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Abstract: Problem statement: The present study proposes a new pitch detection algorithm which could 
potentially be used to detect pitch for disordered or pathological voices. One of the parameters required for 
dysphonia diagnosis is pitch and this prompted the development of a new and reliable pitch detection 
algorithm capable of accurately detect pitch in disordered voices. Approach: The proposed method applies 
a technique where the frame size of the half wave rectified autocorrelation is adjusted to a smaller frame 
after two potential pitch candidates are identified within the preliminary frame. Results: The method is 
compared to PRAAT’s standard autocorrelation and the result shows a significant improvement in 
detecting pitch for pathological voices. Conclusion: The proposed method is more reliable way to detect 
pitch, either in low or high pitched voice without adjusting the window size, fixing the pitch candidate 
search range and predefining threshold like most of the standard autocorrelation do. 
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domain, mean error, Auto Correlation Function (ACF) 

 
INTRODUCTION 

 
 Vocal cords within the laryngeal structure vibrate 
due to air passing through them during voiced speech 
(Swee et al., 2010). During voiced phonation pitch is 
produced and the fundamental frequency, F0 and its 
reciprocal known as pitch period, T0 can be calculated 
(Amado and Filho, 2008; Kotnik et al., 2009; Manfredi 
et al., 2000). Vocal hyperfunction, vocal abuse and 
misuse, or unhealthy social habits such as smoking and 
alcohol consumption may over time, cause physical 
changes to the laryngeal structure and lead to voice 
changes such as loss of power, changes in pitch and 
reduction in voice range (Hadjitodorov and Mitev, 
2002; Timmermans et al., 2002; Godino-Llorente et al., 
2006; De Bodt et al., 2007). 
 Cycle-to-cycle pitch period perturbation (also 
known as jitter) is usually one of the parameters used to 
measure voice quality. In order to obtain an accurate 
pitch period for each cycle of voiced phonation, the 
Pitch Detection Algorithm (PDA) needs to be able to 
perform equally well in pathological voices (Manfredi 
et al., 2000; Jang et al., 2007; Schoentgen, 2003). The 

detection of pitch is difficult due to the following 
reasons:  
 
• The nonstationarity and quasiperiodicity of the 

speech signal as well as the interaction between the 
glottal excitation and the vocal tract (Ahmadi and 
Spanias, 1999; Chen and Wang, 2001; Rabiner et 
al., 1976) 

• False pitch estimates can also be caused by noise 
and signal distortion that occur in real 
environments and errors in voicing decision (Cai 
and Liu, 1997; Tabrikian et al., 2004; Chomphan, 
2011) 

• For dysphonic voices, there are significant 
perturbation of amplitude and frequency in the 
voiced signal, presence of subharmonic and 
aperiodic components of high intensity and also 
influence of voiced signal formant structure (Mitev 
and Hadjitorov, 2003) 

 
 Many Pitch Detection Algorithms (PDA) have 
been   developed   and   yet   the results are not 
adequately reliable   in   detecting   pitch   in   
pathological    voices   (Mitev   and  Hadjitorov,  2003).  
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Fig. 1: (a) Acoustic waveform of an /a/ utterance; (b) 

The corresponding ACF according to Eq. 1; (c) 
The corresponding ACF according to Eq. 2 

 
This study aimed to propose a newly developed time 
domain PDA with improved reliability in detecting 
disordered pitch. The PDA was tested on the 
KayPENTAX Elemetrics database for the vowel /a/ 
from 50 normal voices and 100 pathological voices 
randomly selected. The results were compared with the 
datasheet provided by KayPENTAX Elemetrics for the 
accuracy test. The performance of the proposed PDA 
was also compared with the well-known and publicly 
available PRAAT toolkit (Kotnik et al., 2009). 

