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ABSTRACT 

Since the power spectral analysis of a non-Gaussian process generated by a nonlinear mechanism e.g., 
EEG, does not provide much information on the underlying nonlinear dynamics due to the lack of 
phase information, the higher-order statistics such as the bispectra are used to better understand the 
underlying nonlinear dynamics e.g., the quadratic phase coupling phenomena. The quadratic phase 
couplings have been observed in the EEG by the researchers over a decade for many diagnostic 
applications such as epilepsy, sleep, mental states. This study discusses the use of bispectral analysis 
of the EEG recorded from the posterior region of the head of the brain tumor patient in quantifying the 
quadratic phase couplings to indicate the presence of the tumor. The Bicoherence Index (BCI) or 
simply the Bicoherence (BIC) has been used for the purpose. Self-couplings (around 27-52%) in the 
[8-13] Hz (alpha) band and phase couplings (around 23-42%) in the [1-8] Hz (delta-theta) band have 
been observed for the normal subjects while only self-couplings (around <6.5% and around 40-53%) 
have been seen in both bands for the brain tumor patients. Significant lowering of coupling strengths 
(from 38.15% (±12.76%) to 3.51% (±3.28%)) in the alpha band and mild increase of them (from 
32.76% (±18.73%) to 45.49% (±17.49%)) in the delta band have been observed for the brain tumor 
patients. The Power Ratio Index (PRI) based on the power spectrum is only statistically inferior 
(p>0.05) to the BIC in discriminating the brain tumor case from the normal one. 
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1. INTRODUCTION 

 Diagnosis and subsequent (early) treatment are 

either missed or delayed in 69% of the brain tumor cases 

due to the fact that the most of the brain tumor symptoms 

are highly misleading and around 26% of these cases 

suffer a delay of more than a year before proper 

diagnosis (MFBTRI, 2013). Once the brain tumor 

symptoms are found, the advanced neuroimaging 

techniques such as MRI and CT or biopsy are not 

immediately suggested due to the following facts: They 

are either costly or invasive or do involve risks like 

hazardous radiation, especially in case of children, 

pregnant women and patients with implant devices 

(Black, 2010). Since an early treatment increases the 

survival rate, a better method that does not involve much 

cost, risks or complexity is required to reduce the delay 

in the diagnosis of the brain tumors (Black, 2010). One 

such option is the use of the scalp Electroencephalograms 

(EEGs) (Fattal-Valevski et al., 2012). Qualitative 

investigations on the use of scalp EEG for the diagnosis 

of brain tumors are numerous (Accolla et al., 2011; 

Bagchi et al., 1961; Hartman and Lesser, 2012; Walter, 

1936; Watemberg et al., 2002). However the quantitative 
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works such as automated classification or localization using 

the quantitative (scalp) EEG (qEEG) features are very few 

(Chetty and Venayagamoorthy, 2002; Habl et al., 2000; 

Karameh and Dahleh, 2000; Murugesan and Sukanesh, 

2009; Nagata et al., 1985; Selvam and Shenbagadevi, 

2011; Silipo et al., 1999). Some of these literatures 

(Selvam and Shenbagadevi, 2011; Silipo et al., 1999) are 

interesting and they suggest the use of nonlinear analysis 

of the scalp EEG for the purpose. 

 The power spectrum does not provide much 

information about the non-Gaussian processes and the 

processes generated by the nonlinear mechanisms due to 

the lack of phase information (Nikias and Raghuveer, 

1987). The conditions of non-Gaussianness and 

nonlinearity are often met in many practical applications, 

e.g., the biological signals and the biological systems 

generating them. Hence the analysis of such processes 

requires the use of the higher-order spectra such the 

bispectra as they provide more information such as the 

deviation from Gaussianity and linearity, phase couplings. 

In this study the application of bispectrum, which unveils 

the quadratic phase coupling phenomena arising from the 

second-order nonlinearity, has been considered. 

 The bispectrum has been extensively used to analyze 
the EEG time series to discriminate various pathological 
conditions, metal tasks, physical (sleepy, anesthetic) states 
(Hosseini et al., 2010; Saikia and Hazarika, 2011;  
Swarnkar et al., 2010; Venkatakrishnan et al., 2011; 
Yufune et al., 2011). It has been shown in these papers 
that the quadratic phase couplings in EEG do change 
in accordance with the physical and physiological 
conditions of the brain. As the self-emitting 
oscillations of the complicated neural network of the 
brain (Buzsaki and Draguhn, 2004) can be considered 
non-Gaussian (Nikias and Raghuveer, 1987), the 
application bispectrum to EEG is quite intuitive. As the 
presence of a brain tumor affects the brain both 
physically and physiologically, the expectation of 
changes in the (nonlinear) dynamics of the brain and 
subsequently the use of bispectrum for quantifying them 
are intuitively understandable. 
 In this study, the bispectral analysis of the scalp 
EEG recorded from the posterior (parietal and 
occipital) regions of the heads of both the brain tumor 
patients and normal subjects has been presented. The 
Bicoherence Index (BCI) or simply Bicoherence (BIC) 
is used to quantify the quadratic phase couplings in the 
EEG records. The results obtained have been tested for 
their statistical significance in characterizing the 
presence of the brain tumor. A power spectral feature, 
namely the Power Ratio Index (PRI) has also been 
analyzed for comparison. 

