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ABSTRACT

The predictive capabilities of plate and shell tieogreatly depend on their underlying kinemasisumptions.
In this study, we develop a Cosserat-type elasdie pheory which accounts for rotations aroundritvenal to
the mid-surface plane (so-called drilling rotatjoriaternal loads, equilibrium equations, boundeoyditions
and constitutive equations are derived. The case Sihgle Walled carbon Nanotube (SWNT) modelle@ as
Cosserat medium is taken here as a reference exavgtierial parameters are identified and the pexptieeory
is used to solve analytically the problem of a p@y-SWNT composite tube under torsion. Predictirch as
an absolute size effect are compared to thosealdissical Cauchy-de Saint-Venant results.

Keywords: Plate Theory, Drilling Rotation, Cosserat Medi®@arbon Nanotube, Composite Microstructure

1. INTRODUCTION as continuous media based on known bulk material
properties (Odegaret al., 2003).

SWNT are graphene cylinders that typically have  However, a corresponding model does not existen th
diameters of about 1 nm with lengths of severalranis  intermediate length scale range. If a hierarchical
(Selmi et al., 2007). Due to their extraordinary approach is used to model the macroscopic behafior
mechanical properties, SWNT have become objects ofyano-structured materials, then a methodology rbast

intensive investigation for different ~applications qyeyejoped to link the molecular structure and the
(Varthamanan, 2013). Because of the high aspeit rat macroscopic properties. An important component in

(thousands) in addition to the mechanical strengéy molecular dynamics calculations of the nano-stmectif

have become very promising components for o o
composites (Meoli and Plumlee, 2002; Partriggel. a material is the description of the forces between

2000). To improve the performance of a matrix or to individual atoms and the energies associated wattdb
achieve new properties, extensive studies have bee#tretching, angle variation, torsion and inversion.
devoted to the use of SWNT as reinforcing material. In order to simplify the calculation of the total
Indeed, there are researchers who have demonstratgtiolecular potential energy of molecular models with
improvement in properties of pitch and polystyrene complex molecular structures and loading conditi@ms
(Quin et al., 2000) and poly (p-phenylene intermediate model may be used to substitute the
benzobisoxazole) (Kumat al., 2002). molecular model (Odegast al., 2002; 2003).

In the mechanical study of SWNT material, The mechanical representation of the lattice
computational chemistry models predict molecular behaviour serves as an intermediate step in linkieg
properties based on known quantum interactions andmolecular potential with an equivalent-continuum
computational solid mechanics models predict themodel. In the truss model, each truss element
macroscopic mechanical behaviour of materials idedl  corresponds to a chemical bond or a significant-non
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bonded interaction. The stretching potential ofheac Based on the Love-Kirchhoff model, the
bond corresponds to the stretching of the displacement components through the thickness were
corresponding truss element; gég. 1. estimated to be linear or higher order series esipan

In previous studies, the angle variation (assodiéte  (Kreja and Schmidt, 2006). Classical theories are
a driling moment) phenomenon is related to in-plan unable to explain some phenomena at high frequencie
forces giving the same energy associated with fiigtea  and small wavelengths of surface waves, in additiery
variation; sed-ig. 1. are insufficient in the elucidation of granular aladge

In the present work, the angle variation is congide  molecular materials such as polymers (Krejand
by adding a new Degree Of Freedom (DOF): The Schmidt, 2006). Such limitations are due to the faat
drilling rotation. Then a drilling moment in the the interaction cannot be described only by a force
microstructure of the nanotube is introduced makitey  vector; a couple or moment vector is also needéis T
classical plate theory invalid. The theory preseénite¢ interpretation led investigators to enrich the kiagical
sections 2 and 3 will be applied to the nanotube description and various theories have been proposed
microstructure. recent years with various kinematic variables.

Shell and plate theories are the subject of a \aage The construction of a plate theory based on thealin
body of literature. These theories are greatly ddpet  theory of micropolar elasticity is not a new subjaad it
on the models adopted to represent shell strucaméls  aitracts  considerable  interest  from  researchers
the processes of their deformation. They differhwit (ampartsumian, 2002). To derive his micropolar elat
respect to the consideration of a linear or noBdM  yheqry  (Eringen, 1967) assumed that the stress and
model, to the variations O_f the in-plane d|spla(_:B'me _displacement fields do not vary rapidly across the
components across the thickness and to the I('nema“thickness of the plate. The three-dimensional field
description (Rubin, 2000). Most of classical plate . . ' - .

