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ABSTRACT 

A novel approach to damage detection in composite car body structures using hyperspectral image index 
analysis algorithm is presented and discussed. The adapted technique allows the monitoring and analysis of 
a components structure based on correlation between time spaced thermal images. The technique produces 
several organized tables resulting from image fusion and frame deviation pixel redistribution calculations, 
which results in computable matrices. The obtained results proved the technique to be capable of 
classifying damage with ability to model various types of damage under various conditions. There is a need 
to accurately identify damaged composite components. This will enable the used algorithm to determine if 
the level of damage or defect in the component is critical according to established database that takes into 
account mechanical and physical factors. Testing different composite structures using Hyperspectral 
technique and Pulse Video Thermography (PVT), as hyperspectral uses different bands with different 
wavelengths to analyze the image results, which enables better recognition and classification. Successful 
recognition and component classification obtained with characterization of tested composite. 
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1. INTRODUCTION 

Advanced layered composite materials are in wide 
use in many applications. Fiber reinforced composites 
with polymeric matrices (FRP or laminates) and 
polymeric sandwich materials, with thin laminate 
faces and foam or impregnated cores, are examples of 
such structures. The structural design and 
maintenance of composite structures involving these 
materials need comprehensive evaluation and 
characterization of mechanical properties and 
behavior under different loading conditions, in both 
undamaged and damaged state.  

The marked inhomogeneity and anisotropy of these 
materials makes them vulnerable to a variety of 
damages. For this reason, reliable composite structures 
need adequate NDT/NDE methods along the 
maintenance activities and knowledge of residual 

strength/stiffness or service life estimation linked to 
certain damage patterns. In the end, development of 
damage tolerant materials may be considered a goal 
towards further increasing the attractiveness of composite 
materials in building high tech reliable products. 

As composite materials are finding increasing use in 
more demanding applications, requiring a high degree of 
accuracy and reliability, considerable effort is being 
made to define and setup quality control procedures and 
inspection methods. 

Controlling the quality of raw composite materials is 
carried out to detect the following: 
 
• Excessive void contents or porosity 
• Contamination or foreign particle inclusions 
• Variation in the degree of resin cure 
• Inconsistent fiber volume fraction 
• Dimensional inaccuracies 
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• Poor fiber-matrix bonding 
• Broken or Damaged fibers 

A composite structure may also be damaged in 
service due to physical damage such as impact or 
fatigue creep. The influence of the environment on a 
structure due to ingress or moisture, exposure to hot 
and wet conditions for over long periods, 
contamination from oils or fluids may also cause 
damage, like surface abrasion and dents, 
delamination, fiber crack, bonding failure. 

Such defects are all potentially detrimental to the 
mechanical integrity and consequently to the structural 
performance of a component. The extent to which a 
defect will affect the performance will depend on the 
geometry of the structure, the location and orientation of 
the defect, the type of applied stress field and the 
working environment.  

Confidence in the application of safety critical 
structural composites in vehicles would be improved if a 
fast accurate method of assessing manufacturing flaws 
and service damage in relation to the structural 
engineering performance was available. A perceived 
problem with composite structures is that internal 
damage may seriously weaken a structure yet be 
undetected due to little surface evidence. 

Infrared thermography has been used as an 
outstanding non-destructive testing method. Its basic 
principle is exciting an object thermally/mechanically 
and using infrared camera to monitor changes of the 
object’s surface temperature. The subsurface 
discontinuities will heat diffusion, thus will affect the 
thermal distribution of the surface. Various excitation 
sources can be used, such as cold/hot air, high-powerful 
lamps and flashes, sonic/ultrasound transducers and 
others. There are also different heating techniques. 
Modulated and pulsed heating are among the most 
popular ones. There are two modes for thermography, 
one where the specimen is heated from one side, with 
thermal data is collected from the same side, called 
reflection mode and the other where the specimen is 
heated from one side, while thermal data is collected 
from the opposite side, called transmission mode.  

Pulse Video Thermography (PVT) is a versatile NDT 
inspection method, ready to be used in industrial 
applications assisted by computer and intelligent 
software specifically designed for this purpose.  

