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Abstract: Problem statement: This study aims to discuss the stability and béitian of a system of
ordinary differential equations expressing a geneaamlinear model of HIV/AIDS which has great
interests from scientists and researchers on maifiesn biology, medicine and education. The
existance of equilibrium points and their localbdity are studied for HIV/AIDS model with two
forms of the incidence rate€onclusion/Recommendations: A comparison with recent published
results is given. Hopf bifurcation of solutionsasf epidemic model with a general nonlinear incigenc
rate is established. It is also proved that thetesysundergoes a series of Bogdanov-Takens
bifurcation, i.e., saddle-node bifurcation, Hopfubcation and homoclinic bifurcation for suitable
values of the parameters.
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INTRODUCTION model into the components: Uninfected healthy CBD+ T
cells, latently infected CD4+T-cells and free virus
There has been considerable interest in diselse ©his model is very important as inspiration for man
Human Immunodeficiency Virus (HIV) infection models which obtained results established the
pandemic and so it receives (Bachar and Dorfmaynmportance of mathematical techniques in HIV/AIDS
2004; McCluskey, 2003; Elaiw, 2010; Hethcateal., researches. Hethcotet al. (1992). Discussed time
1989; Hsieh and Chen, 2004; LaSalle, 1976; Moghadadelay in the removed class to account the period of
and Gumel, 2003; Naresit al., 2011) and references temporarily immunity. Culshaw and Ruan (2000)
therein. There was an important report given by UNstudied the interaction between infection of a G4
AIDS conclude that a number of more than 34 millioncell and the emission of viral particles on a daliu
population living with HIV by the end of the yea®@  level. In order to obtain the effect of the timdajeon
and alos the AIDS is growing rapidly. The HIV/AIDS the stability of the endemic steady state. In thveiry
disease is a danger problem in poor countries. Theecent study, Caiet al. (2009) investigated an
competitionbetween the human immunodeficiency virusHIV/AIDS model with treatment. They established
and the human immune system has widely been studig@o infective stages. Using mathematical analysis.
(Mann and Tarantola, 1998). Mathematical andThey discussed the global analysis of the spredteof
Statistical models have been proven valuable iHIV disease computed by the numbep Fbasic
understanding the dynamics of HIV/AIDS infection reproduction) by which they could classify stalildf
amongst a population or between interacting coemtri equilibrium points. In this study we assume that th
with treatment and or change of behavior (Mann andotal population is divided into a susceptible slad
Tarantola, 1998). Recently, numerous mathematicadize S(t) and an infectious class before the on$et
models have been developed to describe differemAIDS. Since it is well known (Mann and Tarantola,
phenomena about this disease. The mathematical998) that the infection period is very long (mdinan
modeling has proven to be effective in improvingor equal ten years), it is further divided into el
information about the character of HIV/AIDS. Peogls cases. In this study, we are going to considerctse
and Nelson (1999) proposed an ordinary differentiain which the HIV/AIDS model allows for some
equations model of cell-free viral spread ofinfected people to go from the symptomatic phase to
immunodeficiency virus HIV in a well-mixed the asymptomatic phase by all sorts of treatmenswa
compartment such as bloodstream. They divided th#& is very important konwing that the infected
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individuals do not change are treated or not change X,

their behavior no matter if they are treated or. not X' = MX,where X =| X, |,(X, X, , % )OR? Q)
Thus the average value of contact of an person is X,

constant for all subset of population. The dis¢rsesfer

from rate is constant from stagell, stage. It is also \where:

supposed that infected individual in the secoadest,

can go back by successful treatment to the fiegest oH oH

with ratey. Here, we consider the treatment model with apH-d T S IR S

two infective stages in a general model than gilsgn oH oH (4)

(Culshaw and Ruan, 2000; Perelson and Nelson, 1999 =| apH 60671 S- (d+ k) - @Wz Sy

We consider the system Eq. 1. 0 K, —(d+ K, +y)