T ’ . equations of micropolar elasticity are integratedoas
theories involve: An in-plane normal stress tensbran the thickness and the balance equations of micaspol
in-plane moment tensor, (Y and (My) are bending . i . .
moments, while Mb and My; are twisting moments (all elastic .plgtes are derived. Next, assumptlpns deggr
are per unit length). In this study, we will desigathem the variation of the unknowns across the thickrdégbe
collectively as "in-plane moments”) and a sheaesgr Plate are made. , _
vector, T. The kinematics is defined by the The asymptotic expansion technlqu_e was e.xtended

. . - . to obtain the two-dimensional dynamic equations of
displacement of the middle plang, and the in-plane . : ;

) L thin  micropolar elastic plates from the three-
rotation of the normal fiber@, (Fig. 2). dimensional dynamic equations of micropolar
Classical shell and plate theories based on thedov elasticity theory (Erbay, 2000). It consists in lgug
Kirchhoff assumption and the Green strain measurethe field variables by an appropriate thickness
are fully developed by (Pietraszkiewicz, 1984). 3&ie parameter to reflect the expected behaviour of the
two-dimensional theories are, in fact, 2D plate. A power series expansion of the three-
approximations to 3D elastic models based on ariprio dimensional solution is used by considering the

assumptions regarding the variation of the unknownsthickness parameter as a small parameter.

(i.e., the displacements and the stresses) actoss t In the finite strain case, based on the polar
thickness of the plate. decomposition theorem and the Love-Kirchhoff
A method called asymptotic expansion has been usessumption, Atluri (1984) has developed a shelbihe

to obtain two-dimensional models of thin elastic which includes a rotation tensor related the détini
plates. In that method, a power series expansidhef of the stress measure. Similarly, (Sansour and Bock
three-dimensional solution is used by considerimg t 1998) have developed a non-linear theory with exact
thickness of the plate as the small parameter. Thedescription of the kinematic field, in which the
asymptotic approach has also been applied to derivegotation tensor describes the rotations DOF of any
the fully non-linear model of thin plates that anede  material segment and takes into account the dgillin
of a general non-linear elastic material. In thedgtof rotations in a natural way.

Erbay (1997), there is an abstract of this stuayngl In the classical plate theories, the drilling rmat
with an asymptotic membrane theory of thin (i.e., rotation around the normal to the mid-swefac
hyperelastic plates. plane) and the drilling moment are nil (Reissn883).
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Classical approach
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Fig. 1. Classical model for nanotube microstructure
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Fig. 2. Classical internal loads and generalized displanéme

In some applications, such as honey-comb structumds
Carbon nanotube microstructures, an in-plane ekiens
induces a drilling rotation and out-of-plane int@rloads
(moment and shear). Compared to classical theofies
plates and shells, this coupling between extensiuth
drilling rotation induces a non-symmetric normakess
tensor and new internal loads. A plate with a icgil
rotation will be called “an out-of-plane Cosserkit@”.
Existing theories which deal with drilling rotation
are geometrically non-linear. However, in order to
clarify the behaviour of granular and large molecul
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materials such as polymers in which the transmissio
of interaction may be not only through a force wect
but also through a couple or moment vector and in
which size effects could be important, consideramg
additional DOF like drilling rotation in the linear
elastic domain has a great interest.

In this study, using the virtual principle work, an
elastic out-of-plane Cosserat plate theory is dgped.
The internal loads, the equilibrium equations, the
boundary conditions and the elastic constitutive
equations are derived.
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The case o_f nanotube microst_ructures will b_e the  The kinematic variable gradients1U,09) and the
reference application. An illustration of the dnit internal efforts (N,M,B) are divided into in- and out-of-
rotations effect will be presented in the exammleshe ) i . . .
torsion of SWNT and the torsion of SWNT/Polymer plane components which are written in matrix foman

composite beams. orthonormal basis as follows. Equation 3 to 7:
2. EQUILIBRIUM EQUATIONSAND ___“1-1 i, 0 [oa o
BEHAVIOUR OF A CONTINUUM PLATE V=% U 01| ®)
WITH COSSERAT DRILLING EFFECT e
Let us consider a plate defined geometrically by a (@, @, 0 5 o
middle planew in which the position of a point is 02=|2,; 2,, 0 :{p‘”é” 6"} (4)
defined by the coordinates (xx,). For any material |2, 2, O 073
segment initially normal tow, the kinematics is
characterized by a displacement fielénd a rotation N, N, O NG
@ defined by Equation 1: N=[N, N, O {tf d (5)
T, T, O
B ul(xl’x2) ul =
U=lu,(x.%)|=]u =(u“] My My, 0 R
Uy (%)) \u, ® ) M=|My M, O =[té (L)J} (6)
2(a%)) (2) (5 & G 0
0=\ 9,(%%) |=| 2 =(Q]
Qa(xlvxz) Q, : = B, Bow
B=|B, :( D ] (7)
The classical plate models consider that the péate B
two-dimensional in-plane Cauchy mediuf®;(= 0). The _ . )
model considered here takes into account the mgilli With decomposition to in-plane and out-of-plane