The subjected material reacts rapidly after the initial 
thermal pulse because the thermal front propagates, 
by diffusion, under the surface and also because of 
radiation and convection losses. The presence of a 
defect reduces the diffusion rate so that when 

observing the surface temperature, defects appear as 
areas of different temperatures with respect to 
surrounding sound areas once the thermal front has 
reached them. Consequently, deeper defects will be 
observed later and with a reduced contrast. 

Such approach is common in the automotive 
industry. Other common applications of the active PVT 
scheme are in quantitative subsurface defect assessment 
(cracks, delaminations, impact damages, disbondings, 
moisture), thermophysical property evaluation; in all 
kind of industries (Myriounis et al., 2011; Lahiria et al., 
2012; Naderi et al., 2012; Wu et al., 2011; Cheng and 
Tian, 2012; Kutin et al., 2011). 

In Hyperspectral image analysis approach, image 
fusion which is the process of combining relevant 
information from two or more images into a single 
image takes place. The resulting image will be more 
informative than any of the input images. 

The image fusion techniques allow the integration 
of different information sources. The fused image can 
have complementary spatial and spectral resolution 
characteristics. Such techniques are usually used in 
satellite imaging; where two types of images are 
available. The panchromatic image acquired by 
satellites is transmitted with the maximum resolution 
available and the multispectral data are transmitted 
with coarser resolution. This will usually be two or 
four times lower. At the receiving end, the 
panchromatic image is merged with the multispectral 
data to convey more information (Baranowski et al., 
2012; Meer et al., 2012; Yanga et al., 2012; Liu et al., 
2011; Picon et al., 2012; Zhao et al., 2011). 

In almost all application areas, the basic goal of 
hyperspectral image analysis is to classify or 
discriminate objects. Common problems in the area of 
hyperspectral analysis involving data relevancy include 
optimal selections of wavelength, number of bands and 
spatial and spectral resolution. 

Despite the fact that hyperspectral image analysis is 
used to perform index analysis in hyperspectral and 
multispectral satellite imagery, it is assumed that it can 
be used for image comparison of similar or processed 
images, of completely different origin.  

In this study the hyperspectral approach is adopted to 
detect and analyze damage in composite car structures 
such as a wishbone. The adaption of the technique is to 
assume the high resolution panachromatic image (PAN) 
to be the reference image while the image of the 
damaged component to be the low resolution 
multispectral image (MS). The success of applying the 
technique depends on time compensation of sampled 
images and propagated heat waves. Also, this study will 
prove the validity and actual advantage of using 
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Hyperspectral image index analysis on normal non-
satellite images specifically on PVT images. 

2. MATERIALS AND METHODS 

In this study an algorithm designed to compute four 
image indices RMSE, RASE, Bias and Deviation. The 
purpose of the used program is to provide such indices 
results in a matrix format for further analysis.  

The used approach is as follows: 
 
• Computation of relevant image indices 
• Formation of individual matrices 
• Formation of characteristic Matrix 

3. RESULTS 

Figure 2-6 show wishbone thermal images from a 
damaged side obtained using the setup in  Fig. 1, while 
Fig. 7-9 present thermal images for the wishbone 
undamaged side. 
 

 
 
Fig. 1. Experimental setup 
 

 
 
Fig. 2. Damaged Wishbone thermal image at 0 sec 

 
 
Fig. 3. Damaged Wishbone thermal image at 0.59 sec 
 

 
 
Fig. 4. Damaged Wishbone thermal image at 1.39 sec 
 

 
 
Fig. 5. Damaged Wishbone thermal image at 3.49 sec 
 

 
 
Fig. 6. Damaged Wishbone thermal image at 5.39 sec 
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Fig. 7. Undamaged Wishbone thermal image at 0 sec 
 

 
 
Fig. 8. Undamaged Wishbone thermal image at 1.26 sec 
 

 
 
Fig. 9. Undamaged Wishbone thermal image at 3.24 sec 

4. DISCUSSION  

Three bands used to analyze the captured thermal 
images with functions applied to compute image indices. 
Matrices 1-4 show results for damaged component 
structure, while matrices 5-8 show index functions 
applied to non-damaged side of the same component 
Equation 1-8: 

( )1 2 3

5.4 27.2 31.3 45.1
0

8 2 8 6

12.0 26.7 69.4 108.2
RMSE b ,b ,b 0

7 3 5 5

9.7 24.2 61.6 95.6
0

8 2 8 8

 
 