2. MATERIALS AND METHODS 

2.1. Acquisition of Data 

 Nineteen-channel Common Average Reference 

(CAR) montage EEG records, namely Fz-REF, Cz- REF, 

Pz-REF, FP1-REF, FP2-REF, F3-REF, F4-REF, C3-

REF, C4-REF, P3-REF, P4-REF, O1-REF, O2-REF, 

F7-REF, F8-REF, T3-REF, T4-REF, T5-REF and T6-

REF in the standard 10-20 electrode system, with eyes 

closed, from 67 brain tumor patients and 42 normal 

subjects are obtained at a sampling rate of 256 Hz for 

about 15-20 min. The age is approximately uniformly 

distributed ranging from 14 to 53 years with a mean of 

31.36 years and a median of 30 years for the brain 

tumor patients and ranging from 16 to 53 years with a 

mean of 33.34 years and a median of 34 years for the 

normal subjects. The majority of the brain tumor cases 

fall in the age group between 20 and 40 years. 

2.2. Preprocessing 

 A 50 Hz FIR notch filter and an IIR EMG filter are 

used to eliminate the 50 Hz power line interference and 

the EMG artifacts, respectively. Certain artifacts such as eye 

movements, eye rolling and essential tremors are still 

present in the EEG records. Generally the removal of these 

artifacts by the traditional method of filtering is not possible 

since they fall in the useful bandwidth of cerebral EEG. 
 The method of Independent Component Analysis 
(ICA) is the best solution for this situation 
(Mammone et al., 2012; Selvam et al., 2011). A recently 
proposed ICA technique known as the Modified Wavelet 
ICA (MwICA) (Selvam et al., 2011) was used to remove 
these artifacts. 
 From this set of “clean” EEG records, ten min 

(10×60×256 = 1,53,600 data points) of only the seven 

posterior channels, namely, Pz, P3, P4, O1, O2, T5 and 

T6, (‘REF’ has been dropped for convenience), of each 

EEG record are retained for the proposed analysis. All 

these 7-channel, 10 min EEG records are then bandpass-

filtered to 1-40 Hz as this is the band of interest 

generally for most of the clinical applications (including 

this proposed analysis) (Picot et al., 2009). 

2.3. Basics of Bispectrum and Bicoherence  

 The concept of the bispectrum and its properties 

are extensively presented in the literature (Nikias and 

Raghuveer, 1987). 

 The bispectrum, B
x
(ω1, ω2) of a discrete, real, 

stationary (univariate) random process, X (t) = {x(t)}, t = 

0,±1,±2,... with zero mean is defined as the two-
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dimensional Fourier transform of its third-order 

cumulant sequence i.e., { }x x

1 2 2 3 1 2B ( , ) F ( , )ω ω = γ τ τ where 

F2{.} represents the 2-dimensional Fourier transform and 
x

3 1 2
( , )γ τ τ is the third-order cumulant sequence. The 

third-order cumulant sequence is defined as 

{ }x

3 1 2 1 2( , ) E x(t)x(t )x(t )γ τ τ = + τ + τ where E{.} represents 

the statistical expectation. It can be shown that 

{ }x *

1 2 1 2 1 2B ( , ) E X( )X( )X ( , )ω ω = ω ω ω ω where X(ω) is the 

Fourier transform of X(t) and * represents the 

complex conjugate. 

 The properties that are worth mentioned here are: (i) 

the bispectrum is generally complex and has the 

magnitude and phase, (ii) the complex plane of the 

bispectrum has 12 symmetric regions, (iii) the bispectrum 

of a (linear) Gaussian process is everywhere zero, (iv) the 

bispectrum of a linear non-Gaussian process is 

everywhere constant and (v) the bispectrum of a nonlinear 

process is varying and peaking due to the phase couplings 

arising from the nonlinearity. The property (ii) implies that 

there is a “principal” region only in which the bispectrum 

needs to be computed. This principal region is the 

triangular region, 
2 1

0,ω ≥ ω and
1 2

ω + ω ≤ π . 

 A quadratically nonlinear system is the one with 

second-order nonlinearity e.g., a Volterra-Wiener system 

of order 2. The phenomenon, where the phases have the 

same relations as the frequencies, is called the quadratic 

phase coupling. Generally, in case of a frequency triplet 

in the output of a system, there are three possible cases: 

(i) when they are not harmonically related and are with 

random phases (i.e., no phase-coupling), the bispectrum 

is identically zero everywhere, (ii) when they are 

harmonically related with same phase relationship as 

frequency (i.e., phase-coupling), the bispectrum peaks 

due to the quadratic phase coupling and (iii) when they 

are harmonically related with random phases, a situation 

known as the frequency-coupling, the bispectrum may 

still peak under certain frequency and amplitude 

combinations. In all the three cases, the power spectrum 

invariably shows three peaks at these three frequencies. Due 

to this ambiguity, the estimated bispectral peak, especially 

from a finite data set, needs to be statistically tested for its 

significance in quantifying the presence of phase coupling. 

This ambiguity is overcome in the normalized bispectrum 

i.e., bicoherence (Elgar and Guza, 1988). 

2.4. Estimation of Bispectrum and Bicoherence 

 The bispectral estimation methods are broadly 

classified into two: The conventional or non-parametric 

methods and parametric methods. Two conventional or 

non-parametric methods, namely, the direct and indirect 

methods are generally found in the literatures. The 

parametric methods provide higher frequency resolution 

than the conventional methods and however suffer from 

the difficulty in determining the model order parameter. 

