the stress vector over the matrix 

thickness is: 
 

θ
Am
θx

θcm

mmR

cR

m

eN

e)R(R
kµ

drt

r

rr

=

−=∫ 22

2  (62)

 
 
where, [ ]Am

θxN N / m  is the load applied to the matrix phase. 

The torque applied to the Carbon phase is: 

 
c Ac

c v θxM = π(R + R )N  (63) 

 
And the torque applied to the matrix phase is: 

 
m Am

c m θxM = π(R + R )N  (64) 

 
Then, the composite beam rigidity is: 

 
c m

c 3 3 2 2
2 2 2 v c v c c v

v c c v

m
2 2 2

c m m c

M M + M
= =

k k

µ R - R R R - R R
π(R + R ) (R - R )+ c( + )

2 6 2

µ
+π (R + R ) (R - R )

2

 
 
 

       (65) 

 
Note that µm is the classical elastic shear modulus for the 

matrix phase but for the Carbon layer µc is not the classical 
elastic shear modulus and is defined in Equation 35. 

In the case of a nil drilling rotation, the associated 
stress is also nil so that c = 0 and: 
 

2 c 2 2 m 2 2 2
v c c v c m m c

M π
=

k 2

(R + R ) µ (R - R )+ µ (R + R ) (R - R )  

 (66) 

 
It is the expression obtained when the composite 

phases are considered as Cauchy media. 

5. NUMERICAL SIMLULATIONS 

A polyimide (LaRC-SI) is reinforced with fully 
aligned, long homogeneously dispersed SWNT; see 
Table 1 for the properties when the graphene layer is 
considered as Cauchy medium. In the case of Cosserat 
medium, the mechanical properties are given in 
section 3. For both approaches, the predicted 
mechanical response of the composite is reported in 
Fig. 10 to 18. In all figures the SWNT thickness is 
kept constant equal to 0.34nm. If the x-axis is the 
SWNT volume fraction, the internal radius Rv is kept 
constant equal to 2 nm and it is the polyimide tube 
radius Rm which varies. But if the x-axis is the 
internal radius Rv, the SWNT volume fraction is taken 
equal to 3%. 

Interpretation 

From Fig. 10 we conclude that the Cosserat 
normalized torsional rigidity, which is equal to the 
Cosserat torsional rigidity normalized by the Cauchy 
torsional one (M/k)c/(M/k)c, changes with the internal 
radius so the figure shows a size effect on the 
torsional rigidity. 

Figure 11 plots the variation of the Cauchy and the 
Cosserat composite torsional rigidities with the internal 
radius. It shows that for large values of internal radius 
where the plate theory is applicable, the Cauchy torsional 
rigidity is larger than that of the Cosserat one. This 
torsional rigidity decrease is due to the addition of the 
drilling rotation DOF. 

Figure 12 and 13 plot respectively the variation of 
the torsional rigidities and the normalized torsional 
rigidity with the SWNT volume fraction. The two figures 
show clearly that for low volume fraction, the Cosserat 
solution is close to the Cauchy one. 

Figure 14 plots the variation of σθx/k in a point of the 
Carbon phase mid-surface with internal radius, it 
indicates that σθx/k in the graphene layer considered as 
Cosserat medium is higher than that in the graphene 
layer taken as Cauchy medium. 

Figure 15 and 16 show respectively the variation 
of the tangential displacement of a material point in 
the Carbon phase mid-surface normalized by the 
average diameter of the SWNT tube uθ/d, d = Rv+Rc, 
as a function of SWNT volume fraction and as a 
function of the axial distance. 

Tangential displacements in these figures are 
obtained by applying a 10−10 nNm torque, for the Fig. 15, 
the displacement is calculated in 0.5mm axial distance. 
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Fig. 10. SWNT/LaRC-SI composite. Variation of the normalized torsional rigidity with the internal radius: Comparison between 

results of Cauchy-de Saint-Venant and proposed Cosserat theories 
 

 
 
Fig. 11. SWNT/LaRC-SI composite. Variation of the torsional rigidity with the internal radius: Comparison between the Cauchy-de 

Saint-Venant and Cosserat theories 
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Fig. 12. SWNT/LaRC-SI composite. Variation of the torsional rigidity with the SWNT volume fraction: Comparison between the 

cauchy-de saint-venant and cosserat theories 
 

 
 

Fig. 13. SWNT/LaRC-SI composite. Variation of the normalized torsional rigidity with the SWNT volume fraction 
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Fig. 14. SWNT/LaRC-SI composite. Shear stress/k: Comparison between the cauchy-de saint-venant and cosserat theories 

 

 
 
Fig. 15. SWNT/LaRC-SI composite. Variation of the normalized tangential displacement with SWNT volume fraction: Comparison 

between the cauchy-de saint-venant and cosserat theories 
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Fig. 16. SWNT/LaRC-SI composite. Variation of the normalized tangential displacement with the axial distance: Comparison 

between the cauchy-de saint-venant and cosserat theories 
 

 
 

Fig. 17. SWNT/LaRC-SI composite. Variation of the normalized D parameter by the tangential load with the internal radius  
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Fig. 18. SWNT/LaRC-SI composite. variation of the normalized D parameter by the tangential load with the SWNT vo-lume fraction  

 
Table 1. Elastic constants of LaRC-SI and Continuum 

graphene, after Selmi et al. (2007) 
 Young’s Poisson’s 
 modulus (GPa) ratio 
LaRC-SI 3.8 0.4000 
Continuum graphene 2520.0 0.25 

 
The figures show that the normalized displacement 

associated to the Cosserat composite medium is a little 
higher than that associated to the Cauchy composite 
medium; this is predictable and it is due to the torsional 
rigidity difference. 

Knowing that for a fixed internal radius Rv, the 
rotation βr is constant and knowing that there is no 
drilling moment applied to the SWNT/Polyimide 
composite, Equation 19d is reduced to D = 0. 
Figure 17 and 18 show respectively the variation of the 
parameter D, equal to 2δβr, normalized by the tangential 
load with respect to the SWNT volume fraction and the 
internal radius. 

These figures prove that for low SWNT volume 
fraction and for large values of internal SWNT radius, 
the parameter D is near to zero and explain the fact 
that not taking the equilibrium Equation 19d into 
account is not a bad estimation, hence all equilibrium 
equations are satisfied.  

6. LIMITATION AND FUTURE 
RESEARCH 

We bring to attention that Equation 19d is not 
verified because taking it into account leads to a 
complicated problem which needs supplementary 
boundary conditions. But it was seen that when the 
tangential load value is not too large, this equation is 
basically satisfied.  

The developed Cosserat plate theory can be used in 
future research to clarify the behaviour of granular and 
large molecular materials such as polymers in which the 
transmission of interaction may be not only through a 
force vector but also through a couple or moment vector. 
The developed theory coupled with micromechanical 
techniques can be adopted in order to investigate the size 
effects which cannot be detected by classical 
homogenization procedures. 

7. SUMMARY AND CONCLUSION 

In order to study the angle variation phenomenon 
effect on the SWNT mechanical behaviour, a Cosserat-
type elastic plate theory based on the virtual principle 
work was developed. For this theory which takes into 
account the drilling rotations, the internal loads, the 
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equilibrium equations, the boundary conditions and the 
linear elastic constitutive equations were derived. The 
application of this approach to a nanotube microstructure 
and a SWNT/Polyimide composite under torsion proves its 
capability and shows a size effect on the torsional rigidity. 
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