g parts, the internal virtual work takes the follogin

rotation Qg; the plate is then a two dimensional in- an . i
expression Equation 8:

out-of-plane Cosserat medium.

The virtual work principle is used hereafter toider B L o
the equilibrium equations and the boundary coratitiof A = ‘L)(A-U + N0, +T0,U3 +B,.Q, )dw
the continuum plate with a drilling Cosserat effect _J-w(DQS N 20,0, +C0,0,)do

2.1. Virtual Work of Internal L oads

(8)

In the following and as classically considered, the According to the first statement of the virtual wor

virtual work is an integration of a volumetric déps pnnmple, th_e_vutual wor!< Of. internal loads ass_med to_
over the system or any subsystem any virtual rigid body motion is equal to zero. §kgads to:
: i i 1 7 —170

The internal virtual work is chosen as a linear  FOf etErans—IzS\tJon motion: defined by =U", one
functional of the virtual kinematic variables areir  obtains(U,2)=(U"0). Then Equation 9 and 10:
first gradients:
P =—'[(A.U°dw=0, ou° = A=0 9)
p=- j (AU+N:0U +B.G+M:00)do @) ’

For a rigid rotation defined by =Q° 0%, where %

where, A, B, N and M are internal efforts associated IS the position vector an@® is a constant vector, one
to the kinematic variables, introduced systemdgicahd ~ obtaingu,9)=(@° 0%2°).
will be discussed later. Where:
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R= [ (F,0,+ Fus+ m, 6, + mp, )dow

v . (17)
*[(F, 0, + Foly+ My, B, + mypy)d

(10)

where, the external loads associated respectivithytie

Using the classical plate’s rotations defined by middle surface and its boundary are the following:

Equation 11:

- 0 F andF,_ : In-plane density forces
ﬁo - QZ (11) (2] Sm ]
e Fsand k3 Out-of-plane density forces
m, andm,: In plane density moments

mz and mg Density moments of axis the normal to
the mid-surface plane

The internal virtual work is reduced to Equation 12

R=-I’(N21-N12+D)-93-f-32+§w-!§2 do =0 2.3. Derivation of Equilibrium Equations and

12 I
0G0 (12) Boundary Conditions
_ Assuming the continuity of the function fielt2),
And leads to Equation 13: using the divergence theorem and the second ptestfia
- - the virtual principle work, which is:
D=N,-N, and T='RB, (13)

P+P=0

I e

(18)

0 -
Where: R:{ }
10 Equation 18 leads to the following equilibrium:

Finally, for any virtual motion the internal virtua

work takes the following expression: divN+F,=0
divT+ F,=0
- o 19)
P :—I(‘N 0,0, +T.0,u, +T/4, )do divM - T+, =0
’ L (14) dive - D+ m,
[ O M0 f, + E0 o
And the following boundary conditions:
Where
B ) B -Ny+F, =0
M='RM, g,=Q, and f =R'-Q, (15) FFF,=0
(20)
: o , , , -Mi+m, =0
Using Green’s integration, the internal virtual kor - ’
takes the following expression: Cy+m,=0

P= jv(divN.um+ divT.u, -T.6, - DB, + divM§, Equation 20 gives an interpretation of the internal
; loads introduced in Equation 2 aRid). 3 describes them.
Let us consider an elementary plane surface whose

facets have an outer unit normalequal to£x,0r +X,.
From Equation 20, we interpret that:

- . Ll (16)
+divCf;)do- [ (N3.0, + Toug+ M., + Cpy )dr

where, 0w is the boundary ob and v is the unit normal

vector ofdwand v situated in the mid-plane. )
N.i = The in-plane force

2.2. Virtual Work of External L oads

The external virtual work is written as a linearnp
of the kinematical variables. Equation 17:
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M.v = The in-plane moment
= The shear force
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Fig. 3. Description of the internal loads in the proposeb<e-
rat-type theory

2.4, Elastic Constitutive Behavior

Using the following state variables:

(21)

Which are respectively the in-plane infinitesimal
symmetric strain tensor, the total in-plane rotatithe
in-plane infinitesimal symmetric rotation gradient
tensor and the drilling rotation gradient. The
deformation power density is Equation 22:

P, =N*:é +T.0+M: i +CJ +Dfj (22)

,////4 Science Publications 1260
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where, N stands for the symmetric part of the normal
tensor N.