%tsz ad-g H(l,1,)S- dS

di It is clear from (1) thatP. = (o, 0, 0) is a trivial

?;:wH(Ilvlz)S_ (d+ k1)|1+y|2 (1) ( ) ( )_

di equilibrium. The Varational matrix of (1) & = (o, O,

?;:klll_(d+k2+y)|2 0) is given by Eq. 5:

where, N = S+ |, is the total active population size. -d 0 0 5

This is a generalization of the work of Liming (Gai T 0 Ay )

al., 2009). Where they discussed the special case He " (0 Kk -B

S represents the number proportion of susceptibis,
the number proportion of infective of first stagé o where, A = (d+K > 0 and B = (d + k+ V). The
treatment andlis the number proportion of infective of ejgenvalues ark, = -d< 0 and\, andA; are given by:
the second stage of treatment, b is the birth rate
constant, d is the natural death rate constans, the
average number of contacts of an individual pet ahi
time, p is the probability of disease transmission per
contact by an infective injland kand k are the Since A; = -d <0, A> 0 and B> 0, hence the
transfer rate constants b I, and | - a respectively,
where A is the number of AIDS casesis the transfer
rate constant;l - I, (successful treatment pl(l4, 1)
is a nonlinear function on the average number of ne p. _
infections per unite time (nonlinear incidence).isTh

Moo= H(A+B) £ 2 (A +B)T - 4(AB K.,

disease-free pointP. = (a, 0, 0) is locally
asymptotically stable.

Now we study the non-zero equilibrium point
(S,I1',1,) of system (1), where Eq. 6:

study is organized as follows. We start by disqussi ad PH(,L)S +y

the existence of equilibrium points and their local S = HE |*)+d’II = d+2k1

stability using Routh-Hurwitz method. In next seati * e (6)
we study the bifurcation of solutions of the systin ;= Kily

The study end with a brief discussion. d+k,+y

Stability Properties: The total population size N (t) is . TTJe Variat.ional matrix of (1.1) at P* = (& ,I.) is
variable with N'(t) = d(a-N)-k, I,. In the absence 9'V€N DY Eq. 7:
of disease, the population size N approaches oagrryi apH* - d -pH, S -aHS

capacitya the differential equation for N implies that _ ., _ _ (7)
solutions of (1) starting in the positive orthant, R P BH @M S=-(dr k) —a K Sty
defined by Eq. 2: 0 K —(d+ Kk, +y)
r={S 1.1, DREZS+|1+|2SG} (2) where, H = oH | and

oH
= H =——
§ T 9H, et OH Lo,

The following is the linearization due to the ;. _ . -y, We assume thaty n and Hare
system (1) Eq. 3 and 4: v ws
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positive. Set,l = goH’, l,=apH,S and l,=apH S - ~Y. and where T =2n/w =2n//m, and m, is
1 2

