
American Journal of Applied Sciences 9 (6): 909-916, 2012
ISSN 1546-9239
© 2012 Science Publications

Corresponding Author: S. Shamala, Department of Communication Technology and Networks,
 Faculty of Computer Science and Information Technology, University Putra Malaysia,
 43400 Serdang, Selangor, Malaysia Tel: +60389471748 Fax: +603-89466576

909

A Discrete Event Simulator for Extensive

Defense Mechanism for Denial of Service Attacks Analysis

1Maryam Tanha, 1Seyed Dawood Sajjadi Torshizi and 2S. Shamala
1Department of Computer and Communication Systems Engineering,

Faculty of Engineering,
2Department of Communication Technology and Networks,
Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract: Problem statement: Seeking for defense mechanisms against low rate Denial of Service
(DoS) attacks as a new generation of DoS attacks has received special attention during recent years. As
a decisive factor, evaluating the performance of the offered mitigation techniques based on different
metrics for determining the viability and ability of these countermeasures requires more research.
Approach: The development of a new generalized discrete event simulator has been deliberated in
detail. The research conducted places high emphasis on the benefits of creating a customized discrete
event simulator for the analysis of security and in particular the DoS attacks. The simulator possesses a
niche in terms of the small scale, low execution time, portability and ease of use. The attributes and
mechanism of the developed simulator is complemented with the proposed framework. Results: The
simulator has been extensively evaluated and has proven to provide an ideal tool for the analysis and
exploration of DoS attacks. In-depth analysis is enabled by this simulator for creating multitudes of
defense mechanisms against HTTP low rate DoS attacks. The acquired results from the simulation tool
have been compared against a simulator from the same domain. Subsequently, it enables the validation
of developed simulator utilizing selected performance metrics including mean in-system time, average
delay and average buffer size. Conclusion: The proposed simulator serves as an efficient and scalable
performance analysis tool for the analysis of HTTP low rate DoS attack defense mechanism. Future
work can encompass the development of discrete event simulators for analysis of other security issues
such as Intrusion Detection Systems.

Key words: HTTP low rate DoS, DES, mean in-system time

INTRODUCTION

 Denial of Service (DoS) attacks is considered as
one of the most high-profile security threats to the
network and communication systems. It has a
devastating impact on many crucial online businesses
especially electronic banking and e-Commerce services
as well as compromises political websites (SOPHOS,
2011; Ghazali and Hassan, 2011; Rhazi et al., 2007;
Viswanathan et al., 2012). This impact has contributed
to the rich surge of research concerning the discovery
of mitigation techniques to defend systems against
these types of attacks. In DoS attacks, intruders attempt
to abuse preliminary properties of communication
systems. For example, they attempt to send huge
number of requests to a destined target. Thus, creating

an overflow in its buffer (i.e., queue). This is one of the
most widespread methods to launch a DoS attack
against a target in any kind of network, especially over
the Internet (Luo and Shyu, 2005; Jensen et al., 2008).
Constantly, many web sites fall victims of this type of
attack in the Internet. However, the generation of the
enormous amount of traffic to saturate the server’s
resources is one of the primary problems faced by the
attackers and subsequently creates a substantial
hindrance. Typical of an attacker’s behavior, a new
generation of DoS attacks has come into existence
surpassing these hindrances. These attacks have mostly
aimed at the application layer as compared to the other
types of existing DoS attacks (i.e., SYN floods).
Subsequently, compromising the vulnerabilities in the
network layer of the TCP/IP model.

Am. J. Applied Sci., 9 (6): 909-916, 2012

910

Fig. 1: Function of HTTP/1.1 persistent connection

 Furthermore, these new attacks have displayed
attributes which require reduced amount of resources
(e.g., bandwidth) for launching an attack, making it
highly effective and is also more difficult to detect
(Guirguis et al., 2006).
 Kuzmanovic and Knightly (2006), the authors
introduced a type of DoS attacks known as “Low-rate
TCP-targeted DoS attack” that unlike the mass types of
DoS attacks does not generate a high magnitude of
traffic. In this attack type, a single user can interfere the
norm functions of a network device easily even with
low bandwidth Internet connectivity. This idea was
further abused to make new generation of web attacks
against web servers which serve diverse services over
Internet. Hackers and intruders attempted to make use
of this technique to interfere the operations of HTTP
web servers especially by misusing the rudimentary
characteristics of HTTP persistent connections in the
HTTP/1.1 protocol. The attackers attempt to keep the
service queue of the HTTP server constantly in a
saturated condition by sending scheduled HTTP
requests that consume the network resources,
subsequently preventing valid web users to connect to
the server as well as served by the targeted web server.
Fig. 1, shows the functionality of a HTTP persistent
connection that upon the establishment of a HTTP
connection, the HTTP request remains in the service
queue for a total of tq+ts seconds to be served by the
HTTP server. After the generation of the HTTP
response by the web server, the established connection
will remain as an open status for a total time of tout
seconds to serve other requests from the same user who
have established the HTTP connection for first time.
The completion of the tout, period, the established
connection will be terminated and seized its respective
position in the HTTP service queue will be released to
be consumed by other web users (Macia-Fernandez et
al., 2008).
 The need for more comprehensive solutions for
identifying these security threats has created the
constant urge for more research in this area. In addition,

