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Abstract: Problem statement: The greenhouse has uncontrollable inputs that affect its climate, which 
arises the difficulty to regulate its inside temperature. The solution can be found using a multi-system 
approach like the Takagi-Sugeno System from which a design of a Parallel Distributed Compensation 
(PDC) controller is performed. However, a stability problem arises and was negotiatesd in general 
based on a Lyapunov criterion. The latter isn’t appropriate in our case because of the great number of 
rules describing the greenhouse. Approach: An alternative solution is proposed using a PDC 
controller with a local RST regulator in each rule. The synthesis of each one is determined using pole 
placement avoiding the cross-coupling (that may cause instability) between the local regulators and the 
sub-models related to differents rules. Results: The proposed fuzzy controller was applied to an 
experimental greenhouse and was able to lead the inside temperature to the desired value despite the 
externals perturbations. Conclusion: The presented study offer a simple solution to the stability 
problem when using PDC controller and so can be mush more implementable than the others 
stabilization methods presented in the literature. In the agriculture field, it can replace the on-off 
control action that is widely used in the greenhouses because of the processus complexity.  
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INTRODUCTION 

 
 The efficiency of fuzzy systems when dealing with 
complex and nonlinear process is well known in the 
literature. In fact, most of the systems in the industry 
have complicatedmathematical models that are barely 
exploitable and so the control of such process becomes 
very difficult. To solve this problem, fuzzy control were 
used in the beginning without the need of process 
model (Mamdani and Assilian, 1975). It’s structure is 
the fusion of control rules described by linguistic terms 
defined from the knowledge of the process. Very soon 
the fuzzy system where used also to models some 
process with successful results (Mamdani, 1977). 
Recently another fuzzy system has emerged named as 
the Takagi-Sugeno systems (Takagi and Sugeno, 1985). 
This latter differ from the former in the rules 
consequents: It’s not a fuzzy set but it’s a local model 
of the system to be approximated. His popularity in 
modeling and control is continually growing. Indeed, 
by fitting several local models representing multiples 
operating points of a process, TS fuzzy model 

adequately describe the system guaranteeing precision 
and stability. Moreover, several techniques were used 
to approximate the submodels parameters; such as 
weighted least-squares method (Chen and Pham, 2001) 
or neuro-adaptive learning techniques (Brown and 
Harris, 1994). Hence, large possibilities can be obtained 
in the control domain. Wang et al. (1995), a controller 
structure called Parallel Distributed Compensation 
(PDC) is introduced which consists in a linear 
controller developed for each local model. The final 
control action is obtained using the contribution of all 
the controllers outputs. Several proposals were 
presented using this means to control nonlinear 
processes; (Salaa et al., 2005; Wang et al., 2000; 
Seddiki et al., 2006) present a PDC control with state 
feedback in each rule. Le and Stability (2006) the same 
PDC control is used, with a simulation example, to 
control a rehabilitation device.  
 In general, a stability problem appears when using 
PDC controller. In this case, the most used way to deal 
with it is applying the Lyapunov criteria  with same 
positive defined Matrix to all rules (Tanaka and Sugeno, 
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1992). However, this method is inconvenient when using 
TS fuzzy systems having a large number of rules. Finding 
a common Lyapunov function become more difficult as 
the number of subsystem describing a given process 
increase (Le and Stability, 2006). In the others hands, most 
of the reals systems are very complicated, others having 
multiples inputs, which lead to a TS fuzzy model with 
numerous rules to successfully assimilate them. 
 A solution was proposed in this study to solve the 
problem stability without the need of the Lyapunov 
approach, which is one of the objectives in this study. 
The solution is based on an RST controller for each 
sub-model. Theirs parameters are computed with a 
different methodology from the standard one to insure 
the stability of the closed loop fuzzy system. 
 The other objective is the control of the temperature 
inside an experimental greenhouse using only fans. That is 
more difficult and complicated than using the air condition 
system due to the nature of the process. But in return, 
reduces considerably the energy consumption. 
 In the following a brief presentation of the 
Takagi-Sugeno (TS) system followed with an 
introduction to the PDC control. After that we will 
present the fuzzy PDC controller with an RST regulator 
for every local model and we will discuss the stability 
of the closed loop system. The control strategy will be 
applied to an experimental greenhouse using the TS 
model of the process that will be used in the design of 
the PDC controller. 
 