The Clausius-Duhem inequality implies that for any
evolution the dissipative power density has to be
positive, that is Equation 23:

O (éwlév/iwvj’évﬁ?,)V

(NS_ij
0

: = Oy, = d :
):gw+(T—a—g).9+(M —Mi):,lw (23)
(&)

Cw

— a(// = a(// .
+C—-—2) Ay +(D ——— >0
( 0/13) 3+ ( 0ﬂ3)ﬂ3

where, v is the thermodynamic potential. An elastic and
linear behaviour is then chosen as follows:

W= %Sw . CN tE, + %él—é-" ﬂ3§ﬂ3
(24)

1

1. - -
+E,1w :Cy: /1”+5/13u./13+gw KA

where,cy and cy, are fourth order tensok is a third

order tensorL, ¢ and» are real constants.

This choice includes a coupling betwegnand A;,
this allows to take into account the coupling betwan-
plane extension and drilling rotation.

For a reversible process, the dissipative powesitjeis
nil. Thus, the behaviour  relations are:

Ne=Woo e K
all}
T=W_ 14
mMm=M-c, (25)
j'Cl}'
C= 6—3’: U.Z3+8w K
)
oy
D:TZS: Ny, - Ny = 206,

In the case of 2D linear isotropic elastic thedmg, third
order tensox is nil, so the behaviour laws are written as:

N°® =g, +n(tre,) )l
T=L0
M =i, +@(tri,)l (26)
C=0v/,
D =Ny, =Ny =256,
AJAS
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The following decomposition is introduced: particularly true for Carbon nanotubes which are
sheets of graphene which are rolled up and can be
Ny, + N, capped .at their end; (Selmstial., 2007). _
1 5 In micromechanical analyses, the method of unit
N, + N, cells has been used to determine the effective
— N, properties of heterogeneous materials by identifyin
and analysing convenient domains of repeating
microstructure. In the current study, a repeatimg u
of nanotubes is defined as a truss microstructuce a
homogenized to a two dimensional continuum plate,
0 & as described ifig. 4.
=N°+ ﬁ{-é 0} To reduce the computational time associated with
modelling the graphene sheet, a Representative
= N°+ ;4 Volume Element (RVE) for graphene is used in this
study Fig. 5). The selected RVE allows each DOF of

where, N° stands for the skew-symmetric part of the the Carbon atom .as_socia.\ted with bond stre.tching
normal tensor N, “I" is the second-order identiepgor ~ @nd bond-angle variation in the hexagonal tiag
and@.n.6,L 0,4 are mechanical characteristics °€ completely modelled by truss and continuum
which will be identified later. finite element mod_el nodal-d|splacement degree
Finally, the first constitutive equation in Equati@6 of freedom. Also, this RVE allows the d|spla_1cenr$en
is replaced as follows: on the bpundary of the propose.d ghem|cal, truss
and continuum models to coincide exactly.
Furthermore, macroscopic loading conditions applied
to a continuous graphene plate can be easily
reduced to periodic boundary conditions that are
Remark applied to the RVE.
The elastic constants associated with the truss
Compared to the literature where the normal teNsor  structure Fig. 6) are determined using a computational
is symmetric, from the behaviour laws derived fbe t  program (SAP, 2000) with the following data: Distan
developed theory, N (Equation 28) is not symmeifie between two successive atoms is constant and egual
remark also the existence of two additional countti¢ R® = 0.14 nm, the stiffness associated with rotationa
Equation 26d and 26e which are obviously satisfied nJ
when the drilling rotatiofs is nil. anglerad?