 There are several known types of time domain 
based PDA. The most prominent one is the Auto 
Correlation Function (ACF). The following shows the 
general equation of the ACF (Abdullah-Al-Mamun et 
al., 2009; De Cheveigne and Kawahara, 2002; Quatieri, 
2002; Lahat et al., 1987; Momani, 2009): 
 

i N 1

x

n i

R s[n]s[n l]
+ −

=

= +∑  (1) 

 
Where: 
Rx = The autocorrelation value 
s[n] = The input speech signal at sample  
i = The first sample inside a frame n 
N = The frame size  
l  =  The lag or time displacement that ranges from 

zero to the number of sample per frame minus 
one 

 
 The lag value that produces maximum peak will be 
chosen as the pitch period. According to De Cheveigne 
and Kawahara (2002), another type of autocorrelation 
equation is as the following: 
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+ − −

=

= +∑  (2) 

 
 Figure 1a is a frame of speech waveform of the 
vowel /a/. The equation includes the lag, l to be subtracted 
from n to produce ACF as shown in Fig. 1c while Eq. 1 
produces ACF in Fig. 1b and 2. ACF produced by Eq. 2 
degraded as the l value increases by time. 
 Figure 1b-c show the ACF of the acoustic 
waveform which were normalized and half-wave 
rectified from Fig. 1a. It can be seen from Fig. 1b that 
there are two dominant ACF peaks and these are termed 
as pitch candidates. The first peak is at lag = 146 and 
the second peak lies at lag = 292. Usually, to choose the 
best pitch to be defined as the pitch period of the frame, 
a rule must be set whereby the range of choosing the 
best pitch should not be near to zero lag and should not 
exceed certain value of lag. This rule reflects the limit 
for human pitch range which is 60-500 Hz (Mitev and 
Hadjitorov, 2003). Most of the existing commercialized 
software such as PRAAT and Computerized Speech 
Laboratory by Kay Elemetrics require the users to 
specify their own fundamental frequency range of 
interest in order for the algorithm to work efficiently. 
Some literature also proposed the use of ACF threshold 
so that only peaks that exceed this predetermined 
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threshold will be notified as pitch candidates (Mitev 
and Hadjitorov, 2003). But these rules lack flexibility. 
If the range is poorly specified, the algorithm will take 
the wrong lag as pitch period. If the range is not 
specified at all, the autocorrelation will not be able to 
accurately detect low pitched voice as reported by 
Samad et al. (2000). The threshold rule will also be 
inappropriate for Eq. 1-2 since some of the voices’ ACF 
do not even exceed 0.5 or more. 
 Another method is called the Average Magnitude 
Difference Function (AMDF) (Manfredi et al., 2000). 
The general equation for AMDF, Ry is as follows Eq. 
3 (Quatieri, 2002; Chong and Shih-Chien, 1977): 
 

i N 1

y

n i

R s[n] s[n l]
+ −

=

= − +∑  (3)

 
 
 Unlike ACF which selects the maximum peak as 
the pitch candidate, AMDF tends to search the 
minimum peak as the pitch candidate. Manfredi et al. 
(2000) proposed the modified AMDF where the first 
valley found to be less than the threshold is set to be the 
pitch period of the frame. This approach also has its 
weakness similar to the ACF whereby some harmonics 
and noise effects can also produce AMDF values that 
falls below this threshold.  
 From these basic time domain PDA’s, many 
researchers have modified these algorithms so that it 
will work more efficiently to obtain pitch. One of the 
interesting approaches was Merged Normalized 
Forward Backward Correlation (MNFBC) which 
basically used the same concept of autocorrelation but 
instead of using autocorrelation, it uses MNFBC which 
is to be noise robust (Kotnik et al., 2009). Plus the 
method of finding the exact pitch period was by 
implementing viterbi search to the MNFBC. The viterbi 
searches for three largest value of the MNFBC as the 
pitch candidates per voiced frame. But the viterbi 
search introduces high dependency on current frame’s 
pitch value with the previous frame’s pitch value and it 
will not be able to work efficiently with dysphonic 
voices since cycle-to-cycle pitch period can vary 
extremely from each other. False period estimation can 
also occur when the MNFBC value is larger at pitch 
candidates other than the true pitch period. 
 Huang and Pan (2006) and Donato et al. (1999) 
proposed Hilbert-Huang Transform (HHT) for PDA 
which was developed to consider the non-linearity 
characteristics of speech signal. It was proven to 
produce better accuracy of pitch detected but the 

