
American Journal of Applied Sciences 11 (7): 1164-1171, 2014
ISSN: 1546-9239
© 2014 R. Suguna et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/ajassp.2014.1164.1171 Published Online 11 (7) 2014 (http://www.thescipub.com/ajas.toc)

Corresponding Author: SUGUNA, R., Department of CSE, SKR Engineering College, Chennai, India

1164 Science Publications

 AJAS

HUNTING PERNICIOUS ATTACKS IN WEB
APPLICATIONS WITH XPROBER

Suguna, R., T. Kujani, N. Suganya and C. Krishnaveni

Department of CSE, SKR Engineering College, Chennai, India

Received 2014-02-27; Revised 2014-03-07; Accepted 2014-05-02

ABSTRACT

Nowadays internet is loaded with tons of innovative web applications. This instantaneous growth has paved
way for a number of security exposures. Cross Site Scripting attacks (XSS), SQL Injection (SQLI) and
Malicious File Execution (MFE) are the foremost web related vulnerabilities reported by Open Web
Application Security Project (OWASP). The attackers take advantage of the vulnerabilities in the code of
the web applications and engage in activities such as data breach, cookies stealing and password theft which
results in severe consequences. The major cause for these glitches is that the scripts allow the user input
without scanning for pernicious contents. Several security measures on server-side also available, but they
are not applied in large scale, because of the deployment difficulty. On the Client-side, usage of security
software worsens the client system’s performance which in turn reduces the web surfing experience of the
user. A new tool called XProber has been presented for verifying the string manipulating programs
automatically. The pre and post conditions of common string functions using Push Down Automata (PDA)
are computed and used to identify the presence of vulnerabilities. This approach is capable of finding hefty
amount of pernicious attacks in web application and prevents the attacks.

Keywords: XSS, SQLI, MFE, PDA, XProber

1. INTRODUCTION

Web application has taken a new substantial resources
of information communication among several types of
service providers and end users. Computer Emergency
Response Team (CERT) has issued an advisory on newly
identified security vulnerabilities which affects all the web
applications (OWASP, 2007). Cross site scripting, better
known as XSS, is a subset of HTML injection. XSS is the
most prevalent and pernicious web application security
issue. XSS flaws occur whenever an application takes data
that originated from a user and sends it to a web browser
without first validating or encoding that content. XSS
allows attackers to execute script in the victim’s browser,
which can hijack user sessions, deface web sites, insert
hostile content, conduct phishing attacks and take over the
user’s browser using scripting malware. The malicious
script is usually JavaScript, but any scripting language
supported by the victim’s browser is a potential target for

this attack. Injection flaws, particularly SQL injection, are
common in web applications. There are many types of
injections: SQL, HTML, XML, OS command injection
and many more. Injection occurs when user-supplied data
is sent to an interpreter as part of a command or query. All
web application frameworks that use interpreters or invoke
other processes are vulnerable to injection attacks.
Malicious File Execution (MFE) vulnerabilities exist in
many web applications. Developers directly use or
concatenate potentially aggressive input with some file or
stream functions, or improperly trust the input files on the
websites. This attack is particularly prevalent on PHP and
extreme care must be taken with any stream or file
function to ensure that user supplied input does not
influence file names (OWASP, 2007).

The area of web usability has long intrigued researchers.
It has been widely accepted that for a website to be
successful, the level of usability has to be high. The reason
is because of poorly designed website (Teoh et al., 2009).

Suguna, R. et al. / American Journal of Applied Sciences 11 (7): 1164-1171, 2014

1165 Science Publications

 AJAS

Online advertising is a multibillion dollar business
nowadays. Increasing web traffic to a site by directing or
referring users provides a mechanism for organizations and
individuals to make money through affiliate marketing
(Blanc et al., 2011). The web provides the perfect
framework for malware authors to blend together the
techniques listed. This Malware redirects the traffic
payload. Today’s threats includes spam with exploit scripts
to efficiently infect unsuspecting victims. It is necessary to
propose suitable detection and prevention mechanisms to
provide security for the information contents used by the
web application (Kadirvelu and Arputharaj, 2011). Figure
1 provides an overview of the key roles played by the web
applications in malware attacks.