Thus the Jacobian matrixMbecomes Eq. 8: shown by (10).
L-d -1, -l Proof: It is clear that Eq. 9 has at least one real fopt
M= 1 T,=A g+y (8) say, we have the following analysis Eq. 11:
0 kK, -B
A=A)A°+(A,+m)A+ AT+ mA ;+m,)]=0 (11)
The characteristic equation clmpu at Ris Eqg. 9 Since, by (9) Eq. 12:
and 10:
A +A,+A,=-m 12
AN+mAZ+mA+m, =0 9) e ' 12)
also aty =y, we obtain Eq. 13:
Where: Y=Y g
m, =d-|+A-1,+B, As ==y, Ay =, 13)
m, = (,~d)(, - A) +B(d-1) + M= O+ m) g my - 405+ mp o+ m,)
(A-1,)B -k (I ,+y + 1, (10) 2
m; = (I,-d)(I,-A)B +(I,-d) Thus, aty =y, >0, we can rewrite Eq. 10 as Eq.
(Is+yk +1] B Lk, 14:
It follows from the Routh-Hurwitz criterion (El- D,(m,)=mm,- m, (14)
Marouf and Alihaby, 2011; Rao, 1981) that P* =
(S.11,17) is locally asymptotically stable if qm 0, m> Using m>0 and m>0, aty =Y., we getAz= -m;<0.
0 and mm,-mz>0, then we introduce the following At the critical valuey = y=0, there is soultion of (14)
result. which can be given by (11). Hence we obtain the
equation ofy as follows Eq. 15 and 16:
Theorem 2.1: Assume that the following conditions are ,
satisfied: Gy —Cy+G =0 (15)
(A)A +B +d> 1, +1, Where:
(AL (2B +2k (1 5+Y)> ¢, =—(d- 1, +d?+ dk, - I,- k,)
AB(Il_d)+d(IZB+k1(|3+y)) c,=—-(d- L+ d+dk+ k,— 1,)
(A3)(d+A+B)(X_y)+dk1(|3+y) d_l +d2+dk _I _k
> (I, +1,)(x —y) +B(21] , +dA) +1k (21 ;+y) @l 177k
' ’ ’ (I, =d)(1, —d* - dk,) - (d + k)
where, x = 2 I, + d (A+B)+AB and y =§ (A+B)+ I,  (d—=1) = (d* + dk, = 1,)(d + k,)
(d+B) + k(lzty) Then the equilibrium point P= (S -k, +1J,+(,-d)(I ,-d? -dk ) (16)

I",,1",) is locally asymptotically stable. C, = (2d- L+ d + dk + k,— L)[(I,~ d)
Now we chooseg as the parameter of bifurcation (1, -d? - dk,)(d+ k,)(d~ 1)

for system (1.1). Ley. be the value of at which the 2 ' 2 '

characteristic Eq. 9 has two pure imaginary rogts (4" *dki =) (d+ k) + ki, +1] )]

From the above discussion we have the following—-(l, -d)(l, -d? - dk,)

theorem. (d+ky)+ (I, —d)lk,+1]k)

Theorem 2.2;: Assume that the assumption (17) holds, Conversely, we assume that>®, m>0 andy > O,

thus aty =y, there exists one parameter family of then we can find the solution of Eq. 15 fg#0. Also we

periodic solutions bifurcating from the equilibrium know that >0, A; = -my <0 and)\;, are conjugate

point P = (S I';,I",) with period T, where T. T-asy  imaginary. Now, we can choose bothlb and b to be
963
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sufficiently small and d, kbe sufficiently large. Then
we have Eq. 17:
d(d+k +1)>1|+1,+k, a7

But since by (15) and (160 ¢> 0 and ¢> 0
Eqg. 18:

D.(m) =¢; >0, lim D, (m ) =e (18)

Thusy, is uniquely determined. Now, since by (11)

A3 =-m;, <0 and Eq. 19:

Dy(ml) =mm, - m;
=(m+A)AA,-mA,) (19)
sgnD, (m ) =sgn(m+A,

Consequently we have Eq. 20 and 21:
ReA,, =% (m+A;)<0fory >y, (20)
Re\,, >0 fory <y, (21)

It follows from the above discussion that, whes
increased thoughy,there exists a pair of complex
conjugate imaginary eigenvalugs, of the Variational
matrix Mp.. Since at y Vo A3 -y,
., = #im, =xiwy where it is clear that>> 0. Now,

sincel, = A2, for Eq. 22:

H

Re\, =

2()\ +)\2) 0 aty =y,

(22)

and by above discussion we see thax,Ré® fory <y,
and R, < 0 fory> y, thus Eq. 23:

d
2 g M-,

d
= Retg )}, <0

GCNI
Y (23)

This completes the proof.