computational requirements are also increase (Kotnik et 
al., 2009).  
 Jang et al. (2007) Experimented several PDA’s to 
be implemented on pathological voices and the result 
showed that ACF was the most credible PDA to detect 
pathological voice. Mitev and Hadjitorov (2003) 
presented that with a little modification to ACF, it can 
be an accurate PDA to be applied to pathological 
voices. But the method still depends on a threshold 
which they used was 0.5. Some of the pathological 
voices have fewer ACF than 0.5 even at the pitch 
period. These findings indicate that ACF time domain 
based PDA can still be able to detect pitch in dysphonic 
voices with high accuracy. 
 From all of the information given above, this study 
is proposing ACF with modification and with less 
computational cost for pitch detection in dysphonic 
voices without using a predetermined threshold and can 
also automatically set the pitch searching range unlike 
most of the commercial software where the users 
themselves need to set the searching range. 
  

MATERIALS AND METHODS 
 
 The proposed algorithm for PDA is based on time 
domain approach consists of the modified ACF. The 
procedures are as the following. 
 
Step (1): Initialization: Let t = 1 be the initial point of 
the speech signal. The frame size used for the algorithm 
is two times maximum pitch period, MAX_PER. 
MAX_PER is the lowest pitch that human can produce 
which is 60 Hz of voiced speech signal so that at least 
within this frame size, two best ACF peaks can be 
chosen as pitch candidates. 
 
Step (2): Compute autocorrelation: The 
autocorrelation equation used is Eq. 2. The equation 
will produce ACF or Rx with i is equals to t, l ranges 
from zero to 2*MAX_PER - 1 and N is equals to 
2*MAX_PER. 
 
Step (3): Half-wave rectification and normalization: 
The ACF is then normalized and half-wave rectified so 
that the values for consideration are normalized and 
positive. This technique was introduced by Kotnik et al. 
(2009) using the following procedures: 
 
• Rx is   calculated   using   Eq. 2. Ro and Rt are 

found   using the   following    formulae Eq. 4 and 5:  
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Fig. 2: AMDF of Fig. 1a’s waveform 
 

 
(a) 

 

 
(b) 

 
Fig. 3: (a) ACF of an /a/ utterance. (b) Marked ACF 

peaks 
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where similar to (2), s[n] is the input speech signal at 
sample n, i is the first sample inside a frame, N is the 
frame size and l is the lag. Lag l ranges from zero until 
N-1. 
 
• Then the normalization of Rx is done by using the 

following formula Eq. 6 and 7: 
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Or: 
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R

R R
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 (7) 

 
• Then R is half-wave rectified by setting all the 

negative values to zero 
  
Step (4): Mark all possible candidates: All the peaks 
of the ACF are then marked as possible pitch 
candidates, Ti(i). Figure 3a shows one frame of ACF of 
the vowel /a/ and Fig. 3b is the marked peaks, Ti. The 
algorithm has considered several conditions for the 
system to work efficiently after every Ti are being 
recognized: 
 
• If there is no Ti, or i = 0, then the pitch for that 

frame is set to 0 and the frame moves to the next 
frame as much as 2*MAX_PER. 