Takagi-Sugeno fuzzy systems: In a TS fuzzy system 
the consequence part of every rule is not a fuzzy set but 
it is a local model of the system. Thus the expression of 
the rule j of a TS fuzzy system is Eq. 1: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

j
1 j1 1 j1 n jn

j j j c j 

j j j

R : if z k  is , z k  is ,. . .,  z k  is 

x k  1   A x k   B u k   L v k
then

y k   C x k

j  1,  . . . ,N

Ω Ω Ω

 + = + +


=

=

 (1) 

 
 The linguistic terms ’z is  Ω’ represents the rules 
antecedent part, the system of equation in the second 
part of Eq. 1 is the consequent, ’z = (z1, . . . , zn)’ are the 
inputs of the TS fuzzy system, they can be either the 
states ’x = (x1, . . . , xna )’, the input ’uc = (u1, . . . , una)’ 
or the disturbances inputs ’v = (v1, . . . , vnv )’, ’ji’ is the 
membership function representing the fuzzy subset with 
a corresponding membership value ’ Ωji (zi)’, N is the 
total numbers of rules. 
 Assuming that all the sub-systems considered, are 
completely controllable and completely observable. 
Also, enoting the following states and inputs variables: 

x1(k) = y(k), x2(k) = y(k-1), . . . , xna (k) = y(k-na+1) 
u1(k) = u(k), u2(k) = u(k-1), . . . , una(k) = u(k-na+1) 

 
 The matrix (Aj∈Rna×na, Bj∈ Rnb×1 and Dj∈s Rnd×nd) 
represent the parameters of the TS fuzzy system (1) 
with the following Frobenius canonical structure: 
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 The output yj of each local model is weighted by 

the the fuzzified inputs µj(z(k)) = ji j
i 1

n
(z (k))

=
Ω∏ . The 

global output of the fuzzy system is the weighted mean  
of all submodels outputs, has the next form Eq. 2: 
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 We will take for the following Eq. 3: 
 

j
jN

j
j 1

(z(k))
(z(k))

 (z(k))
=

µ
= β

µ∑
 (3) 

 
 So the output of the TS model becomes Eq. 4: 
 

N

j j
j 1

y(k + 1) = (z(k)) y (k + 1)
=

β∑   (4) 

 
Whit: 
 

N

j j
j 1

0 < (z(k)) < 1 and (z(k)) = 1
=

β β∑  

 
 PDC controller is a TS fuzzy system having the 
same rules of the TS fuzzy model, but in the consequent 
part there is a control output that stabilizes the local 
model corresponding. Thus his following expression for 
each rule j Eq. 5: 
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R(j) : if z1(k) is Ω j1, z2(k) is Ω j2, . . ., zn(k) is Ωjn 
then uj(k) = gj(z1(k), . . ., zn(k)) 
for all j = 1,...,N (5) 
 
 The global control action is synthesized in the same 
way as the TS fuzzy model output as follow Eq. 6: 
 

( )
N

j j
j 1

u k  (z(k)) u (k)
=

= β∑   (6) 

 
 With uj representing the local output control. 
 
