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ABSTRACT

A novel approach to damage detection in compositebody structures using hyperspectral image index
analysis algorithm is presented and discussedatdhpted technique allows the monitoring and armalyki

a components structure based on correlation bett@enspaced thermal images. The technique produces
several organized tables resulting from image fusiod frame deviation pixel redistribution calcidas,
which results in computable matrices. The obtaimesults proved the technique to be capable of
classifying damage with ability to model varioupég of damage under various conditions. Thereneeal

to accurately identify damaged composite compondiits will enable the used algorithm to determifne
the level of damage or defect in the componentiiial according to established database thatsta®
account mechanical and physical factors. Testirfierdint composite structures using Hyperspectral
technique and Pulse Video Thermography (PVT), gsefgpectral uses different bands with different
wavelengths to analyze the image results, whiclblesabetter recognition and classification. Sudcgss
recognition and component classification obtainéti wharacterization of tested composite.
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1. INTRODUCTION strength/stiffness or service life estimation lidkéo
certain damage patterns. In the end, development of
Advanced layered composite materials are in widedamage tolerant materials may be considered a goal
use in many applications. Fiber reinforced compssit towards further increasing the attractiveness ofjmusite
with polymeric matrices (FRP or laminates) and materials in building high tech reliable products.
polymeric sandwich materials, with thin laminate As composite materials are finding increasing wse i
faces and foam or impregnated cores, are examples onore demanding applications, requiring a high degrfe
such structures. The structural design andaccuracy and reliability, considerable effort isinge
maintenance of composite structures involving thesemade to define and setup quality control procedares
materials need comprehensive evaluation andinspection methods.
characterization of mechanical properties and Controlling the quality of raw composite materieds
behavior under different loading conditions, in Hbot carried out to detect the following:
undamaged and damaged state. . . .
The marked inhomogeneity and anisotropy of these®  Excessive void contents or porosity
materials makes them vulnerable to a variety of* Contamination or foreign particle inclusions
damages. For this reason, reliable composite siest *  Variation in the degree of resin cure
need adequate NDT/NDE methods along thee Inconsistent fiber volume fraction
maintenance activities and knowledge of residuale Dimensional inaccuracies
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» Poor fiber-matrix bonding observing the surface temperature, defects appear a
« Broken or Damaged fibers areas of different temperatures with respect to
) _ surrounding sound areas once the thermal front has
A composite structure may also be damaged inreached them. Consequently, deeper defects will be
service due to physical damage such as impact obbserved later and with a reduced contrast.
fatigue creep. The influence of the environmentaon Such approach is common in the automotive
structure due to ingress or moisture, exposureoto h industry. Other common applications of the acti%rP
and wet conditions for over long periods, scheme are in quantitative subsurface defect ansess
contamination from oils or fluids may also cause (cracks, delaminations, impact damages, disbondings
damage, like surface abrasion and dents,moisture), thermophysical property evaluation; ih a
delamination, fiber crack, bonding failure. kind of industries (Myriounigt al., 2011; Lahirizet al.,
Such defects are all potentially detrimental to the 2012; Naderiet al., 2012; Wuet al., 2011; Cheng and
mechanical integrity and consequently to the stmatt  Tjan, 2012; Kutiret al., 2011).
defect will affect the performance will depend d®t  f,sion which is the process of combining relevant
geometry of the structure, the location and origoieof information from two or more images into a single

the kglefect, .the typte of applied stress field and th image takes place. The resulting image will be more
working environment. informative than any of the input images.

Confuljence n th? aprp:llulzauon CI)(; bsa_fety %re';'jcal The image fusion techniques allow the integration
structural composites in vehicles would be impro of different information sources. The fused image c

fast accurate method of.assessmg manufacturivgsfla  payve complementary spatial and spectral resolution
and service damage in relation to the structural characteristics. Such techniques are usually used i
engineering performance was available. A perceivedsatellite imaging; where two types of images are
problem with composite structures is that internal gyajlable. The panchromatic image acquired by
damage may seriously weaken a structure yet besatellites is transmitted with the maximum resaloti
undetected due to little surface evidence. available and the multispectral data are transthitte
Infrared thermography has been used as anwith coarser resolution. This will usually be two o
outstanding non-destructive testing method. Itsicbas four times lower. At the receiving end, the
principle is exciting an object thermally/mechatlica  panchromatic image is merged with the multispectral
and using infrared camera to monitor changes of thedata to convey more information (Baranowskial.,
object's surface temperature. The subsurface2012; Meeret al., 2012; Yangat al., 2012; Liuet al.,
discontinuities will heat diffusion, thus will affethe ~ 2011; Picoretal., 2012; Zhact al., 2011).
thermal distribution of the surface. Various exiita In almost all application areas, the basic goal of
sources can be used, such as cold/hot air, higleyfolv ~ hyperspectral image analysis is to classify or
lamps and flashes, sonic/ultrasound transducers angiScriminate objects. Common problems in the area o
others. There are also different heating techniquesfyPerspectral analysis involving data relevancyude