2. RELATED WORK

2.1. Cross Site Scripting

Cross-Site Scripting (XSS) is a type of computer
security vulnerability typically found in Web
applications that enables attackers to inject client-side
script into Web pages viewed by other users. A XSS may
be used by attackers to bypass access controls. XSS
carried out on websites accounted for 80% of all security
vulnerabilities documented by Symantec as of
2009.Their effect may range from a small inconvenience
to a significant amount of security risk, based on the
sensitivity of the data handled by the vulnerable site and
the nature of any security mitigation implemented by the
site’s owner (https://www.owasp.org/index.php/Cross-
site Scripting_(XSS)).

Fig. 1. An example Web site attack

There is no single, standardized classification of XSS
flaws, but experts distinguish between two primary
flavours: Non-persistent and persistent XSS. Some
sources further divide these two groups into traditional
(caused by server-side code flaws) and DOM-based (in
client-side code). Cross-Site Scripting (XSS) is an attack
technique that involves injecting attacker-supplied code
into a user’s browser. A browser instance can be a
standard web browser client, or an object embedded in a
software product such as the browser within an RSS
reader, Win Amp, or an email client. The code itself is
usually written in HTML/JavaScript, but may also
extend to any other browser-supported technology.

When an attacker gets a user’s browser to execute
their code, the code will run within the security context
(or zone) of the hosting web site. The code has the ability
to modify and transmit any sensitive data which is used
by the browser. XSS vulnerabilities have been reported
and exploited since the 1990s. A prominent site affected
in the past includes the sites like Twitter, Facebook,
MySpace and Orkut etc. In recent years, cross-site
scripting flaws surpassed buffer overflows to become the
most common publicly reported security vulnerability.
Many websites are open to XSS attacks.

A Cross-site scripted user could have their account
hijacked for example stealing user cookies, redirecting
the browser to another location, or possibly shows some
fraudulent content delivered by the web site they are
visiting. Cross-site Scripting attacks compromise the
trust relationship between a web user and the web site.

2.2. SQL Injection

SQL injection is an attack in which malicious code is
inserted into strings that are later passed to an instance of
SQL Server for parsing and execution. Any procedure or
code that constructs SQL statements should be checked
for injection vulnerabilities because SQL Server will
execute all the queries that it receives which are
syntactically valid. Even the parameterized data can be
manipulated by the attacker who is skilled and
determined (http://en.wikipedia.org/wiki/SQL_injection).
The SQL injection consists of direct insertion of code into
user-input variables that are combined with the SQL
commands and executed. Some direct attack injects
malicious code into strings that are destined for storage in a
table. The malicious code is executed if the stored strings
are subsequently concatenated into a dynamic SQL
command. The injection process works by prematurely
terminating a text string and appending a new command.

Suguna, R. et al. / American Journal of Applied Sciences 11 (7): 1164-1171, 2014

1166 Science Publications

 AJAS

The inserted command may have additional strings
appended to it before it is executed. The attacker terminates
the injected string with a comment mark "--". Subsequent
text is ignored during the execution time.

In SQL Injection (SQLI), the attacker executes
malicious database statements by exploiting inadequate
validation of data flowing from the user to the database.
Using SQL injections, attackers can: Perform an
INSERT in the injected SQL, ADD new data to the
database, Could be embarrassing to find yourself selling
politically incorrect items on an ecommerce site, Can
MODIFY the data currently in the database, Can perform
an UPDATE in the injected SQL, Can gain access of
other user’s system by obtaining their password. The
SQL injection attack is shown in Fig. 2. All web
application frameworks that use interpreters or invoke
other processes are vulnerable to injection attacks. If user
input is passed into an interpreter without validation or
encoding, the application is vulnerable.