Design of the fuzzy controller: 
Stability problem: The most used technique is based 
on a state feedback control; a proportional gain will be 
applied to the feedback of each local model. Which lead 
to the following expression of the output control Eq. 7: 
 

N

j j 
j 1
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=
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 The expression of the closed loop system is 
obtained by replacing Eq. 7 into Eq. 1, 8 and 9: 
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With Gji = Aj-Bj Ki. 
 In the literature the most commune way to insure 
the stability of the closed loop TS fuzzy system is to 
finding a common Lyapunov function satisfying all the 
subsystems (Tanaka and Sugeno, 1992). The parameters 
of the controller could be found by linear matrix 
inequality as follow. 
 
Theorem: The closed loop TS fuzzy system of the 
form (19) is quadratically stable for some state 
feedback Kj (via PDC scheme) if there exists a common 
positive definite matrix P such that Eq. 10 and 11: 

T
jj jjG  P G -P < 0 for j = 1, . . . ,N  (10) 

 

T

j i i j j i i jG  + G G  + G
P  - P < 0 for j < i

2 2

   
      
   

  (11) 

 
 However, it appears from Eq. 10 and 11 that it is 
very difficult to apply this approach when we have a 
great numbers of rules describing the system (Lin 
and Mon, 2001). 
 In this study another approach is proposed; based 
on an RST controller for each rule, where its parameters 
are computed by pole placement following the the 
matrix inversion methodology. But a modification in 
the matrix parameters was introduced to insure the 
stability of the closed loop TS system. 
 
Stability of the proposed controller: First, consider 
the transfer function form of a TS fuzzy system. We 
can follow the same procedure for the continuous TS 
fuzzy system proposed in (Le and Stability, 2006). 
Combining Eq. 1and 4 result in the next NARX form 
Eq. 12: 
 

a an nN

j j m jl
j 1 m 1 l 1

y(k) = (z)( a  y(k - m) + b  u(k - l))
= = =

β∑ ∑ ∑   (12) 

 

 Since
N

j
j 1

(z) 1
=

β =∑ the next expression can be 

obtained Eq. 13: 
 

a an nN N

j j m j j l
j 1 m 1 j 1 l 1
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= = = =

β β∑ ∑ ∑ ∑   (13) 

 
 The Z transformation leads to the new form Eq. 14: 
 

a an nN N
-m -1 -l -1

j j m j j l
j 1 m 1 j 1 l 1

(z)[1- a q ]Y (q ) = (z) [ b  q  U(q )]
= = = =

β β∑ ∑ ∑ ∑  (14) 

 
Let Eq. 15 and 16: 
 

an
-1 -m

j j m 
m 1

A (q ) = 1 - a q
=
∑   (15) 

 

bn
-1 -m

j j m 
m 1

B (q ) = b q
=
∑   (16) 

 
 And so the transfer function of the TS fuzzy system is 
Eq. 17: 
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 Also, consider the two following TS fuzzy systems 
having the same antecedents as Eq. 12, Eq. 18 and 19: 
 

snN

j jm
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 Which leads to their respective transfer functions 
Eq. 20 and 21: 
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= =∑ ∑  

 
 The structure of the proposed PDC controller is the 
same as the standard RST controller, Fig. 1.  
 The next transfer function of the closed loop 
system can be deduced Eq. 22: 
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 Which leads to the following expression Eq. 23: 
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 From the denominator of Eq. 23, it appears that an 
RST controller initially designed to control a submodel 
having the same antecedent j has an influence on other 
submodels with different antecedents which is indicated 

by the expression 
N

j j j i j ij 1
(A S  + B R ).

≠
β β∑ A controller 

related to a rule j can be inconvenient to a submodel 
related to different rule and may cause instability. 
Thus, the stability of the closed loop TS fuzzy 
system is not guaranteed. 
 In fact, the cross-coupling expression is created by 
the two following multiplications: 
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( A ) ( S )

= =
β β∑ ∑  

 

And: 
 

N N

j j i ij 1 j 1
( ) ( R )

= =
β β β∑ ∑  

 

 A solution to the stability problem can be found by 
eliminating hese multiplications. 
 First, consider each polynomial Sj(q