• If T i exists, go to step (5) 
 
Step (5): Find two best candidates: The algorithm 
will then find the best two candidates by sorting the Rx 
at every Ti from the largest value to the lowest value 
along with their Ti as shown in Table 1. From the 
rearranged candidates, the best two candidates are 
found by firstly use the following Eq. 8 to find the 
difference between a pair of Ti: 
 

i idiff T (1) T ( j)= −  (8) 
 
where, j = 2, 3, 4,…, jtotal and   the   best   two   
candidates   are   chosen   based   on  the     following   
condition Eq. 9:  
 
diff (2 * MAX _ PER) / 8≥  (9) 
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Table 1: Marked peaks before rearrangement and after rearrangement 
of ACF shown in Fig. 3 

   Rearranged according 
    to descending order  
 Marked candidates of ACF values 
 ---------------------------------- ------------------------------- 
j ACF (R) Period (Ti1) ACF (R) Period (Ti1) 
1 0.3472 22 0.75920 149 
2 0.2931 128 0.56330 296 
3 0.7592 149 0.39260 443 
4 0.2607 170 0.34720 22 
5 0.2209 275 0.29310 128 
6 0.5633 296 0.26070 170 
7 0.1935 317 0.22090 275 
8 0.1721 423 0.21460 592 
9 0.3926 443 0.19350 317 
10 0.1341 465 0.17210 423 
11 0.0106 553 0.13410 465 
12 0.1159 571 0.11590 571 
13 0.2146 592 0.06910 613 
14 0.0691 613 0.05580 721 
15 0.0130 701 0.04040 737 
16 0.0558 721 0.01390 754 
17 0.0404 737 0.01300 701 
18 0.0139 754 0.01060 553 
19 0.0021 826 0.00216 826 
 

 
 
Fig. 4: The marks indicate the best two candidates 

chosen 
 

 
 
Fig. 5: The red marks indicate the range between 

new_framei and new_framef. The blue line 
marks the pitch period 

 The first Ti pair that achieves this condition will be 
kept as b1 and b2 for the next step. The value 
(2*MAX_PER)/8 was obtained experimentally as 
values lower or higher than this will degrade the 
performance of the proposed PDA which is to 
accurately detect the pitch. Figure 4 shows the two 
pitch candidates which have been marked. 
 
Step (6): Create new frame: Once the two candidates 
are selected, the size of the new frame will be 
calculated as the following Eq. 10-12: 
 

1 2c b b= −  (10) 

 
new _ framei MIN _ PER=  (11) 

 
new _ framef c (c / 4)= +  (12) 

 
Where: 
new_framei = The initial point of the new frame while  
new_framef = The final point of the new frame 
 
  Instead of searching the pitch within 1 until 
MAX_PER-1 range or within a predefined range as 
most of the ACF does in the literature, this study 
introduces the new searching range which will be from 
new_framei until new_framef. With the new frame 
introduced, the largest Rx(Ti) value that lies within that 
range will be chosen and its corresponding Ti is 
considered as the pitch period, T0. Figure 5 shows the 
new frame or the new region to search the T0 and the T0 
is marked with blue line. 
 
Step (7): Proceed to the next frame: Since the frame 
size used might be consisting of two or more pitches, 
the starting point of the new frame is found according 
to the following Eq. 13: 
 

new prev 0t t T= +  (13) 

 

Where: 
 tnew =  The new frame’s starting point,  
tprev = The previous frame’s starting point and  
T0 = The pitch period found from the previous frame  
 
 This way, every pitch period or every pitch epoch 
can be located accurately as shown in Fig. 6. 
 The experiment was   conducted to   test the 
accuracy   and the   effectiveness   of   the   proposed   
PDA   on   normal    voices  and    pathological   voices.  
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Fig. 6: The marks indicate the start and the end of a 
pitch period 

 
One of the experiments conducted was applying the 
PDA on /a/ utterances from the KayPENTAX 
Elemetrics voice database consists of 50 normal voices 
and 100 functional and organic voice disorders. The 
parameters that were used to be compared with the 
datasheet of results given along with the database were 
the average fundamental Frequency (F0), highest 
Fundamental frequency (Fhi), lowest fundamental 
frequency (Flo) and Standard deviation of the 
fundamental frequency (STD). The reference values 
were considered as the true values. The error percentage 
was calculated by using the following Eq. 14: 
 

proposedPDA reference

reference

p p
err(%) 100%

p

−
= ×  (14) 

 
Where: 
 pproposedPDA = The value of each parameter obtain by 

using the proposed PDA  
preference = The value of each parameter given by 

the reference 
 
 The results were also compared with the well-
known and publicly available PRAAT toolkit where the 
PRAAT autocorrelation (PRAAT_ac) was chosen 
because the proposed algorithm is a modified 
autocorrelation (Kotnik et al., 2009).  
 