2.3. Malicious File Execution

MFE vulnerabilities exist in many web applications.
Developers directly use or concatenate potentially
aggressive input with some file or stream functions, or
improperly trust the input files on the websites. On many
platforms, frameworks allow the use of the external
references like URLs or file systems. When the data is
not checked properly, this can lead to arbitrary remote

and aggressive content being invoked or processed by
the web server. This allows attackers to perform:

• Remote code execution
• Remote root kit installation and complete system

compromise
• On Windows, internal system compromise may be

possible through the use of PHP’s SMB file wrappers

This attack is particularly prevalent on PHP and
extreme care must be taken with any stream or file
function to ensure that user supplied input does not
influence file names (OWASP, 2007). Figure 3 shows a
scenario of a Malicious File execution attack. Some of
the tools used by the Existing system to prevent the
Pernicious Attacks are enumerated below.

2.4. Cross site Scripting Attack (XSS)

• Term Rewriting System (Huang et al., 2003)
• Encryption Techniques (Mono Alphabetic

substitution scheme)
• Cookie Rewriting Technique

2.5. Malicious File Execution (MFE)

• Content Sniffing Blocker

2.6. SQL Injection Attacks (SQLI)

• Data flow Analysis
• Constraint Analysis

Fig. 2. SQL injections

Suguna, R. et al. / American Journal of Applied Sciences 11 (7): 1164-1171, 2014

1167 Science Publications

 AJAS

Fig. 3. Scenario of a Malicious File execution attack

Web Security via Static Analysis and Runtime

Inspection (Web SARI) code analysis tool pinpoints
the code requiring runtime checks and inserts the
checks (Sanctum Inc., 2004). For automated Web
application security assessment, this tool can be
effectively used. Web Application Vulnerability and
Error Scanner (WAVES)-black-box security testing
tool for Web apps (Rattipong and Bunyatnoparat,
2011) used to identify poor scripting practices that
leads the web apps vulnerable to XSS, SQLI, MFE
etc. Similar methodologies are implemented by
profitable projects such as Kavado’s Scan, SPI
Dynamic’s Web Inspect and AppScan (Kiezun and
Jayaraman, 2009). This methodology do not deliver
instant Web application security. It also consumes
resource excessively on the server which may severely
degrade its performance.

The most effective solution is to disable the
support for all scripting languages on the client side.
If this is not possible, it is recommended to provide

caution while browsing dubious web pages and
clicking on links in anonymous e-mails. Also,
updating the browser to the latest version and patches
is important (Tiwari and Bansal, 2008). But typically,
users do not disable all scripting language support or
to update their browsers.

3. SYSTEM MODEL

Motivated by the existing issues, a innovative Tool
named XProber is presented to prevent web browsers
from attacks (Arulsuju, 2011). Experimental result
indicates that the XProber detection method is an
innovative method and it can be used to detect the
above mentioned three attacks in the web application
program (Yu et al., 2010). Compared to the existing
systems the performance of the proposed system is
higher. An automata-based symbolic string analyses for
automatic verification of string manipulating programs
is used (Hopcroft et al., 2000). Push Down Automata

Suguna, R. et al. / American Journal of Applied Sciences 11 (7): 1164-1171, 2014

1168 Science Publications

 AJAS

(PDA) is used for computing the pre- and post-
conditions of the common string functions (Sipser,
1997). The concept of PDA is explained below.

A Push Down Automaton (PDA) is one of the
types of automation with a memory. The concept of
Stack automata in PDA can recognize a more number
of languages. PDA can handle all context-free
languages. The PDA reads a symbol from the top of
the Stack only. The Push and Pop operations takes
place only on the top of the PDA as shown in Fig. 4.
The stack of the PDA contains the unprocessed data
and a traversal takes place in pre-order. Pushdown
automata choose a transition by indexing a table by
input, the symbol at the top of the stack and the current
state. This means that those three parameters
completely determine the transition path that is chosen.