 
 

=  
 
 
 
  

 (1) 

 

( )1 2 3

13.6 67.9 78.3 112.6
0

6 2 0 9

12.5 27.7 72.1 112.4
RASE b ,b ,b 0

4 6 3 3

12.3 30.5 77.8 120.7
0

4 7 4 5

 
 
 
 

=  
 
 
 
  

 (2) 

 

( )1 2 3

0.0 0.8 0.2 0.3
0

21 7 0 8

0.0 0.1 0.5 0.8
Deviation b ,b ,b 0

04 8 7 7

0.0 0.2 0.5 0.8
0
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( )1 2 3

0.0 0.3 0.0 0.0
0

04 70 05 31

0.0 0. 0. 0.6
Bias b ,b ,b 0

04 12 39 04

0 0.05 0.13 0.37 0.55

− − 
 
 
 −

=  
 
 
 
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 (4) 

 

( )1 2 3

0 35.55 56.69

RMSE b ,b ,b 0 37.76 99.80

0 25.00 86.20

 
 =  
  

 (5) 

 

( )1 2 3

0 88.71 141.44

RASE b ,b ,b 0 39.21 103.62

0 31.54 108.76

 
 =  
  

 (6) 

 

( )1 2 3

0 0.23 0.90

Deviation b ,b ,b 0 0.023 0.81

0 0.20 0.83

− − 
 =  
  

 (7) 

 

( )1 2 3

0 0.47 0.36

Bias b ,b ,b 0 0.035 0.54

0 0.13 0.52

− − 
 =  
  

 (8) 
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While hyperspectral data are very rich in 
information, processing the hyperspectral data poses 
several challenges regarding computational 
requirements, information redundancy removal, relevant 
information identification and modeling accuracy. 

Driven by classification or discrimination accuracy, 
it is expected that, as the number of hyperspectral bands 
increases, the accuracy of classification should also 
increase. Nonetheless, this is not always the case in a 
developed model. Redundancy in data can cause 
convergence instability of models. Furthermore, 
variations due to noise in redundant data propagate 
through a classification or discrimination model. The 
same is true of spectral information that has no relation 
to the feature being classified in the underlying 
mathematical model. Such information is the same as 
noise to any statistical model, even if it is unique and 
accurate. Thus, processing a large number of hyperspectral 
bands can result in higher classification inaccuracy than 
processing a subset of relevant bands without redundancy 
(Zhao et al., 2011; Darvishzadeha et al., 2011; Amro et al., 
2011; Aiazzi et al., 2012). 

Figure 10 and 11 show RMSE and RASE for the 
damaged side of the wishbone over three bands. It is 
noticed that both RMSE and RASE values increases over 
time as the heat pulse discharges from the component. 

Figure 12 represent an RMSE comparison between 
damaged and undamaged sides of the wishbone.  

From the plotted results, it is clear that the heat pulse 
discharges faster on the undamaged side compared to 
the damaged one. This is evident when values of RMSE 
for both are compared over a similar range of time, 
giving higher RMSE at lower time values for 
undamaged side compared to the damaged one. This is 
due to the fact that the roots mean squared error increase 
as the heat wave disappears, hence increasing 
differences between the reference image and the 
subsequent ones. This increase in RMSE is a function of 
spectral components such as contrast. 

Figure 13 show an overall boundary comparison of 
damaged and undamaged sides of the structure under 
test. The figure show a clear difference in the values and 
boundaries of the undamaged side compared to the 
damaged one as a function of image index analysis and 
spectral properties. 

To enable selection of the best band(s) which gives 
better information and classification, a principle is 
adopted to narrow the search space to include only the 
bands that the various unsupervised methods 
respectively deem most informative and least redundant. 
In this study the condition applied is that the best 
representative band is the one which has no negative 
values with uniform and smooth transitions. 