-1) having the 
numerator of the submodel with the same ntecedent 
included in its expression as follow Eq. 24:  
 
Sj(q

−1) = h(q−1) jBɶ  (q−1)  (24) 

 
Whit: 
 

nb-1 -1 -1 -(m-1)
j jmm 1

h(q ) = 1-q and B (q ) = b  q
=∑ɶ  

 
 The polynomial h (q-1) is the same in all local 
controllers, which creates a numerical integrator in the 
open loop fuzzy system allowing disturbances rejection. 
 After replacing Eq. 24 in the expression of the 
closed loop fuzzy system (22) the latter will have the 
next form Eq. 25: 
 

-1 -1
-1

N N-1 -1 -1 -1
j j j jj 1 j 1

q  T (q )
G(q ) =

(1-q )( A (q )) + (q R (q ))
= =

β β∑ ∑
  (25) 

 
 Consider the following expression Eq. 26: 
 

* -1 -1 -1
j jA  (q ) = (1-q )A  (q ) (26) 

 
 Replace (26) in (25) lead to the next expression 
Eq. 27: 
 

-1 -1
-1

N * 1 1 1
j j jj 1

q  T (q )
G(q ) =

(A (q ) q R (q ))− − −
=

β +∑
  (27) 

 
 Suppose that all the closed loop subsystems have 
the same denominator P (q−1) as follow Eq. 28: 
 

* -1 -1 -1 -1
j jA (q ) + q  R (q ) = P(q ) for all j = 1, . . . ,N   (28) 
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Fig. 1: Structure of the PDC controller 
 
 With P(q−1) = pn -m

jmm 1
p  q

=∑ having its roots inside 

the unit circle. 
 Since N -1

jj 1
 = 1 and P(q )

=
β∑ invariant for all j =1,..,N 

the overall transfer function of the closed loop TS fuzzy 
system (27) becomes the following Eq. 29: 
 

-1 -1
-1

-1)

q T (q )
G(q ) =

P(q
  (29) 

 
 In short, we have to find the appropriate 
polynomial Rj (q−1) for each rule by solving Eq. 28. 
Which will ensure the stabilization of the closed loop 
TS fuzzy system. 
 For *

anP n≤ Eq. 28 is regular and can be written in the 

following matrix form Eq. 30 (Landau and Zito, 2006): 
 
Mx = p   (30) 
 
Where: 
xT = [1 r0j r1j . . . rnRj ] 
pT = [1 p0j p1j . . . pnP j  0 . . . 0] 
 
 And the matrix M: 
 

*
n

*
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*
1 j

*
n a

n 1

1 0 0 0

a 0 0 0

0

a 0 0 1

+

 
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 
 
 
 
 

⋯

⋱

⋮ ⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋮ ⋮

⋯
��������	

 

 
 The vector x which contain the coefficients of the 
polynomial Rj can be obtained by matrix inversion as 
follow Eq. 31:  
 
x = M−1p  (31) 

 In order to preserve the unity gain of the closed 
loop system, the polynomial T (q−1) can be obtained 
following the next procedure Eq. 32:  
 

N

j jj 1

N-1
j jj 1

T (1)
G(1) =

R (1)

1  T (q ) = T (1) = R (1)

=

=

=
β

⇒ β

∑

∑

  (32) 

 
Temperature control of an experimental green-
house: Most of the farmers using a greenhouse to grow 
their plantations have difficulty to cool down the indoor 
climate during the daylight. The reason is the 
preponderant influence of the solar radiation which 
increase the value inside temperature until exceed with 
several degrees the value of the outside temperature. 
The available solution to this problem is the use of a 
cooling system but it is costly n both equipment and 
energy consumption. The other alternative with lower 
cost is the ventilation using fans. But, the existence of 
thermal and mass exchange between different 
constituents of the greenhouse, results in a nonlinear 
behaviors of the process and prevents the control of 
temperature by classical means (Hanafin and 
Papasolomontos, 1999). So the thermal control is 
reduced to an on-off control action maintaining a 
continuous commutation between two temperatures 
level. The consequences of such technique has negative 
effects on the health of the crop and contribute to the 
development of diseases affecting the cultivation. 
 An effective model of the process is needed in order 
to reach an efficient control over the inside temperature 
which is the task handled by TS fuzzy systems. 
 