Thus, the tool developed works with the concept of
PDA for detecting vulnerabilities in web applications
and with proper sanitization results in the removal of
vulnerabilities. The proposed XProber system model is
shown in Fig. 5.

3.1. Parser and Taint Analyzer

The initial step in this analysis is that the given
input, PHP Script is parsed and the Control Flow
Graph (CFG) is constructed by the Parser. PHP
programs do not have a single entry point so each
script is processed by itself along with all files
included by that script. The CFG is then sent to the
taint analyzer where the alias and dependency
analyses are done to generate dependency graphs. The
number of its nodes is linear to the number of the string
operations in the program under a static environment.
Loop structures contribute cyclic dependency relations.
If there is no tainted data flow to the sink, taint analysis
reports that the dependency graph is secure; otherwise,
the dependency graph is tainted and passed to the string
analyzer for more inspection.

3.2. String Analyzer

The string analyzer implements the vulnerability
which is identified by the taint analysis based on the
tainted dependency. The dependency graphs are pre-
processed to provide the optimized results. A new
acyclic dependency graph is constructed and the
vulnerability analysis is done on the acyclic graph so
that the nodes not in a cycle are processed only once.
In the forward analysis, the post images to nodes are

propagated in the topological order, initializing input
nodes to PDAs accepting arbitrary strings. Upon
termination, an intersection of the language of the
PDA of the sink node with the attack pattern is
performed. The sink is not vulnerable with respect to
the attack pattern only when the intersection is not
empty. Otherwise, we perform the backward analysis
and propagate the pre images to nodes in the reverse
topological order, initializing the sink node to a PDA
that accepts the intersection of the result of the
forward analysis and the attack pattern. Therefore the
vulnerability signatures are the results of the
backward analysis for each input node.

3.3. Automata Based Library (ABL)

Automata operations such as concatenation,
intersection, replacement, widen, union and all core
string operations are handled by ABL. All string and
automata manipulation operations that are required are
sent to ABL along with the string and/or automata
parameters during the vulnerability analysis. ABL
executes the operations mentioned and returns automaton.

4. IMPLEMENTATION

This solution has been implemented using open
source Mozilla Firefox 1.5 web browser. The Mozilla
Firefox web browser executes JavaScript programs
included in web pages with the help of the Prevention
tool called XProber. The tool plays a significant role
in the implemented web browser. It is used to execute
JavaScript programs that appear in web pages. Mozilla
combined with the tool XProber does not allow any
malicious code to execute on it. So the clients using
Mozilla with XProber is free from malicious attacks.

Fig. 4. A diagram of the pushdown automaton

Suguna, R. et al. / American Journal of Applied Sciences 11 (7): 1164-1171, 2014

1169 Science Publications

 AJAS

Fig. 5. Proposed system

4.1. Security Evaluation

The proposed solution has been tested with the
malicious inputs on vulnerable websites.

Figure 6 shows the proportion of potential
vulnerabilities in the modern web browser like
Firefox, Microsoft’s internet explorer and opera on the

same architecture and environment without security
implementation. It has been observed that there are
many variants of XSS attacks exist and the approach
is tested with the data collected from various research
sites. It has been observed that these potential
vulnerabilities have been decreased drastically after
the implementation of XProber.

Suguna, R. et al. / American Journal of Applied Sciences 11 (7): 1164-1171, 2014

1170 Science Publications

 AJAS

Fig. 6. Security evaluations on different browsers

Fig. 7. Comparison of existing system with proposed system

4.2. Performance Evaluation

The performance of the end user’s system has not
been affected by the implementation of XProber. The
performance test was carried between a Microsoft Windows
7 system on Intel chipset with 2GB RAM with XProber and
another system with the same specification but without
XProber. The web page load time is compared between the
two systems, no web page time lags noticed in XProber.
The percentage of pernicious threats that our XProber
discovered are compared in Fig. 7.