 
 
Fig. 10. RMSE of damaged wishbone side 
 

 
 
Fig. 11. RASE of damaged wishbone side 
 

 
 
Fig. 12. RMSE for damaged and undamaged sides of wishbone 
 
Hence, a characteristic matrix can now be produced per 
tested side per selected band. The third band is selected 
with the following characteristic matrices Equation 9-10: 
 

damaged (b )3

0 9.78 24.22 61.68 95.68

0 12.34 30.57 77.84 120.75
C

0 0.08 0.21 0.57 0.86

0 0.05 0.13 0.37 0.55

 
 
 =
 
 
 

 (9) 
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Fig. 13. Boundary comparison of damaged and undamaged 
wishbone sides 

 

Undamaged(b )3

0 25.00 86.20

0 31.54 108.76
C

0 0.20 0.83

0 0.13 0.52

 
 
 =
 
 
 

 (10) 

 
From the characteristic matrices, it is realized. 
The final value in any computed image index over 

valid band is the summation of all previous ones; hence, 
a function can be formed as: 

 
i 1

i

t

t
(validband)Total Index Value Index(t)

−

=∑  (11) 

 
In this study, the chosen valid band is band3 (b3) 
The selection of the appropriate band based on the 

previous conditions that is proved as Equation (11) does 
not apply for bands b1 and b2. This is due to the presence 
of negative values in the Bias and Deviation indices for 
the damaged part matrices. For the undamaged side, 
there are negative values in the Bias and Deviation 
indices of b1 and unsmooth transition of values in b2. 

As the heat wave of the applied pulse in the 
undamaged side dissipates so fast, some images could not 
be captured, but their calculated (lumped index) values 
that represent image index values over the period of time 
are described by either Equation 12-15: 
 

Index(t 1.26) Index(t 3.24)

index(t 0)
(calculated)

Index(t 1.26)

Index Index(t) Index(t)
< <

> >
= +∑ ∑  (12) 

 
 Gives: 
 

Undamaged ( b )3

0 25.00 61.20 86.20

0 31.54 77.22 108.76
C

0 0.20 0.63 0.83

0 0.13 0.39 0.52

 
 
 =
 
 
 

 (13) 

finalIndex(t t )

index(t 3.24)

Index(calculated) Index(t)
<

>
= ∑  (14) 

 
 Gives: 
 

Undamaged ( b )3

0 25.00 86.20 111

0 31.54 108.76 140.3
C

0 0.20 0.83 1.03

0 0.13 0.52 0.65

 
 
 =
 
 
 

 (15) 

 
In either of the cases above, the undamaged part is 

distinguished from the damaged one. 
Using Equation (14), the damaged part is 

differentiated from the undamaged one with final 
column matrices as follows Equation 16-18: 

 

(Damaged)

95.68

120.75
Cfinal

0.86

0.55

 
 
 =
 
 
 

 (16) 

 

(Undamaged)

111

140.3
Cfinal

1.03

0.65

 
 
 =
 
 
 

 (17) 

 
Matrices 18 represent Entropy data for the damaged 

side of the tested structure. The information entropy 
measure based on the probability density function of 
reflectance values in a hyperspectral band and the 
number of distinct reflectance values. The probabilities 
are estimated by computing a histogram of reflectance 
values. In general, if the entropy value is high then the 
amount of information in the data is large but not 
necessarily useful: 

 

( )1 2 3

6.40 6.34 7.56 6.23 6.11

Entropy b ,b ,b 7.23 7.44 6.88 6.03 5.95

7.13 6.66 6.43 6.18 6.10

 
 =  
  

 (18) 

 
Figure 14, show how entropy changes over time for 

energy pulsed wishbone composite structure. From the 
plot, it is noticed that the only band which has smooth 
entropy transition that is consistent with the fact that as 
the spectral properties fade and the difference as in 
RMSE and Deviation increase, thus the entropy should 
decrease. This is also consistent with the criteria for 
band acceptance established earlier. 
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Fig. 14. Entropy as a function of time 
 

 
 

Fig. 15. Entropy as a function of image 
 

Figure 15 shows Entropy change per image, where it 
is clear that each band gives different information at a 
different image and different instant of time. However, 
the only decreasing entropy function as per captured 
image is represented in band3.  

5. CONCLUSION 

The findings of this study are: 
 
• Ability to detect and discriminate between damaged 

and undamaged composite structures using 
Hyperspectral technique 

• Using the new approach of time compensation acted 
as a weight equivalent in Neural Systems, which 
resulted in accurate classification 

• Establishing criteria for band selection in case of 
PVT and other IR based images 

• Ability to predict cumulative values of unregistered 
past or future images 
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