RESULTS 
 
 Table 2 shows   the errors of each parameter 
produced by using the proposed PDA while Table 3 
presented the errors of each parameter produced when 
PRAAT_ac was used. 

 
(a) 

 

 
(b) 

 
Fig. 7: (a) Error percentage for mean fundamental 

frequency of PRAAT (autocorrelation) for 
normal voice. (b) Error percentage for mean 
fundamental frequency of proposed PDA for 
normal voice 

 
 Figure 7-10 shows the comparison of the error 
produced by using PRAAT_ac and the proposed PDA. 
The observation shows that the PRAAT_ac works well 
for normal voices as to compare with the proposed 
algorithm. However, the error differences between 
PRAAT_ac and the proposed PDA are only at a very 
small scale. 
 Table 2-3 show the mean of the errors for each 
voice sample and each parameter by using two different 
PDA’s. According to the results from Table 2-3, 
PRAAT_ac produces more error for the pathological 
voice than the proposed PDA.  
 To summarize the result obtained by using the 
proposed PDA and PRAAT_ac, every parameter was 
averaged to get the mean error for each voice sample. 
For the proposed PDA it has been found that for 49 
normal voices, the mean error was less than 20% and 
one voice was classified to be having more than 20% 
error, 13 pathological voices had more than 20% average 
error while another 87 pathological voices had less than 
20% mean error.  These  data  are  presented  in  Table 4.  
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Table 2:  Errors in percentage produced by using the proposed pitch 
detection algorithm 

Voice pattern Normal Pathological 
Mean fo 0.394 1.189 
Highest fo 1.938 4.695 
Lowest fo 1.260 4.560 
Standard deviation 21.713 35.915 
 
Table  3:  Errors in percentage produced by using PRAAT 

(autocorrelation) 
Voice pattern Normal Pathological 
Mean fo 0.016 1.779 
Highest fo 1.508 5.555 
Lowest fo 1.375 5.473 
Standard deviation 20.423 56.633 
 
Table 4: Classification of voices according to the mean error of each 

voice sample using the proposed pitch detection algorithm 
Voice pattern Error < 20% Error > 20% 
Normal 49 1 
Pathological 87 13 
 
Table 5: Classification of voices according to the mean error of each 

voice sample using the praat_ac 
Voice pattern Error < 20% Error > 20% 
Normal 49 1 
Pathological 85 15 

 

 
(a) 
 

 
(b) 
 

Fig. 8: (a) Error percentage for highest fundamental 
frequency of PRAAT (autocorrelation) for 
normal voice; (b) Error percentage for highest 
fundamental frequency of proposed PDA for 
normal voice 

 
While in Table 5, similar to the proposed PDA, there 
were 49 voices identified to be having less than 20% 
error and only one voice was put in the more than 20% 
error category. For pathological voice, there are 15 
voices were having mean error of more than 20% and 
another 85   voices   had   less   than 20% mean   error. 