If we do not take the drilling rotatioBs into  characterized by a Young modulus equal to 1.005TPa
account, N will be symmetric see Equation 28) then  ang a diameter equal to 0.34nm (Odegetrdl., 2002;
and C will be nil (see Equation 26e, 21e and 26d). Natsukiet al., 2004).
Therefore we retrieve the constitutive equatiorse t
equilibrium equations and the boundary conditions 3-2- Results

N=N°+N®=

le - N21
2 (27)

0

+
N21 - le
2

N = ae, +n(tre, )l + B4 (28)

spring is K’=8.76x10" and the rods are

given by classical theories of Reissner (1985). Using models described Iiig. 6, the constitutive
parameters associated with the continuum model are
3. APPLICATION: CARBON identified. For example, for the determination cdrad
NANOTUBE MICROSTRUCTURE J, Fig. 6b and c, from the constitutive Equation 28

and 29, we have:
3.1. Introduction

Nano-structured ~ materials  have  generated |N =% +u, )+ dp,
considerable interest in the materials research 2" (29)
community in the last few years partly due to their |n =% +u,)-op
potentially remarkable mechanical properties. Tikis 2°7 "

////4 Science Publications 1261 AJAS



Abdellatif Selmiet al. / American Journal of Applied Sciences 11 (853-2273, 2014

Present approach |

In-and out-of
plane truss
model

In-and out-of
plane plate
truss model

Chemical model

b Out-of plane spring

Fig. 4. Present model for nanotube microstructure

'\ Truss RVE " Continuum model

5

and
Element (RVE)

Fig. 5. Truss continuum Representative Volume

So we apply the shear loadNFig. 6¢), by the finite

a=190. l{ﬂ}
m

n =1046 S{E}
m

L =345 ZS{E}
m

¢ =3.482x 16 [Nm|
@=3.482x 16[Nm]

v =808 Nm|
0.891161}[%}

(30)

0
A=
{—o.sgx 16*

3.3. Discussion

From the values of the material constants, we femar
that the matrix N is neither symmetric nor skew-gyetric
and the contribution of the rotation to the norfoatl might
be considerable. Compared to the in-plane momanthé
Carbon nanotube case the drilling rotation indaceslling
moment which is not negligible.

4. EXAMPLES

The examples of the torsion of a straight SWNT tube
and a straight composite tube made of polyimide
reinforced with SWNT are studied. In both casesNGW
layer is modeled with the proposed cosserat-typerth
The results illustrate the applicability of the posed
plate theory and the effect of the drilling rotation the
torsional rigidities and displacements. Comparisaith
the torsional rigidities and displacements obtaimétth
classical Cauchy-de Saint-Venant media, are predent

4.1. Torson of SWNT

A straight SWNT beam of axis (x) and length | is
subjected to a uniform load, g, at its end (x = 1)Kig.
7), while the y and z displacements of the other end

element method: (SAP, 2000) program, the nodalSection (x = 0) are prevented. The beam has a ramifo
displacements are given and finally the kinematic Section which is delimited by closed circles.

variables y, W, and g; are obtained by the discrete
element method then we apply the shear logd(Ng.
6b) and we obtain again g, W, and g;. Finally, the
resolution of the system of 2 equations for two
parameters gives and . We follow the same way

The method of resolution starts similarly to the
classical Cauchy-de Saint-Venant approach (Doghri,
2000). The displacementi of a material point is
assumed to be the sum of an infinitesimal rotaéiom
the (y, z) plane and an axial displacement u:

to search for the other parameters. The following _

values are found. Equation 30:

,////4 Science Publications
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Fig. 6. Models for the determination of the elastic contta

cylindrical coordinates, the mid-surface being diéscl

by (6,x) coordinates. The strains are obtained by simple
The infinitesimal rotation is assumed to be differentiation of the displacements. Equation 33:

proportional to the axial distance (x) of a crosst®n

where, 7 is the average radius equal—RteJ;—RC

from the (x = 0) section; i.e.§' =kx, where k[1/m] is 0 l(la(kF) +K)

an angle of torsion per unit length. 6= 21 00 (33)
It is supposed that the axial displacement is ( 1 a(kF) + ki) 0

independent of (x), i.eu=kF(F,6), where F(F,6)is a r

warping function to be determined. _ . . .
According to these assumptions, the displacement is_ 1h€ constitutive equations of section 3 give

written as: Equation 34:
- _ . - N =ae +5(tre)l + 5,4
U(r, 0,x) = krxe, +kF(r,0)e, (32) al a(kF)
° 25 e (O @4
We assume that the plate theory equations are valid™ ( a(kF) +KD) - B0 0
for the thin tube by simple transformation into r '

,///4 Science Publications 1263 AJAS
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SWNT

Fig. 7. Straight SWNT beam undeX, load

In the classical Kirchhoff-Love plate theory, the

internal load tensor is written as:

N = h|:2,u6‘+ lEvz trel }

-V

where, h designates the thickness of the tube.