performance evaluation of the offered solutions based
on different metrics is among the most imperative
factors to determine the feasibility and ability of these
countermeasures. Considering the various conditions
and dimensions of evaluation of the multitudes of the
proposed and developed solutions will inevitably
increase the complexities of any form of performance
analysis. The prevailing DES simulators such as the
Network Simulator 2 (NS-2) have catered these
challenges but with equally demanding attributes such as
complexity, portability and resource consumption. An
alternate solution to confine these demands, while
furnishing all the imposed pre-requisites of an analysis is
proposed in this study. The development of a customized
DES simulator enables the achievement of precise results
whilst optimizing the related computing resources. The
dichotomy of the proposed DES has enabled the ability
for extensions towards other analysis.

Related work: The essence of the proposed simulator
has originated from several factors. Among the main
factors is the potential possessed by a general-purpose
simulator with low memory and low processing
consumption. This study analyzes in detail the features
of existing performance analysis strategies and tools for
DoS attacks with special attention placed on a
comparative angle.
 There has been a wide range of research on
performance analysis tools for DoS attacks which are
dominant in different fields of communication and
networking. Jin et al. (2009) the authors studied the
applications of simulation analysis on DoS attacks
and defense mechanisms. They analyzed and
simulated the processes of DoS attacks and the
defense techniques. The research eventually proposed
an enhanced design for simulating DoS defense
strategies via the usage of NS-2. Luo and Shyu (2005)
simulated a framework to maintain QoS of the
multimedia streams during the DoS attacks by using
NS2 also. The acquired simulation results showed the
effectiveness of the offered framework with regards to
the buffer occupancy and the Peak Signal-to-Noise
Ratio (PSNR) values of the received video. The
simulation of low rate DoS attacks was investigated in
(Zhu et al., 2011). They analyzed low rate DoS attacks
using frequency domain since these attack flows are
periodic and it is tough to observe and detect such
attacks in time domain. In addition, they employed
parameters such as channel utilization ratio, packet
loss ratio and average congestion window to study
the behavior of the system. Shevtekar and Ansari
(2006), the research encompassed the simulated
effects of low rate DoS attacks on VoIP QoS sensitive
traffic in terms of delay, jitter and packet loss.

Am. J. Applied Sci., 9 (6): 909-916, 2012

911

Table 1: Comparison between four simulators

Feature NS2 OMNet++ QualNet OPNET
Ease of use Poor Excellent Satisfactory Excellent
(GUI support)
Cost of licenses Excellent (open only free for Poor Poor
 source and free) academic and non-profit use (Relatively expensive) (Relatively expensive)
Extensibility Excellent Excellent Excellent Excellent
Platform Linux, Unix- based Linux, Unix-like Linux, Unix-like Linux, Windows
 operating systems, systems, Mac OS systems, Mac OS X, (XP,Vista,7), Windows
 possible to be X, Windows (XP, Windows (XP, Vista, 7) Server 2003, 2008
 installed on Windows Win2K, Vista, 7).
Documentation Satisfactory Satisfactory Satisfactory Excellent