 
(a) 
 

 
(b) 

 
Fig. 9: (a) Error percentage for lowest fundamental 

frequency of PRAAT (autocorrelation) for 
normal voice. (b) Error percentage for lowest 
fundamental frequency of proposed algorithm for 
normal voice 

 

 
(a) 

 

 
(b) 

 
Fig. 10: (a) Error percentage for standard deviation of 

the fundamental frequency of PRAAT 
(autocorrelation) for normal voice. (b) Error 
percentage for standard deviation of the 
fundamental frequency of proposed algorithm 
for normal voice 

 
DISCUSSION 

 
 Even though it was observed that PRAAT_ac 
works better for normal voices, Figure 11 until Fig. 14 
presented that it works poorly for pathological voices 
while the error produced by   using the proposed 
algorithm     is    smaller     for     pathological     voices.  
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(a) 

 

 
(b) 
 

Fig. 11: (a) Error percentage for mean fundamental 
frequency of PRAAT (autocorrelation) for 
pathological voice. (b) Error percentage for 
mean fundamental frequency of proposed 
algorithm for pathological voice 

 

 
(a) 
 

 
(b) 
 

Fig. 12: (a) Error percentage for highest fundamental 
frequency of PRAAT (autocorrelation) for 
pathological voice. (b) Error percentage for 
highest fundamental frequency of proposed 
algorithm for pathological voice 

 
Figure 12 shows that three samples exceed 40% of error 
by using PRAAT_ac while the proposed algorithm had 
no error that exceeds 40% of error. Figure 13 also 
indicates that proposed algorithm produces less error by 
having three samples with more than 40% of error 
while the PRAAT_ac produces four samples with more 
than 40% of error. As can   be   seen   in   Fig. 14,   the 
standard deviation error   for   PRAAT_ac   exceeds 
100%   for   two sample   pathological   voices. 

 
(a) 
 

 
(b) 

 
Fig. 13: (a) Error percentage for lowest fundamental 

frequency of PRAAT (autocorrelation) for 
pathological voice. (b) Error percentage for 
lowest fundamental frequency of proposed 
algorithm for pathological voice 

 

 
(a) 

 

 
(b) 

 
Fig 14: (a) Error percentage for standard deviation of 

the fundamental frequency of PRAAT 
(autocorrelation) for pathological voice. (b) 
Error percentage for standard deviation of the 
fundamental frequency of proposed algorithm 
for pathological voice 
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(a) 
 

 
(b) 
 

 
(c) 
 

Fig. 15: (a) PRAAT analysis window showing marks 
(blue line) of pitch period detected for the first 
part of the pathological voice signal sample 
number 44. (b) PRAAT analysis window 
showing marks (blue line) of pitch period 
detected for the second part of the pathological 
voice signal sample number 44. (c) The red line 
marks indicate each pitch period by using the 
proposed algorithm for the pathological voice 
signal sample number 44 

 
 Figure 15 shows the window of PRAAT_ac 
marking the pitch period of a pathological signal 
sample number 44. 
 It can be seen in Fig. 14 that the error of the 
standard deviation of sample number 44 is over 1000% 
as well as sample number 78. As can be observed in 
Fig. 15a, the PRAAT_ac marked the pitch period 
correctly for the first half of the signal but marked the 
pitch period wrongly for the second half of the signal 
shown in Fig. 15b. This is maybe due to the 
autocorrelation used for the pitch detecting whereby the 
second pitch period has higher ACF value than the first 
or the true pitch period. This will happen if the search 
criterion for the autocorrelation only involves finding 
the maximum ACF within a predefined range. 

 But by implementing the proposed algorithm to the 
same voice sample as can be seen in Fig. 15c, the pitch 
period can be well determined along the signal thus 
producing a smaller error than PRAAT_ac. 
 In both methods, the voice samples with error of 
more than 20% are due to the strong subharmonics 
frequencies. The disordered voice with creaky or 
breathy characteristics will also influence the signal’s 
waveform and since the autocorrelation is dependent 
upon the signal’s amplitude and how correlate the 
periodic pattern is, the autocorrelation function 
produced will also be distorted. 
 

CONCLUSION  
 
 The proposed method of determining pitch 
provides significant improvement to the standard 
autocorrelation which in this case is indicated by the 
autocorrelation by PRAAT for disordered voice. It 
allows a more reliable way to detect pitch, either in low 
or high pitched voice without adjusting the window 
size, fixing the pitch candidate search range and 
predefining threshold like most of the standard 
autocorrelation do.  
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