The conventional methods are popular for their ease of 

implementation. In this study, the direct class of the 

conventional methods is used. The direct method, which is 

based on the Fast Fourier Transform (FFT), is extensively 

described in (Kim and Powers, 1979; Nikias and 

Raghuveer, 1987). The bicoherence is the normalized 

version of the bispectrum (Kim and Powers, 1979). Given a 

discrete-time sequence, x(n), n = 0,1, 2,..., N -1, where N is 

the cardinality of the sequence, the sequence is segmented 

into K short sequences, xi(n) = x[n + iM-(i +1)(D-1)] , n = 

0,1, 2,...M -1 and i = 0,1, 2,..., K-1 of M samples each with 

an overlap of D samples and each segment, xi(n) is centered 

as ( )i ix n x− where
i

x is the arithmetic mean of xi(n). The 

bicoherence is then given by Equation 1 and 2: 

 
x

1 2
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 The Xi(k), i = 0,1, 2,...,K-1 in Equation 3 are the 

discrete Fourier transforms of xi(n). Each segment, xi(n) 

can be windowed, if desired, in order to reduce the 

spectral leakage. The possible window functions include 

Hamming, Hann and Blackman. For a given N, the 

overlapping not only reduces the variance in the 

estimated bispectrum, as it increases the number of 

segments (i.e., K) for the ensemble averaging, but also 

provides a chance for a larger segment length (i.e., M) 

thereby improving the frequency resolution. A segment 

size of M samples gives a frequency resolution of ∆f = 

fs/M where fS is the sampling rate of the time series in 
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Hz and an ensemble average over K segments yields a 

variance proportional to N/K
2
. Hence, given a set of fS and 

N the values of M and D must be properly selected so 

that the desired frequency resolution is achieved and at 

the same time the variance in the estimated bispectrum 

is as low as possible. 

 The estimation of the bispectrum requires the EEG 

signal to be stationary (Siu et al., 2008). Since the EEG 

signals are non-stationary, they are often analyzed in 

segments in order to ensure the stationarity using a 

criterion of weak stationarity, which requires that the 

statistical parameters up to certain order remain 

(practically) constant over the entire period of the 

segment (Blanco et al., 1995). The most popularly used 

weak stationarity is the second-order stationarity which 

requires the second-order statistics, mean and standard 

deviation (std), to remain constant at some prescribed 

significant level (e.g., 5%). The test for detecting the 

stationary segment length was carried out as follows. 

Each channel record was split into overlapping segments 

of length 1s (256 samples) called the bins. The overlap 

was 0.5s (128 samples). The means (bin means) and stds 

(bin stds) of each of these bins were computed. Then the 

means and stds of the bin means and bin stds were 

computed and the constancy of the bin means and bin 

stds was tested by checking whether their values lied 

within the 95% confidence interval of their means i.e., 

within mean±2std for various lengths of consecutive 

bins. The percentage of number of consecutive bins that 

met this criterion was calculated. All the consecutive 

bins of lengths, 2s, 3s and 4s remained (weakly) 

stationary. For the bin length of 5s and above, the number 

of consecutive bins that failed the stationarity test was 

above 6%. The bin length of 4s is chosen for this analysis 

as this ensures both the quasi-stationarity and the 

sufficiency of the data points to estimate the bispectrum 

(Miller et al., 2004). Thus there are totally 10,050 (67 

cases×10 min×60 sec/4 sec) epochs of seven posterior 

channels of brain tumor EEG and 6,300 (42 cases×10 

min ×60 sec/4 sec) epochs of seven posterior channels of 

normal EEG for the analysis. 

 From each 4-sec (1024 data points i.e., N = 1024) 

epoch of each posterior channel EEG record, the 

bicoherence is estimated with K = 30 overlapping 

segments of size M = 256 (1 sec) and overlap D = 230 

(0.8984 sec i.e., 90% overlap). The largest (peak) 

Bicoherence (BIC) values in the [1-8] Hz (delta-theta) 

band and the [8-13] Hz (alpha) band from each epoch of 

each posterior channel EEG record are then selected and 

averaged over the all the epochs (10,050 from brain 

tumor case and 6,300 from normal case) to obtain the 

final channelwise value for the proposed analysis. 

2.5. Test for Gaussianity and Linearity 

 The Hinich test is the statistical hypothetical testing 

against the null hypothesis that the time series under 

consideration is a Gaussian process generated by a linear 

mechanism. The Hinich test is extensively formulated in 

(Hinich, 1982). In this test, two statistics, namely the S 

statistic and the R statistic derived from the routine 

bicoherence and the non-central Chi-square distribution, 

are used as the measure of deviation from the 

Gaussianity and the measure of degree of linearity, 

respectively. The test makes use of the facts that the 

bicoherence is zero for a Gaussian process and constant 

for a linear process. The hypothetical test for the linearity 

is considered only if the null hypothesis on the 

Gaussianity is rejected. The HOSA toolbox (freely 

available at 

http://www.mathworks.com/matlabcentral/fileexchange/

3013) contains a MATLAB routine called glstat to 

calculate these statistics. 