Modulated and pulsed heating are among the mospptim?l S%Iections IOf walvellength, nhumber of barmts a
spatial and spectral resolution.
popular ones. There are two modes for thermography, Despite the fact that hyperspectral image analgsis

one where the specimen is heated from one sidé, wit . o
thermal data is collected from the same side, dalle used to perform index analysis in hyperspectral and
" . multispectral satellite imagery, it is assumed thaan

) . . e used for image comparison of similar or proaksse
heated from one side, while thermal data is cadigct images, of completely different origin.

from the opposite side, called transmission modg. In this study the hyperspectral approach is adoted
_ Pulse Video Thermography (PVT) is a versatile NDT getect and analyze damage in composite car stasctur
inspection method, ready to be used in industrialsych as a wishbone. The adaption of the technigjte i
applications assisted by computer and intelligent agssume the high resolution panachromatic image JPAN
software specifically designed for this purpose. to be the reference image while the image of the
The subjected material reacts rapidly after thBaini  damaged component to be the low resolution
thermal pulse because the thermal front propagatesmultispectral image (MS). The success of applyimg t
by diffusion, under the surface and also because ofechnique depends on time compensation of sampled
radiation and convection losses. The presence of amages and propagated heat waves. Also, this stiltly
defect reduces the diffusion rate so that whenprove the validity and actual advantage of using
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Hyperspectral image index analysis on normal non-
satellite images specifically on PVT images.

2. MATERIALSAND METHODS

In this study an algorithm designed to compute four
image indices RMSE, RASE, Bias and Deviation. The
purpose of the used program is to provide suchcaddi
results in a matrix format for further analysis.

The used approach is as follows:

e Computation of relevant image indices
e Formation of individual matrices
» Formation of characteristic Matrix

3.RESULTS

Figure 2-6 show wishbone thermal images from a
damaged side obtained using the setug=ig. 1, while
Fig. 7-9 present thermal images for the wishbone
undamaged side.

Canmert ee— © ® © -]

Fig. 4. Damaged Wishbone thermal image at 1.39 sec

Composite

Classification system

Fig. 1. Experimental setup

Fig. 2. Damaged Wishbone thermal image at O sec Fig. 6. Damaged Wishbone thermal image at 5.39 sec
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Fig. 9. Undamaged Wishbone thermal image at 3.24 sec

0 -023 -09
4. DISCUSSION Deviation( b .B)=| 0 0023 0.8 (7)

Three bands used to analyze the captured thermal 0 0.20 0.83
images with functions applied to compute imagedesi
Matrices 1-4 show results for damaged component 0  -047 -0.3
structure, while matrices 5-8 show index functions ' '
applied to non-damaged side of the same componenP'as(Q’Q B)=| 0 0035 05 (8)
Equation 1-8: 0 013 052

///// Science Publications 126 AJAS



Mahmoud Zaki Iskandarani / American Journal of AggliSciences, 10 (2): 123-130, 2013

While hyperspectral data are very rich in 120 1 © t1=0$
information, processing the hyperspectral data pose 100 1 B 12=0.598
several challenges regarding computational D 13=1.398

i . ) D t4=3.49S
requirements, information redundancy removal, rabev 80 1

) o O . B 15=5.395
information identification and modeling accuracy.

Driven by classification or discrimination accuracy
it is expected that, as the number of hyperspebaats 40 1
increases, the accuracy of classification shoukb al
increase. Nonetheless, this is not always the oase
developed model. Redundancy in data can cause 0 -
convergence instability of models. Furthermore, 1 2 3
variations due to noise in redundant data propagate Band number
through a classification or discrimination modeheT
same is true of spectral information that has ratice
to the feature being classified in the underlying

RMSE
o
=

Fig. 10. RMSE of damaged wishbone side

mathematical model. Such information is the same as 14offg;gssgs

noise to any statistical model, even if it is ueigand 120,5511:393

accurate. Thus, processing a large number of hygetral Dt4=3.49S

bands can result in higher classification inacqurt@n 1007 m t5=5 305

processing a subset of relevant bands without cethay % 801

(Zhaoet al., 2011; Darvishzadete al., 2011; Amroet al., Z 60

2011; Aiazziet al., 2012).
Figure 10 and 11 show RMSE and RASE for the 407

damaged side of the wishbone over three bands It i 201

noticed that both RMSE and RASE values increases ov 0

time as the heat pulse discharges from the componen 1 2 3
Figure 12 represent an RMSE comparison between Band number

damaged and undamaged sides of the wishbone. ] ) .
From the plotted results, it is clear that the pase ~ Fig- 11. RASE of damaged wishbone side
discharges faster on the undamaged side compared to
the damaged one. This is evident when values of RMS 90
fqr.both are compared over a simil_ar range of time, 80 102 (Damaged)~0.598
giving higher RMSE at lower time values for 70 10 12(Undamaged) ~1.265
undamaged side compared to the damaged one. This is 60 1 mt3(Damaged)=1.39S
due to the fact that the roots mean squared ercoease 50 1m3(Undamaged) =3.24S
as the heat wave disappears, hence increasing 40 {m14(Damaged) =3 498
differences between the reference image and the 304
subsequent ones. This increase in RMSE is a funcfio