MATERIALS AND METHODS 
 
 The process is an experimental greenhouse having 
1.5 m   length,   1 m  width  and  1.25 m  height,  Fig. 2.  
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Fig. 2: Experimental greenhouse 
 

 
 
Fig. 3: Membership’s function of the inside temperature 
 

 
 
Fig. 4: Membership’s function of the ventilation rate 

 
 
Fig. 5: Membership’s function of the outside temperature 
 
The two equipped fans are driven by two three phases 
motors insuring a forced ventilation regime. These 
motors are powered by a frequency converter 
(microdrive FC 51 Danfoss) in order to control the 
rotation speed of the fans.  
 The measurements are carried by several sensors: 
An LM35 transistor with an AD620 amplifier for the 
inside and outside temperature, an humidity sensor type 
SY-230 and a pyranometer type LPPYRA 03 for the 
solar radiation measurements. 
 The signals delivered by the different sensors are 
transferred to MATLAB via a data acquisition module 
(KUSB 3100). The latter will carry the control output of 
the PDC controller to the frequency converter.  
 
Fuzzy identification: The TS fuzzy model of the 
experimental greenhouse has the following expression 
for every Rule j Eq. 33: 
 

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( j)
j1 j2 j3

s j4 i j5

j j1 j2 j3 o

j4( s j5 i j6

R :  if t k  is and u k  is to k  is

and R k  is and Rh k  is

then t k  1  k t k  a k u k  k t k

k)R k  k Rh k  k

for j  1,  . . . , N

Ω Ω Ω

Ω Ω

+ = α + + α

+α + α + α

=

 (33) 

 
 With u is the frequency supplied by the frequency 
converter to the engine to control the ventilation rate 
inside the greenhouse. 
 The parameters of the TS system (33) can be 
obtained in two steps: 
 
• The first one is the estimation of the linguistic part 

by finding the adequate membership functions. 
This step is performed using fuzzy clustering with 
C-mean algorithm (Bezdek, 1981). The results are 
shown in Fig. 3-7 
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Fig. 6: Membership’s function of the solar radiation 
 

 
 

Fig. 7: Membership’s function of the inside humidity 
 

 

 
Fig. 8: Difference between the measured output (—) 

and the TS fuzzy model output (—) 
 
• The second step is the estimation of the consequent 

part containing the sub-models. The recursive 
weighted least square method is more suitable for 
this task since the local 5 models are time varying 
Eq. 34-36 (Trabelsi et al., 2007): 

 
  
Fig. 9: Error of appoximation 
 

j e
j T

j e j e

P  (k-1) z (k-1)
K (k) =

/ (z(k-1)) + z  (k-1)P (k-1)z (k-1)λ β
 (34) 

 
T

j j j e j
ˆ ˆ ˆ(k) = (k-1) + K (k)(y(k)-z  (k-1) (k-1))θ θ θ  (35) 

 
T

j j j e j

1
P k) = (P  (k-1) - K (k)z  (k-1)P  (k-1))

λ
 (36) 

 
where, λ is a forgetting factor, 

T
e o s iz = (T u T  R  Rh  1)is 

the regression vector of inputs, 
T
j 1 2 3 4 5 6

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( j j j j j j )θ = α α α α α α  is the estimated vector of 

parameters, y is the output representing the inside 
temperature T.  
 Pj (0) and jθ̂  (0) is obtained from an off-line fuzzy 

identification based on an ordinary weighted least 
square method (Trabelsi et al., 2007). 
 Following the described procedure, we can obtain 
appropriate parameters insuring minimal error between 
the fuzzy model and the process every sample time. The 
results of the fuzzy identification are presented in Fig. 
6-9. Note that the TS fuzzy model is able to assimilate 
the evolution of the inside temperature. Figure 9 show a 
small difference with a maximum value of 1°C. 
 