Br =5 (0)

2
ak O°F _ OB _, (36)

¥ 2r 992 00

On the end section (x = 1), we shall write that the
load applied is equal tol}, :

NG, =N2G, = NA=%(19MD) 1hips

2°'r 06 (37)

Thus the normal fort tensor can be written as:

A
N[ 0N
Nj-266 0O

In summary, the problem is the following: find a
function F(r,0) which satisfies:

(38)

B =B (6)
ak 0°F 0B, _
a0 "0 0 (39)

k oF
Ny = 2 (== + kD) + f,0
b= (2o,

The system (39) shows that the drilling rotat{&n
is constant.
The Equation 39 gives Equation 40:

P g7 R (40)
a

For a circular cylindrical tube, there is no waigpin
the classical Cauchy-de Saint-Venant solution. [&ityi
in the case of Cosserat medium, we assume that the

Similarly, the equation for N of Equation 34 can be warping function is nil:

written as:
N = h| 2u‘e+&trel + 4]

Where:

The equilibrium equation (divN + f, =0)
Equation 36:

////f Science Publications
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N-EL
(35) F=0= 4 :Tzand F(M)=0 (41)
The stress vector resultant over the Carbon phase
thickness is:
. A Re
g|Ves Nax :Iggxdr
Ry
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For a circular cylindrical tube, in the classical The stresss? related to the drilling rotation is
Cauchy-de Saint-Venant solution, the stregsis equal  assumed to be paraboliig. 8). Equation 47:
tok x r. In the Cosserat medium, which differs from the
Cauchy one in the drilling rotation, in addition toe o2 = kef(r)= ke(r?-(R,+ R )r -RR.) (47)
stress due to the symmetric strajrihere is stress related
to the drilling rotation. Therefore, we assume ttet

. The constant ¢ is computed by equating the valfies o
stressgg, can be split in two parts:

%‘for Cauchy and Cosserat solution for a given value

- 1 2
o= o O of T=T, chosen rather large but physically acceptable.

This gives Equation 48:

Where:
o, = kur = The stress due to the symmetric steain 4 .
Zx - . c= 7(/1 - 1T (48)
oy = The stress related to the drilling rotation h
Because N, = Constant,s; only depends on the Therefore the torsional rigidity and the drilling

coordinate (r), hence it can be taken equal torkcf( rotation are obtained as follows. Equation 49 abid 5
Therefore:

M _ 2

0, = O+ 05 = KuCr + kf(r) (42) Kk "R+ R) (49)
e o R? - Rs R/Rcz - RR/Z

where, the constant ¢ and the function f(r) arebéo {2('% R+ 6 ¥ 2 )}

determined.

The applied tangential load is: And:
N = [ (ker + kef(r))or _ke[ R-R RR-RR
R @3 /= 5{( s 2 (50)

= HR R+ ke o)

When the drilling rotation is nil, the stress dagtis

From Equation 41: also nil, one has Equation 51:
NA_kOCF"' 5= Ch7 _Kuc 2 2 44 M_ #70 + 22 _ P2 (51)
=kt o=k fo=Z-(R-RD+ A0 (44) L =roRAIRYR-R)

Which implies that Equation 45: R

.= % j: (r)dr (45) 2

Knowing that the torque per unit length of the e
average circle due to the tangential loady, Ns
N,,.2r thus the resultant torque is,,.2r.2a7 . .

The torsional rigidiy is then: ’ y
M _ Ng.2r 2zt
I z
k k (46)

c Re
=a(R, + RC)Z{”—(RCZ ~RE)+ef f(r)dr}
2 Ry Fig. 8. Representation of the stress related to the dyittitation
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The expression (51) corresponds to that of SWNT
considered as a Cauchy medium.

4.2. Torsion of SWNT/Polyimide Composite Tube

We now consider the example of a straight
composite tube made of polyimide reinforced with
SWNT. The graphene layer is modeled as a Cosserat
medium Fig. 9). The composite tube of axis (x) and

length | is subjected to a uniform Ioa@éﬁ at its end

(x = 1), while the y and z displacements of theesth
end section (x = 0) are prevented. The tube has a
uniform section which is delimited by closed circle

Adopting the cylindrical coordinates, the stress SwNT
tensors in the matrix and the Carbon phases aentak
respectively:

am:{ 0 K r} (52)
K™u™r 0
O,C _ |: O 0()x:| (53) polymer matriz
o, O
Using the results of section 4.1, the stressedhén t
Carbon layer are: N N
05 = KT+ K[ -(R+ R+ RR | (54)