 The S and R statistics required for the Hinich test 

are estimated using the bicoherence for each 4-sec 

epoch. It should be noted that though the Hinich test is 

performed on the epoch basis i.e., 10,050 epochs of brain 

tumor EEG and 6,300 epochs of normal EEG are 

analyzed individually, the results are used, on the 

average, to statistically determine the Gaussianity and 

linearity of the entire channel EEG record.  

2.6. Comparison of Bispectra and Power Spectra 

 Nagata et al. (1985) used a parameter, called the 

power ratio index (PRI), to correlate the epicenter of the 

power dysfunction to the locality of the tumors in 15 

patients with malignant brain tumors. He defined the PRI 

as the ratio of absolute power in the [1-8] Hz (delta-

theta) band to that in the [8-30] Hz (alpha-beta) band. 

This parameter was also calculated from all the 4-second 

EEG epochs for the sake of comparison. 

2.7. Statistical Analysis of BIC and PRI Values  

 The objective of the statistical analysis of the BIC and 

PRI values obtained is to assess the ability of the 



Salai Selvam, V. and S. Shenbagadevi / American Journal of Applied Sciences, 10 (3): 294-306, 2013 

 

298 AJAS Science Publications

 

proposed parameter in characterizing the presence of the 

brain tumor. Since the size of the data set is large 

enough (>30) in both the brain tumor and normal 

cases for the assumption of the normality of the 

estimated BIC and PRI values according to the central 

limit theorem (Montgomery and Runger, 2010), the 

two-tailed z-test is used to statistically test the channel-

wise and overall mean BIC values in discriminating the 

brain tumor patient from the normal subject at 5% 

significance level and to estimate the 95% confidence 

intervals of these mean differences. The confidence interval 

is here rather than the p-values following the suggestions 

from (Gardner and Altman, 2000). 

2.8. Implementation 

 The entire analysis was carried out using the 

MATLAB
@

 (The MathWorks Inc., USA) software 

package on a personal computer. 

3. RESULTS 

 The results of the test for determining the stationary 

segments using the second-order weak stationarity 

criterion are shown in Fig. 1a and b from two exemplary 

EEG records, one being the brain tumor and the other, 

normal. The dotted line shows the 95% confidence 

interval of the respective second-order statistic (mean or 

std) for two sets of 7 consecutive bins i.e., two 4-sec 

segments. The markers (asterisks) indicate the values of 

the respective statistic. 

 All the epochs of the seven posterior channel EEG 

records from both the brain tumor patients and normal 

subjects fail the Hinich test for the Gaussianity. Around 

94% of the epochs fail the linearity test in the brain 

tumor case while around 81% of the epochs fail the 

linearity test in the normal case. 

 The contour plots of the bispectra of seven 

posterior-channel scalp EEG records from a normal 

subject and a brain tumor patient are shown respectively 

in Fig. 2 and 3 where f1 and f2 are the bifrequency 

values. Strong self-couplings (Raghuveer, 1988) are seen 

in the [8-13] Hz (alpha) band in the normal case while 

strong self- (some phase-) couplings are seen in the [1-8] 

Hz (delta-theta) band in the brain tumor cases. 

 The channel-wise distributions of all the (largest) 

bicoherence (BIC) values (circles) and their mean values 

(triangles) in the [1-8] Hz (delta-theta) band and in the 

[8-13] Hz (alpha) band across all the normal subjects and 

across all the brain tumor patients are shown respectively 

in Fig. 4 and 5. One of the two mean (largest) BIC 

values for the normal case falls in the (axial) middle of 

the [8-13] Hz (alpha) band and the other, in the (middle) 

middle of the [1-8] Hz (delta-theta) band whereas for the 

brain tumor case one falls in the left (axial) edge of the 

[8-13] Hz (alpha) band and the other, in the left (axial) 

middle of the [1-4] Hz (delta) band. In both cases, the [1-

8] Hz (delta-theta) band and [8-13] Hz (alpha) band 

show some phase couplings and some self-couplings. On 

the average, for the normal case, a self-coupling is 

detected in the [8-13] Hz (alpha) band while a phase 

coupling is observed in the [1-8] Hz (delta-theta) band. 

In contrast, only self-couplings are seen in both the 

bands for the brain tumor case. 

 The 95% confidence intervals of the channel-wise 

mean (largest) BIC values for the normal and brain 

tumor cases in the [1-8] Hz (delta-theta) band and the [8-

13] Hz (alpha) band are shown, respectively in Fig. 6 

and 7 where a value, 0.0 equals 0% coupling strength 

and 1.0 equals 100% coupling strength. The coupling 

strength in the [1-8] Hz (delta-theta band) varies from 

about 40% to 53% for the brain tumor patients while it is 

in the range around 23-42% for the normal subjects 

Meanwhile, the coupling strength in the [8-13] Hz 

(alpha) band is very low (<6.5%) for the brain tumor 

case and very high (about 27% to 52%) for the normal 

case, especially in and around the occipital region. 

 The statistics of the overall mean (largest) BIC 

values in the [1-8] Hz (delta-theta) band and the [8-13] 

Hz (alpha) band are shown in Table 1. The mean 

difference in the [8-13] Hz (alpha) band is statistically 

more significant (p<0.0001) than that in the [1-8] Hz 

(delta-theta) band (p<0.001). The 95% confidence 

interval on the mean difference of the largest BIC values 

in the [1-8] Hz (delta-theta) band is quite large, almost 

11% more than the observed difference. However, this 

quantity in the [8-13] Hz (alpha) band is only 

approximately onequarter (more precisely 23%) of the 

observed difference. 