Fuzzy-PDC control: If we consider the order of the 
process (a first orderone) in Eq. 31, then matrix M will 
have the next expression: 
 

*
1 j
*
2 j

1 0 0

a 1 0

a 0 1

 
 
 
 
 

 

 
 

* -1 -1 -1 -1 -1
j 1j j 2jA  (q ) = (1-q )(1-  q ) and B (q ) = qα α  Then the 

polynomials Rj and Sj will have the next form for each rule j 
Eq. 37 and 38: 
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Rj (q
−1) = r0j + r1j q

−1  (37) 
 
Sj(q

−1) = (1−q−1) αj2(k)  (38) 
 
 The transfer function of the proposed PDC 
controller is deduced from its structure represented in 
Fig. 1 as following Eq. 39 and 40: 
 

N N
-1 -1

j j j j yref
j 1 j 1

N
-1 -1

j j
j 1

(k) S (q )u(q ) = (k) R (1)

(k)R (q ) y(q )

= =

=

β β

− β

∑ ∑

∑
 (39) 
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-1 -1
j j2 j j ref

j 1 j 1

N
-1 -1

j j
j 1

(k) (k)(1-q ) u(q ) = (k) R (1)y

(k)R (q ) y(q )

= =

=

β α β

− β

∑ ∑

∑
  (40) 

 
 The implementation of the PDC controller has the 
following numerical form Eq. 41: 
 

N

j 1u 2 ref 3 4
j 1

u(k) = (k) (K (k-1) + K  y -K y(k)-K  y(k-1))
=

β∑  (41) 

 
Where: 
 

j2 0j 1j
1 2N N

j j2 j j2j 1 j 1

0j 1j
3 4N N

j j2 j j2j 1 j 1

(k) r +r
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(k) (k) (k) (k) 

r r
K  =   and  K  =

(k) (k) (k) (k) 

= =

= =

α

β α β α

β α β α

∑ ∑
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 The problem of the input saturation can be solved 
(Astrom and Haglund, 1988) if the control output uj(k) 
is substituted by the saturation value when this latter is 
reached. So, the control input that will be applied to the 
process will have the next form Eq. 42: 
 

N

s j us 2 ref
j 1

3 4

u (k) = (k) (K1 (k-1) + K  y

-K  y(k)-K  y(k-1))

=

β∑
  (42) 

 

z z

s z

50H  if u  50H

With u  = u if 0 < u < 50H : represent the

0 if u  0

saturated control input







 

RESULTS AND DISCUSSION 
 
 The results of the application are displayed in Fig. 
10 and 11, where the desired output is chosen equal to 
30°C. The experiment was carried during the day of 20 
May 2011 from 8h08-19h46 with a sample time equal 
to 15 s. Despite of the external perturbations (outside 
temperature, solar radiation and humidity) represented 
in Fig. 10-13, the PDC controller is able to lead the 
output to the desired value. 
 

 
 
Fig. 10: Response of the inside temperature (—) compared 

to the evolution of the outside temperature (—) 
 

 
 
Fig. 11: PDC action control 
 

 
 
Fig. 12: Evolution of the solar radiation 
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Fig. 13: Evolution of the internal humidity 
 

CONCLUSION 
 
 Despite the system complexity, the TS fuzzy system 
combined with RST controller provides good result in 
term of regulation and robustness. Also, the use of 
recursive identification and adaptive control improve the 
accuracy of the fuzzy model which enhances the 
performance of the fuzzy controller. The results obtained 
reflect the efficiency of the fuzzy controller proposed. 
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