In the matrix phase’ the strains are g|ven bym F|g 9. Stralght SWNT CompOSite tube UndN@x load
linear elasticity as:

At r = R the displacement continuity at the

o k- matrix/Carbon interface implies Equation 59:
m_ 2
eM= (55)
ml
k"> 0 k™= k° =k (59)
The matrix displacement is: So, in the Carbon phase, the strains are derived as
™= k"rxe 56
S (56) 0 k—
o . . ¢= 2 (60)
The continuity of the traction at the matrix/Carbon oo
interface is satisfied: 2
["c '”mJér =0 7) The stress vector (traction) on any cross section o

outward normalg, is t' =8, with i = c or m. It is
easily checked that its resultant is nil. The resil of

B B the stress vector over the thickness of the Carbon
Uu® = k°rxe, (58)  layer gives:

,///4 Science Publications 1266 AJAS



Abdellatif Selmiet al. / American Journal of Applied Sciences 11 (853-2273, 2014

J?Cdrz[k"?c(af—wakc( F€;R§ +R,RC2;RCRf 13 - 5.NUMERICAL SIMLULATIONS
:VNACé A polyimide (LaRC-SI) is reinforced with fully

aligned, long homogeneously dispersed SWNT; see
Table 1 for the properties when the graphene layer is
where, N[N/ m]is the load applied to the SWNT considered as Cauchy medium. In the case of Cdssera

phase. medium, the mechanical properties are given in
The resultant of the stress vector over the matrixSection 3. For both approaches, the predicted
thickness is: mechanical response of the composite is reported in

Fig. 10 to 18. In all figures the SWNT thickness is
kept constant equal to 0.34nm. If the x-axis is the

Rm m
t™dr =K”—(R§1—R§)éy SWNT volume fraction, the internal radiug R kept
2 62 PR f
Re (62) constant equal to 2 nm and it is the polyimide tube
= N,"8, radius R, which varies. But if the x-axis is the

internal radius R the SWNT volume fraction is taken

where, NA"[N / m| is the load applied to the matrix phase. equal to 3%.

The torque applied to the Carbon phase is: I nter pretation
From Fig. 10 we conclude that the Cosserat
M®=z(R + R N (63) normalized torsional rigidity, which is equal toeth
Cosserat torsional rigidity normalized by the Cauch
_ ) _ torsional one (M/KY(M/K)¢, changes with the internal
And the torque applied to the matrix phase is: radius so the figure shows a size effect on the
torsional rigidity.
M™=z(R + R, N (64) Figure 11 plots the variation of the Cauchy and the

Cosserat composite torsional rigidities with th&sinal
radius. It shows that for large values of interradius
where the plate theory is applicable, the Cauclsidaoal
rigidity is larger than that of the Cosserat onduisT
M_M+M"_ torsional rigidity decrease is due to the additafnthe
k k drilling rotation DOF.
¢ - 2_RR2 Figure 12 and 13 plot respectively the variation of
R+ Rc){ﬂz(az' RO+ el R136R§ + SR ZRCR )} (65) the torsional rigidities and the normalized torsibn
m rigidity with the SWNT volume fraction. The two figes
+r(R+R, (R -R) show clearly that for low volume fraction, the Cerst
2 solution is close to the Cauchy one.
Figure 14 plots the variation ofig,/k in a point of the
Note that I.T is the classical elastic shear modulus for the Carbon phase mid-surface with internal radiUS, it

matrix phase but for the Carbon layériginot the classical  indicates thate/k in the graphene layer considered as

Then, the composite beam rigidity is:

elastic shear modulus and is defined in Equation 35 Cosserat medium is higher than that in the graphene
In the case of a nil drilling rotation, the asst®ih  layer taken as Cauchy medium.
stress is also nil so that ¢ = 0 and: Figure 15 and 16 show respectively the variation

of the tangential displacement of a material paimt
. the Carbon phase mid-surface normalized by the
2 (66) average diameter of the SWNT tubgd) d = R+R,,
as a function of SWNT volume fraction and as a
function of the axial distance.
Tangential displacements in these figures are
It is the expression obtained when the compositeobtained by applying a I8 nNm torque, for th&ig. 15,
phases are considered as Cauchy media. the displacement is calculated in 0.5mm axial dista