 Table 2 shows the statistical analysis of the Power 

Ratio Index (PRI) using the two-tailed z-test. The 95% 

confidence interval on the mean difference between the 

PRI for the brain tumor case and that for the normal case 

is statistically insignificant (p<0.05). 



Salai Selvam, V. and S. Shenbagadevi / American Journal of Applied Sciences, 10 (3): 294-306, 2013 

 

299 AJAS Science Publications

 

 
(a) 

 

 
(b) 

 
Fig. 1. Quasi Stationarity Test for Signal Segmentation of (a) an exemplary normal EEG record and (b) an exemplary brain tumor 

EEG record. The dotted line shows the 95% confidence interval (mean±2std) of the second-order statistic (mean or std) for 7 

consecutive bins i.e., a 4-sec segment and the markers (asterisks), the values of the statistic for the bins 
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Fig. 2. The bispectra of seven posterior-channel EEG records of a normal subject 

 

 

 
Fig. 3. The bispectra of seven posterior-channel EEG records of a brain tumor patient 
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Fig. 4. The channel-wise distribution of the largest BIC values across all the normal cases 

 

 

 

Fig. 5. The channel-wise distribution of the largest BIC values across all the brain tumor case
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Fig. 6. The 95% confident intervals of the channel-wise mean (largest) BIC values from the normal (C) and brain tumor (BT) cases 

in the [1-8] Hz (delta-theta) band 

 

 
 
Fig. 7. The 95% confident intervals of the channel-wise mean (largest) BIC values from the normal (C) And Brain Tumor (BT) cases 

in the [8-13] Hz (alpha) band 

 

Table 1. Statistics of overall mean (largest) BCI values 

   Mean bifrequency values (std)   

 Mean BIC value (std) ---------------------------------------------------------  

 --------------------------- Normal  Brain tumor  95% confidence 

  Brain ----------------------- ------------------------ interval on mean 

Band Normal tumor f1 (Hz) f2 (Hz) f1 (Hz) f2 (Hz) Normal difference 

[1-8] Hz (delta-theta) band 0.3276 0.4549 5.6342 3.4894 2.5288 1.8165 (0.0569, 0.1977)* 

 (0.1873) (0.1749) (0.84) (0.82) (0.64) (0.3) 

[8-13] Hz (alpha) band 0.3815 0.0351 9.6445 9.3432 8.4744 8.2586 

 (0.1276) (0.0328) (0.31) (0.35) (0.15) (0.09) (0.3070,0.3858)** 

*p<0.001; **p<0.0001; std-standard deviation 
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Table 2. Statistics of overall mean PRI values 

Mean BIC value (std) 

------------------------------- 95% confidence interval on 

Normal Brain Tumor mean difference 

0.7720 3.1595 (0.0000, 4.7859)* 

(0.4532) (10.0000)  

*p>0.05; std-standard deviation 

 

4. DISCUSSION 

 The normal cases are selected with an age 

distribution similar to the age distribution of the brain 

tumor cases since the EEG characteristics are generally 

dependent on the age (Nunez and Srinivasan, 2006). This 

avoids any ambiguity on the results obtained due to the 

age-dependency of the scalp EEG. 

 The results of the Hinich test for the Gaussianity and 

linearity suggest that an EEG record with eyes closed 

can most often be considered as a non-Gaussian process 

generated by a (possibly quadratically) nonlinear 

mechanism at a 95% confidence level (or 5% 

significance level). This complies with the result 

presented in (Pradhan et al., 2012) and concludes that the 

attempt to quantify the phase couplings in these records 

is meaningful. The EEG time series remains non-

Gaussian all the time and nonlinear most of the time. It 

may also be noted that the nonlinear structure in the EEG 

record is more dominant in the brain tumor case than in the 

normal case. Such dominance of the nonlinear character of 

the scalp EEG has been already observed under certain 

other pathological conditions as well (Diambra et al., 2001). 

This might be due to the fact that the presence of a tumor 

adds inhomogeneity (spatial non-uniformity) to the locality 

of the tumor (O’Connor and Robinson, 2005). 

 The reason for the selection of the posterior 

channels is the fact that the alpha activity is dominant in 

the frequency range 8-13 Hz during wakefulness in the 

posterior region of the head, particularly over the 

occipital region with eyes closed (Nunez and Srinivasan, 

2006). The strong self-couplings in the [8-13] Hz band 

for a normal case indicate the presence of strong alpha 

rhythms. The presence of strong alpha rhythms in the 

frequency range 8-13 Hz is generally an indication of the 

healthy brains in 95% of the cases. Such strong self-

couplings in the alpha rhythms for normal subjects with 

eyes closed have already observed by Barnett et al. (1971). 

These self-couplings are almost lost in the brain tumor 

cases. The noteworthy association of the alpha rhythms 

with a variety of physiological, cognitive and behavioral 

states of the brain is once again evident from these results. 

 Since the phase coupling is considered as a sort of 

(nonlinear) phase synchrony (Kim and Powers, 1979; 

Siu et al., 2008), the strong phase (self-) coupling in the 

alpha band suggests a strong phase synchrony in the 

alpha band for the normal case. Such a strong phase 

synchrony is seen in the delta-theta band for both the 

normal and brain tumor cases. 