Bogdanov-Takens Bifurcations. Now we onsider the
system Eq. 24:

%tszad—apH(S,j )S- dS,

dl,

(24)

q ~ PHEDS (@ kl+yL,
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With the nonlinear incidence rate of the form
apH(S, k). In order to translate the interior equilibria
point B = (S, I',) to the origin, we set X = S-&nd Y
= I;- I',, then the system (24) becomes Eq. 25:

dX

E‘ a X+a,Y+ f (X Y),

dy (25)
E SayX+a,Y+ fz(X Y),

where, @ = -gH -apSHs-d, a, :—ap§|—||I @y =

apH +apSHs:, a,,

f, (X, Y) are smooth functions in (X, Y) of order atst
two. Since we are interested in codimension 2-
bifurcation, we assume that:

:ap§|-lL - (¢ k)and fi(X, Y) and

(A) 28pSH, <(d+ k)

Theorem 3.1: Assume that the assumption (JAis
satisfied. Then the equilibria poing B (S, I'1) of (24)

is a cusp of codimension 2, i.e., it is a Bogdanov-
Takens singularity.

Proof: Using the assumption (A the value of the
determinant of the matrix Eq. 26:

M 26
ASH- (¢ k 29

apH - S

M = i
R | apH+ p SHy

is zero. Also, by the assumption jAhe matrix M has
two zero eigenvalues. By the same transformatian, w
can write system (24) in the form Eq. 27:

dX

S =-SH Y- @S+ aty]

X2 +(X,Y), (27)
dy 1

at Z[ap§ + 2@ HéjJ X+ §(X,Y)

where, H_, -9 Hggj ) , f(X, Y) and (X, Y) are C’

functions at least of third order. After that, wisaliss
the normal form for the system (27) in the two
dimensional and appling the center manifold theorem
Making the following affine transformation:

x =X and y:—(ngl-lL )Y
1
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system (27) can be written as Eq. 28: (A) H,.=0
1
dx 1
—=y-=|aSH+ 2@ H, | X+ {(x,y),
ac z[ap kot P §J £ () (28) Assume that a, d arusatisfy (A) and (A). Let a
dy __1 = a+, and d=d +u, andp = p- + ps. Substituting X =
- —xpSH g 2 X+ f(x, Ha Ho P=p*Hs g
a 2¥ 'I[@ ot 2 E&J ol oy S-S and Y = I- [, into (24) and using Taylor

expansion, we obtain Eq. 31:
where, £(X, Y) and §(X, Y) are C' functions at least of
order three. In order to find the canonical norfioain

of the cusp, we take: %:aﬁ ax+ay ax+ axy pxy a
X =x and Y:y—%[apsﬂ_é:&_J, 2a ,_Sq 4§ (xy %=b0+b1x+ by+ b,X + b,xy+ p, (X,Y)

then the system (28) becomes Eq. 29: Where:

?T)t(=Y, awzad—epgl-T—ldg,laz—(nT-ﬂ- zaDSJH d

GeeSH[@SH 2 ] X (29) %=-pSH 2 5[~ my- RS

aA=-[a3HI+@§FSIDIJ b =R SH (@ ky )

@S H o+ 20 Hy | XY+ £ (X V)
b=apSH,+ aH b =p H- @ k)

where, (X, Y) is C” functions at least of order three. Lros _ g
Now, since (pSHs-s + 2Hs:) > 0, hence P= (S, b, _E[ap Hiot 28 'ij} b =n e,
I")) is a cusp of codimension 2. This completes the

proof.

The above result indicates that Eq. 24 can sasisfi
the Bogdanov-Takens bifurcation with a small
perturbation if the bifurcation parameters are endsy
suitable method. For convenience, we denote: X=x and Y=a+ax gy gkt axy p(x)

and p(x, y) and p(x, y), are € functions of (x, y) up to
the third order. Using the change of variables:

B =(0,,3,dy,.k,) andB =¢ ,a,¢, .k and rewrite X, Y as X, y respectively, system (31)
becomes Eq. 32:
Then the system (2) in a small neighborhood of

(S, I'y) can be written as Eq. 30: o
dt (32)
dx _ . dy _ %
P AR g taxtayraxt gyt axy pxy
dy 1
dt EapS]H'I[@ Shhet 28 '5'@ k B0 where:

+|apS'H,. + 2@ H. | x X,
[0S Ho g+ 20 Hy | xyr W (x,18) \aasab.
a; =&+ah+ 233+ ab,
a,=aa+ah+ ag,

a, =aa+ agh+ 2agr ap,

a, =aa, @ -aar abr 2aa a,

where, W and W are C' functions, W (x, y $°) = 0,
Wo(X, vy; B) = f(X)Y), x and y belong to small
neighborhood of (0,0) arfglis a small neighborhood of
B". Next we obtain versal unfolding depending on the
original parameters in Eq. 4. By this method,wel wil
compute the approximating bifurcations curves. Bs t 5.4 p is a continous function. Lek = x +& and
bifurcation parameters, we can choose the parasnater A,
d andp. Assume that the following assumption holds: rewriting X as x,we obtain Eq. 33:
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ﬁzy

dt )

dy _

oDt axX taye g p (o

where bsz(as—aﬁauaséf], b :(%_ 23 9] and
A eﬁo a,

ps(X, ¥, W) is a continous function in the variables x, y
and the parametegr. Now, introduce the new timeby
dt = (1-ax) dt and rewriter as t, we have Eq. 34:

dx _ .~
o (1-ax)y, (34)

Yo @-ax+bxeaxs ajt axr B (GH )

Set X=xand Y = (1) y and rename X, Y as X,
y respectively, we obtain Eq. 35:

dx

a

d
%:b5+qX+ C,X + agxy+ p (X, Y| )

(39)

where, G = bs-2abs, C, = a-2abs and p(x, y, p) is a
smooth function of in xy-plane and at least of third
order. Setting the change  of  variables

2 3

x:%x, Y:@y, r:&t. Also, we denote them
2 Cg 0

again by x, y and t, respectively, we get Eq. 36:

dx _
e
dy
dt

Y,
(36)
=& HEX+ X2+ XY +Pg(X, Y M),

4
where Elz%,zzz% and p(x, ¥, W is a
2 2

continous function in the variables x, y and the
parametei. As in (Bogdanov, 1981a; 1981b), we will
get the following bifurcation curves.

Theorem 3.2: Suppose (A and (A) hold. Then
system (24) satisfies the following bifurcation ves:
The
1
SN={(ElvEZ)151:ZE.22}

The Hopf bifurcation curve H = §(, &,): & =0,&,
<0}

saddle-node bifurcation curve

966

The homoclinic bifurcation

L ={(6,80:8,= 5088+ 00 €[]

curve

CONCLUSION

In this study, we considered a general HIV/AIDS
system with treatment model. The incidence rateds
(I, 1) andpH(S, ) are of nonlinear form. The local
asymptotic stability of the disease-free equilibriu

points P. = @,0,0)and P = (S, Iy, I',) for systems (1)
and (2), respectively are established. The obtained
results in here are consistent with those obtaibed
(Perelson and Nelson, 1999). We proved that The

disease-free solutionP. (a, 0, 0) is locally
asymptotically stable in the interior of the fedsib
region and the disease always dies out. Also wavetio
that the non-trivial equilibrium point'P= (S, I'y, I',)
exists and is locally asymptotically stable in the
considered region. In Theorem 3.1 we proved théef
two conditions (A) and (A) hold, then the equilibrium
point B = (S, I'y) of system (24) is a cusp of
codimension 2, ie., it is a Boggdanov-Takens
singularity. Also we have proved that if the adutil
condition (A) holds, then the system (24) exhibits
Boggdanov-Takens bifurcation, that is, there areah
types of bifurcations, saddle-node bifurcation, Hop
bifurcation and homoclinic bifurcation. Our resuttst
obtained througout this study are considered as
improvement and partial generalization for those
obtained by (Anderson, 1988; Busenberg and
Driessche, 1990; Pedro and Tchuenche, 2010; Wang
and Li, 2006; Xu, 2011; Yang and Xia, 2010).
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