M_
k

[R+RYu(R-R)+u"R+R,)(R-R)]
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Fig. 10. SWNT/LaRC-SI composite. Variation of the normalizedsional rigidity with the internal radius: Comisn between
results of Cauchy-de Saint-Venant and proposedeZaistheories
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Fig. 11. SWNT/LaRC-SI composite. Variation of the torsionigidity with the internal radius: Comparison beémethe Cauchy-de
Saint-Venant and Cosserat theories
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Fig. 12. SWNT/LaRC-SI composite. Variation of the torsiomigfidity with the SWNT volume fraction: Comparisdretween the
cauchy-de saint-venant and cosserat theories
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Fig. 13. SWNT/LaRC-SI composite. Variation of the normalizedsional rigidity with the SWNT volume fraction
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Fig. 14. SWNT/LaRC-SI composite. Shear stress/k: Compaitmsween the cauchy-de saint-venant and cosseratabhe

02 T T T T T
018} + 4
+ Cosserat composite medium + ¥
0.16 | + Cauchy composite medium I *
+
| Rv=2nm i
O-T4F for 5 St iif+ |
0.12} £7 -
= ¥
2 o01f % ]
3 " +
0.08 £ ' -
o
0.06 + L
. +
0.04 ¢ . * _
.
0.02+ ¥ + -
+ ¥
+
"
] + 4 ¥ 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Nanotube volume fraction (%)

Fig. 15. SWNT/LaRC-SI composite. Variation of the normalizadgential displacement with SWNT volume fracti@umparison
between the cauchy-de saint-venant and cosseratdbe
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Fig. 16. SWNT/LaRC-SI composite. Variation of the normalizehgential displacement with the axial distancem@arison

between the cauchy-de saint-venant and cosseratebe

1.3% T Ll T T T

1.25F M , — 1
e + Cosserat composite medium |
.
1.2t ¥ x=3%]|
+
T4
115 + |
z o
a +
L1f *y |
+
1.05} g |
+
1t + .
+
.+

0.95F + 1

0.9 L 1 | 1 L L

1.6 1.8 2 2.2 24 2.6
Internal radius (m) % 1079

Fig. 17. SWNT/LaRC-SI composite. Variation of the normadiZ2 parameter by the tangential load with the imtéradius
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Fig. 18. SWNT/LaRC-SI composite. variation of the normatiZ& parameter by the tangential load with the SWi¥Tume fraction

Tablel. Elastic constants of LaRC-SI and Continuum 6.LIMITATION AND FUTURE
graphene, after Selrat al. (2007)
Young's Poisson’s RESEARCH
modulus (GPa) ratio

We bring to attention that Equation 19d is not

LaRC-SI 3.8 0.4000

Continuum graphene 2520.0 0.25 verified because taking it into account leads to a

complicated problem which needs supplementary
, . . boundary conditions. But it was seen that when the
The figures show that the normalized d'Splacememtangential load value is not too large, this equatis
associated to the Cosserat composite medium igle li basically satisfied.
higher than that associated to the Cauchy composite The developed Cosserat plate theory can be used in
medium,; this is predictable and it is due to thesitmal  fytyre research to clarify the behaviour of granalad
rigidity difference. _ _ _ large molecular materials such as polymers in wifieh
Knowing that for a fixed internal radius\Rthe  transmission of interaction may be not only throwgh
rotation B, is constant and knowing that there is Nno force vector but also through a couple or momentore
drilling moment applied to the SWNT/Polyimide The developed theory coupled with micromechanical
composite, Equation 19d is reduced to D = 0. techniques can be adopted in order to investideteize
Figure 17 a.nd 18 ShOW reSpeCtive|y the Variation Of the effects which cannot be detected by classical
parameter D, equal to5@,, normalized by the tangential homogenization procedures.
load with respect to the SWNT volume fraction ahd t

internal radius. 7. SUMMARY AND CONCLUSION
These figures prove that for low SWNT volume
fraction and for large values of internal SWNT nag]i In order to study the angle variation phenomenon

the parameter D is near to zero and explain thé faceffect on the SWNT mechanical behaviour, a Cosserat
that not taking the equilibrium Equation 19d into type elastic plate theory based on the virtual gipie
account is not a bad estimation, hence all equilior  work was developed. For this theory which take® int
equations are satisfied. account the drilling rotations, the internal loadke
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equilibrium equations, the boundary conditions adhe
linear elastic constitutive equations were derivéthe
application of this approach to a nanotube micnostre
and a SWNT/Polyimide composite under torsion prates
capability and shows a size effect on the torsiagality.
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