 For the brain tumor patients the [1-4] Hz (delta) 

band exhibits slightly stronger phase synchrony while 

the phase synchrony in the [8-13] Hz (alpha) band 

seems to be significantly lost. Decreased coupling 

strengths in the high-frequency band and increased 

ones in the low-frequency band are often indicative of 

low brain activity (e.g., levels of sedation, depth of 

sleep) (Barnett et al., 1971; Roustan et al., 2005; 

Venkatakrishnan et al., 2011; Yufune et al., 2011). 

Thus the presence of tumor reduces the brain activity. 

 The absence of phase coupling, which is found in 

the [1-8] Hz (delta-theta) band for the normal case, under 

the presence of a brain tumor is an indication of loss of 

quadratically nonlinear interaction in this band. These 

findings support the nonlinear interdependency between 

the brain regions and its contribution to the alpha 

rhythms (Breakspear and Terry, 2002). 

 The physiological model proposed for the 

corticothalamic dynamics in assessing the characteristics 

of the EEG associated with the thalamic tumors in 

(O’Connor and Robinson, 2005) and subsequent 

discussions therein are the evidences for the effect of the 

supratentorial tumors on the corticothalamic inputs and 

corticocortical networks which are responsible for the 

generation of the alpha rhythms (Schaul, 1998). The 

finding presented in this study not only supports this 

model but might also be helpful in extending this model 

to other supratentorial tumors on the assumption of non-

Gaussianity for the model response, the EEG. 

 The final note is that the use of the bispectral index 

in the assessment of the level of consciousness during 

the administration of the anesthetic agent for the brain 

tumor patients has become questionable and is under 

serious study (e.g., 

http://clinicaltrials.gov/show/NCT01060631). The 

anticipated correlation between the quadratic phase 

coupling phenomenon and the presence of the brain 

tumor is possibly the outcome of the presented analysis. 
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 The Power Ratio Index (PRI) is not as significant in 

discriminating the brain tumor EEG from the normal one as 

in assessing the tumor locality (Nagata et al., 1985). The 

statistical results on the Power Ratio Index (PRI) based on 

the power spectrum once again prove that the bispectrum is 

far more informative than the power spectrum. 

 The strengths of the proposed analysis are the 

robustness of the bispectrum against the observational 

noises such as (white or colored) Gaussian noises 

(Nikias and Raghuveer, 1987) and the fact that the 

discriminating factor is the coupling strength in the alpha 

band which is less or not at all corrupted by the noises 

whereas the delta-theta and beta-gamma bands are 

always sensitive, respectively to lowfrequency artifacts 

such as movements, EKG and high-frequency artifacts 

such as EMG (Nunez and Srinivasan, 2006). The major 

setback of the method is its computational expenses. 

However, with latest advancements in the processor 

technology, the computational speed is not an issue. 

5. CONCLUSION 

 From the Results and Discussion, it can easily be 

concluded that the bispectral analysis of the posterior 

channel EEG records can be useful for the diagnosis of 

(supratentorial) brain tumors. The absence of phase 

couplings in the [1-8] Hz (delta-theta) band and 

subsequently self-couplings in the 8-13 Hz (alpha) band 

at the posterior, especially occipital region of the head is 

indicative of a structural lesion in the supratentorial 

region of the brain. 

6. ACKNOWLEDGEMENT 

 The researchers thank Dr. J. Mohanasundaram MD, 

Dean, Madras Medical College (MMC), Chennai and Dr. 

A. Sundaram MD, Vice-Principal, MMC, Chennai for 

having approved the collection of the data required for 

this research study from MMC and Dr. V. Sundar, Prof., 

Dept. of Neurosurgery, MMC, Chennai for having 

rendered his help in getting the approval from the Ethical 

Committee of MMC. The authors also thank Dr. S. 

Arunan, Asst. Prof., Dept. of Neurology and Dr. K. 

Thirumaran, Asst. Prof., Dept. of Neurosurgery for 

having rendered their help in selecting the cases (brain 

tumor patients and normal subjects) and recording their 

scalp EEGs. The first author is indebted to Dr. N. 

Kumaravel, Prof and Head, Dept. of ECE, Anna 

University, Chennai who has been a consistent 

encouragement to all his research activities. 

7. REFERENCES 

Accolla, E.A., P.W. Kaplan, M. Maeder-Ingvar, S. 

Jukopila and A.O. Rossetti, 2011. Clinical correlates 

of Frontal Intermittent Rhythmic Delta Activity 

(FIRDA). Clin. Neurophysiol., 122: 27-31. PMID: 

20673647 

Bagchi, B.K., K.A. Kooh, B.T. Selving and H.D. 

Calhoun, 1961. Subtentorial tumors and other 

lesions: An electroencephalographic study of 121 

cases. Electr. Clin. Neurophysiol., 13: 180-192. 

DOI: 10.1016/0013-4694(61)90134-1 

Barnett, T.P., L.C. Johnson, P. Naitoh, N. Hicks and C. 

Nute, 1971. Bispectrum analysis of 

electroencephalogram signals during waking and 

sleeping. Science, 172: 401-402. DOI: 

10.1126/science.172.3981.401 

Black, P.M., 2010. Symptoms and diagnosis. National 

Brain Tumor Society.  