_Btl(Damaged)=0S
B t1(Undammed)=0S

spectral components such as contrast. ?g,

Figure 13 show an overall boundary comparison of 0
damaged and undamaged sides of the structure under 1
test. The figure show a clear difference in theigaland Overall band

boundaries of the undamaged side compared to the ) )
damaged one as a function of image index analysis a Fig. 12. RMSE for damaged and undamaged sides of wishbone

spectral properties. Hence, a characteristic matrix can now be prodysssd
To enable selection of the best band(s) which gives ' b

better information and classification, a principie tested side per selected band. The third bandiésted
»anp P with the following characteristic matrices Equat#f0:
adopted to narrow the search space to include thely

bands that the various unsupervised methods
respectively deem most informative and least redanhd

In this study the condition applied is that the tbes Coamaged(y 1=
representative band is the one which has no negativ

values with uniform and smooth transitions.

9.78 24.22 61.68 95.6
12.34 30.57 77.84 120.7¢t 9)
0.08 0.21 0.57 0.86
0.05 0.13 0.37 0.55

o O O o

///// Science Publications 127 AJAS



Mahmoud Zaki Iskandarani / American Journal of AggliSciences, 10 (2): 123-130, 2013

1 Index (< g4 )
100 Index(calculatedy >’ Index(! (14)
index(t>3.24)
Gives:
O Undamaged B Damaged 0 25.00 86.20 111
| 0 3154 108.76 140. (15)
Cundamagedty 1=| g 0.20 0.83 1.03
0 0.13 0.52 0.65

_ In either of the cases above, the undamaged part is
2 distinguished from the damaged one.
Using Equation (14), the damaged part is
Fig. 13. Boundary comparison of damaged and undamageddifferentiated from the undamaged one with final

wishbone sides column matrices as follows Equation 16-18:
0 25.00 86.20 95.68
c _ 0 31.54 108.7 (10) 120' 5
Undamaged (§ ) 0 0.20 0.83 Cﬁnal(Damaged)z O_éG (16)
0 0.13 0.52 0.55
From the characteristic matrices, it is realized.
The final value in any computed image index over 111
valid band is the summation of all previous onesde, Cfinal _[140.3 17)
a function can be formed as: (Undamaged)™| 103
0.65

1

Total Index Value(va,idband):i Index(t (11)
‘ Matrices 18 represent Entropy data for the damaged

In this study, the chosen valid band is band} (b side of the tested structure. The information gntro
The selection of the appropriate band based on théneasure based on the probability density functién o
previous conditions that is proved as Equation ¢idgs  reflectance values in a hyperspectral band and the

not apply for bands;tand b. This is due to the presence number of distinct reflectance values. The prolitidsl
of negative values in the Bias and Deviation inglita are estimated by computing a histogram of reflexgan

the damaged part matrices. For the undamaged sid&ajues. In general, if the entropy value is higanttihe
there are negative values in the Bias and Deviationgmount of information in the data is large but not
indices of b1 and unsmooth transition of valuek2n

As the heat wave of the applied pulse in the
undamaged side dissipates so fast, some images ol
be captured, but their calculated (lumped indexyies 6.40 6.34 7.56 6.23 6.1
that represent image index values over the peifidiine Entropy( b b ,Q)=| 7.23 7.44 6.88 6.03 5f (18)

necessarily useful:

are described by either Equation 12-15: 713 6.66 6.43 6.18 6.1
Index (t<1.26) Index(¢ 3.24)
IndeXcarcuae)= Y, Index(ty > Index(t (12) Figure 14, show how entropy changes over time for
nie=o noex(1.20) energy pulsed wishbone composite structure. Fran th
Gives: plot, it is noticed that the only band which hasosth
entropy transition that is consistent with the fmzt as
0 2500 6120 862 the spectral properties fade and the differencenas
Conamaneaty = 0 31.54 77.22 1087 (13) RMSE and Deviation increase, thus the entropy shoul
0 0.20 063 083 decrease. This is also consistent with the critéoia
0 0.13 039 052 band acceptance established earlier.
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Fig. 14. Entropy as a function of time
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Fig. 15. Entropy as a function of image
Figure 15 shows Entropy change per image, where it 6. REFERENCES
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