5. CONCLUSION

Many websites are susceptible to XSS, SQLI, MFE
and other attacks. Expreimental results prove that the
proposed security solution is much effective. XSS, SQLI,
MFE vulnerabilities exist in almost all platforms and the
proposed solution works on any platform. It can been
implemented on a platform independent browser and
with a few modifications it can be used with other
operating systems. An automata-based string analysis
technique is presented for vulnerability signature

Suguna, R. et al. / American Journal of Applied Sciences 11 (7): 1164-1171, 2014

1171 Science Publications

 AJAS

generation and vulnerability analysis. The analysis
represents the attack pattern as a regular expression.
Given a pre-scripted JSP program as an input: (1) It
checks for the presence of vulnerability based on the
given attack pattern, (2) It generates a PDA
characterizing the set of all user inputs that may exploit
the vulnerability. This solution can be further extended
to cover other pernicious attacks and vulnerabilities. It
can be applied as a common resolution which could be
used in all the web browsers.

6. REFERENCES

Arulsuju, D., 2011. Hunting malicious attacks in social
networks. Proceedings of the 3rd International
Conference on Advanced Computing, Dec. 14-16,
IEEE Xplore Press, Chennai, pp: 13-17. DOI:
10.1109/ICoAC.2011.6165172

Blanc, G., R. Ando and Y. Kadobayashi, 2011. Term-
Rewriting Deobfuscation for Static Client-Side
Scripting Malware Detection. Proceedings of the 4th
IFIP International Conference on New
Technologies, Mobility and Security, Feb. 7-10,
IEEE Xplore Press, Paris, pp: 1-6. DOI:
10.1109/NTMS.2011.5720649

Hopcroft, J.E., R.M. Rotwani and J.D. Ullman, 2000.
Introduction to automata theory, language and
computability.

Huang, Y.W., S.K. Huang, T.P. Lin and C.H. Tsai, 2003.
Web application security assessment by fault
injection and behavior monitoring Proceedings of
the 12th international conference on World Wide
Web, (WW’ 03), ACM, New York, pp: 148-159.
DOI: 10.1145/775152.775174

Kadirvelu, S. and K. Arputharaj, 2011. Handling web
and database requests using fuzzy rules for anomaly
intrusion detection. J. Comput. Sci., 7: 255-261.
DOI: 10.3844/jcssp.2011.255.261

Kiezun, A. and K. Jayaraman, 2009. Automatic creation
of sql injection and xss attacks.

OWASP, 2007. Open web application security project
the ten most critical web application security
vulnerabilities.

Rattipong, P. and P. Bunyatnoparat, 2011. Protecting
cookies from cross site scripting attacks using
dynamic cookies rewriting technique. Proceedings
of the 13th International Conference on Advanced
Communication Technology, Feb. 13-16, IEEE
Xplore Press, Seoul, pp: 1090-1094.

Sanctum Inc., 2004. Web application security testing-
appscan 3.5.

Sipser, M., 1997. Introduction to the Theory of
Computation. PWS Publishing, ISBN-10: 0-534-
94728-X. Section 2.2: Pushdown Automata, pp:
101-114.

Teoh, K.K., T.S. Ong, P.W. Lim, R.P.Y. Liong and C.Y.
Yap, 2009. Explorations on web usability. Am. J.
Applied Sci., 6: 424-429. DOI: 10.3844/
ajassp.2009.424.429

Tiwari, S. and R. Bansal, 2008. Optimized client side
solution for cross site scripting. Proceedings of the
16th International Conference on Networks, Dec.
12-14, IEEE Xplore Press, New Delhi, pp: 1-4. DOI:
10.1109/ICON.2008.4772647

Yu, F., M. Alkhalaf and T. Bultan, 2010. Stranger: An
automata-based string analysis tool for php. Lecture
Notes Comput. Sci., 60185: 154-157. DOI:
10.1007/978-3-642-12002-2_13