Blanco, S., H. Garcia, R.Q. Quiroga, L. Romanelli and 

O.A. Rosso, 1995. Stationarity of the EEG series. 

IEEE Engg. Med. Biol., 14: 395-399. DOI: 

10.1109/51.395321 

Breakspear, M. and J.R. Terry, 2002. Detection and 

description of non-linear interdependence in normal 

multichannel human EEG data. Clin. Neurophysiol., 

113: 735-753. DOI: 10.1016/S1388-2457(02)00051-2 

Buzsaki, G. and A. Draguhn, 2004. Neuronal oscillations 

in cortical networks. Science, 304: 1926-1929. DOI: 

10.1126/science.1099745 

Chetty, S. and G.K. Venayagamoorthy, 2002. A neural 

network based detection of brain tumours using 

electroencephalography. Proceedings of the 

IASTED International Conference Artificial 

Intelligence and Soft Computing, (IICAISC’ 02), 

Jul. 17-19, Banff, Canada, pp: 391-396.  

Diambra, L., C.P. Malta, A. Capurro and J. Fernandez, 

2001. Nonlinear structures in electroencephalogram 

signals. Physica A: Stat. Mech. Applic., 300: 505-

520. DOI: 10.1016/S0378-4371(01)00352-1 

Elgar, S. and R.T. Guza, 1988. Statistics of bicoherence. 

IEEE Trans. Acoust. Speech Signal Process, 36: 

1667-1668. DOI: 10.1109/29.7555 

Fattal-Valevski, A., N. Nissan, U. Kramer and S. 

Constantini, 2012. Seizures as the clinical presenting 

symptom in children with brain tumors. J. Child. 

Neurol., 28: 292-296. DOI: 

10.1177/0883073812445786 



Salai Selvam, V. and S. Shenbagadevi / American Journal of Applied Sciences, 10 (3): 294-306, 2013 

 

305 AJAS Science Publications

 

Gardner, M.J. and D.G. Altman, 2000. Confidence 

Intervals Rather than P Values. In: Statistics with 

confidence, Altman, D., D. Machin, T. Bryant and 

S. Gardner (Eds.), Wiley-Blackwell, ISBN-10: 

0727913751, pp: 15-27.  

Habl, M., C. Bauer, C. Ziegaus, E.W. Lang and F. 

Schulmeyer, 2000. Can ICA help identify brain 

tumor related EEG signals? University of 

Regenburh.  

Hartman, A.L. and R.P. Lesser, 2012. Brain Tumors and 

Other Space-Occupying Lesions. In: 

Electroencephalography: Basic Principles, Clinical 

Applications and Related Fields, Niedermeyer, E. 

and F.L.D. Silva (Eds.), Lippincott Williams and 

Wilkins, Philadelphia, ISBN-10: 1469801752, pp: 

321-327. 

Hinich, M.J., 1982. Testing for Gaussianity and linearity 

of a stationary time series. J. Time Ser. Anal., 3: 

169-176. DOI: 10.1111/j.1467-9892.1982.tb00339.x  

Hosseini, P.T., R. Shalbaf, A.M. Nasrabadi, 2010. 

Extracting a seizure intensity index from one-

channel EEG Signal using bispectral and detrended 

fluctuation analysis. J. Biomed. Sci. Eng., 3: 253-

261. DOI: 10.4236/jbise.2010.33034 

Karameh, F.N. and M.A. Dahleh, 2000. Automated 

classification of EEG signals in brain tumor 

diagnostics. Proceedings of the American Control 

Conference, Jun. 28-30, IEEE Xplore Press, 

Chicago, IL., pp: 4169-4173. DOI: 

10.1109/ACC.2000.877006 

Kim, Y.C. and E.J. Powers, 1979. Digital bispectral 

analysis and its applications to nonlinear wave 

interactions. IEEE Trans. Plasma Sci., 7: 120-131. 

DOI: 10.1109/TPS.1979.4317207 

Mammone, N., F.L. Foresta and F.C. Morabito, 2012. 

Automatic artifact rejection from multichannel Scalp 

EEG by wavelet ICA. IEEE Sens. J., 12: 533-542. 

DOI: 10.1109/JSEN.2011.2115236 

MFBTRI, 2013. Brain tumor symptoms. The Musella 

Foundation for Brain Tumor Research and 

Information. 

Miller, A., J.W. Sleigh, J. Barnard and D.A. Steyn-Ross, 

2004. Does bispectral analysis of the 

electroencephalogram add anything but complexity? 

Br. J. Anaesth., 92: 8-13. DOI: 10.1093/bja/aeh003 

Montgomery, D.C. and G.C. Runger, 2010. Applied 

Statistics and Probability for Engineers. 5th Edn., 

John Wiley and Sons, ISBN-10: 0470505788, pp: 

776.  

Murugesan, M. and R. Sukanesh, 2009. Automated 

detection of brain tumor in EEG signals using 

artificial neural networks. Proceedings of the 

International Conference on Advances in 

Computing, Control and Telecommunication 

Technologies, Dec. 28-29, IEEE Xplore Press, 

Trivandrum, Kerala, pp: 284-288. DOI: 

10.1109/ACT.2009.77 

Nagata, K., C.E. Gross, G.W. Kindt, M.J. Geier and G.R. 

Adey, 1985. Topographic electroencephalographic 

study with power ratio index mapping in patients 

with malignant brain tumors. Neurosurgery, 17: 

613-619. PMID: 4058699 

Nikias, C.L. and M.R. Raghuveer, 1987. Bispectrum 

estimation: A digital signal processing framework. 

IEEE Proc., 75: 869-891. DOI: 

10.1109/PROC.1987.13824 

Nunez, P.L. and R. Srinivasan, 2006. Electric Fields of 

the Brain: The Neurophysics of EEG. 2nd Edn., 

Oxford University Press, New York, ISBN-10: 

019505038X, pp: 611. 

O’Connor, S.C. and P.A. Robinson, 2005. Analysis of 

the electroencephalographic activity associated with 

thalamic tumors. J. Theor. Biol., 233: 271-286. DOI: 

10.1016/j.jtbi.2004.10.009 

Picot, A., S. Charbonnier and A. Caplier, 2009. 

Monitoring Drowsiness On-Line using a Single 

Encephalographic Channel. In: Biomedical 

Engineering, De Mello, B.C.A. (Ed.), In-Tech, 

Croatia, pp: 145-164.  

Pradhan, C., S.K. Jena, S.R. Nadar and N. Pradhan, 

2012. Higher-order spectrum in understanding 

nonlinearity in EEG rhythms. Comput. Math. Meth. 

Med., 2012: 1-8. DOI: 10.1155/2012/206857 

Raghuveer, M.R., 1988. High resolution estimation of 

quadratic phase coupling in nonlinear systems. 

Proceedings of American Control Conference, Jun. 

15-17, IEEE Xplore Press, Atlanta, Ga, USA., pp: 

2124-2128.  

Roustan, J.P., S. Valette, P. Aubas, G. Rondouin and X. 

Capdevila, 2005. Can electroencephalographic 

analysis be used to determine sedation levels in 

critically ill patients? Anesth Analg, 101: 1141-51. 

DOI: 10.1213/01.ane.0000167782.47957.e1 

Saikia, A. and S.M. Hazarika, 2011. Bispectrum analysis 

of EEG during observation and imagination of hand 

movement. Proceedings of IEEE Students’ 

Technical Symposium, Jan. 14-16, IEEE Xplore 

Press, Kharagpur, pp: 128-133. DOI: 

10.1109/TECHSYM.2011.5783840 



Salai Selvam, V. and S. Shenbagadevi / American Journal of Applied Sciences, 10 (3): 294-306, 2013 

 

306 AJAS Science Publications

 

Schaul, N., 1998. The fundamental neural mechanisms 

of electroencephalography. Elect. Clin. Neuro., 

106: 101-107. DOI: 10.1016/S0013-

4694(97)00111-9 

Selvam, V.S. and S. Shenbagadevi, 2011. Brain tumor 

detection using scalp EEG with modified wavelet-

ICA and multi layer feed forward neural network. 

Proceedings of the Annual International Conference 

of the IEEE Engineering in Medicine and Biology 

Society, Aug. 30-Sept. 3, Boston, MA., pp: 6104-

6109. DOI: 10.1109/IEMBS.2011.6091508 

Selvam, V.S., S. Shenbagadevi, V. Padhma, D. Sujatha 

and R. Sharmila, 2011. Two new approaches of 

independent component analysis. Proceedings of the 

4th International Conference, ObCom, Dec. 9-11, 

CCIS, Springer, pp: 503-513. DOI: 10.1007/978-3-

642-29216-3_55 

Silipo, R., G. Deco and H. Bartsch, 1999. Brain tumor 

classification based on EEG hidden dynamics. Intell. 

Data Anal., 3: 287-306. DOI: 10.1.1.37.5882 

Siu, K.L., J.M. Ahn, K. Ju, J.H. Lee and K. Shin et al., 

2008. Statistical approach to quantify the presence 

of phase coupling using the bispectrum. IEEE Trans. 

Biomed. Eng., 55: 1512-1520. DOI: 

10.1109/TBME.2007.913418 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Swarnkar, V., U. Abeyratne and C. Hukins, 2010. 

Objective measure of sleepiness and sleep latency 

via bispectrum analysis of EEG. Med. Biol. Eng. 

Comput., 48: 1203-1213. DOI: 10.1007/s11517-

010-0715-x 

Venkatakrishnan, P., R. Suganesh and S. Sangeetha, 

2011. Detection of quadratic phase coupling from 

human EEG signals using higher order statistics and 

spectra. Signal Image Video Process., 5: 217-229. 

DOI: 10.1007/s11760-010-0156-x 

Walter, G., 1936. The location of cerebral tumors by 

electroencephalography. Lancet, 228: 305-308. DOI: 

10.1016/S0140-6736(01)05173-x 

Watemberg, N., F. Alehan, R. Dabby, T. Lerman-Sagie 

and P. Pavot et al., 2002. Clinical and radiologic 

correlates of frontal intermittent rhythmic delta 

activity. J. Clin. Neurophysiol., 19: 535-539. PMID: 

12488784 

Yufune, S., I. Takamatsu, K. Masui and T. Kazama, 

2011. Effect of remifentanil on plasma propofol 

concentration and bispectral index during propofol 

anaesthesia. Br. J. Anaesth., 106: 208-214. DOI: 

10.1093/bja/aeq334 