By using NS-2 simulator to perform some scenarios, it
was demonstrated that the packet loss was considerably
affected by increasing burst period or burst rate. Thus,
resulting in the reduction of quality or complete denial
of service of VoIP calls. Lin et al. (2008), a simulated
analysis on a queue-based scheme was proposed to
reduce malicious packet flow of distributed DoS
attacks. In both of the former and latter cases,
researchers have used NS2 as a discrete event simulator
tool to evaluate their presented models.
 Gabriel Macia Fernandez and his team have
published multiple papers about HTTP low rate DoS
attacks and also proposed several countermeasures to
defend target servers against these attacks (Macia-
Fernandez et al., 2006; 2008; 2010). Their research
used multiple performance metrics such as mean in-
system time and attack efficiency to evaluate the
functionality of offered solutions in NS2 software and
Linux test bed environment.
 As stated in (Reineck, 2008), selecting a
specifically tailored simulator is indeed challenging due
to the availability of many tools as well as the time-
consuming process involved in the familiarization of
the simulator and its respective functionalities. Thus
usually a researcher picks one tool and keeps using it
for all his/her research or some opt to develop his/her
customized simulator utilizing general purpose
languages. A detail comparison has been done between
four dominant and successful discrete event simulators,
namely the NS2, OMNeT++, QualNet and OPNET.
The analysis has been presented in a Tabular form (i.e.,
Table 1) from the review and analysis of (Reineck,
2008; Begg et al., 2006; OMNeT++, 2001-2009; SNT,
2008-2012; OPNET, 2012).
 Upon analyzing these simulators, NS2 is considered
as a preferred better choice and a strong tool with
regard to cost-effectiveness, extensibility, widespread
use and extend of usage. Moreover, the results of NS2
are able to resemble the test-bed results with close
proximity (Begg et al., 2006). Although it is weak in
the aspect of ease of use (i.e., the user have
fundamental knowledge regarding how to work with

Linux-based operating systems, installing required
packages, package management and package
dependencies, even in some cases upgrading the GNU
C Compiler and so on) but its benefits outweighs these
disadvantages. The proposed and developed simulator
in this research has embarked in providing precision
of results as those achieved by NS2, whilst striking an
ideal balance of ease of use. Then presents the
proposed simulator.

MATERIALS AND METHODS

 The developed taxonomy in Table 1 has served as
the underlying design factor for the proposed simulator.
The general consensus is suitable modeling and
analysis techniques will be determined based on the
attributes and characteristics of a particular system. The
essence of understanding the mechanics of a system
operation is to capture it in a model and define all the
possible inter-relationship at the determined level of
abstractions. Among known modeling methodologies,
discrete-time event-driven models have positioned
themselves within the dominant performance analysis
tools and encompass a wide spectrum of computer and
communication systems. In Discrete Event Simulation
(DES), the function of system is captured and reflected
as a chronological sequence of events; where each
event occurs at an instant in time and marks a change of
state in the system (Robinson, 2004). Relating the core
principles of the DES to current and evolving research
areas requires precision mapping and the tailoring of
the area to the queuing theory norms. This mapping
imposes onto the analyst the need to relate multiple
levels of abstractions into the appropriate queuing
paradigm. Network security is among the areas of
research rich in potential and is paving its way to wider
horizons. This study engages these potentials from an
analysis angle. The rich research potential has been
ventured by many performance analysis tools as
deliberated. This research has developed a DES with a
specialized purpose. Parallel to the development of a
tool and of equal importance magnitude is the

Am. J. Applied Sci., 9 (6): 909-916, 2012

912

verification of the tool and its relevance to the
fraternity. This research work has selected the
verification technique which utilizes as established
work as a comparative benchmark.
 Thus, the study of (Macia-Fernandez et al., 2010)
which utilized extensively the simulation technique was
chosen among the existing performance evaluation
techniques. The comprehensive and powerful discrete
event NS2, enabled the proposed model for the system
to be simulated. The simulation results in this work had
been validated by implementing a test-bed for HTTP
low rate DoS attacks. Subsequently, the acquired results
from NS2 were proven to be coherent with those
acquired from real environment. Prior to embarking on
the details of the proposed and developed simulator in
this study, a detail description of the underlying
algorithms are deliberated. This is done in line with
(Macia-Fernandez et al., 2010) to ensure that a level
playing field is achieved in forming the relevance of
this research.

HTTP server model in low rate DoS: The developed
model for the HTTP application server in (Macia-
Fernandez et al., 2010) is depicted in Fig. 2.
 The server consists of a service queue for incoming
requests (attacker’s request or legitimate user’s request)
and one or more service modules responsible for
processing requests. The Queue discipline imposed can
be of any nature such as the First Come First Serve
(FCFS), Weighted Fair Queuing (WFQ). When a
service module completes processing the request, the
respective response is sent to the corresponding client
and the service module becomes idle. Producing the
response will eventually result in a free position in the
queue. Thus, either an attacker’s request or a valid
user’s request will be able to seize a position in queue.
A HTTP low rate DoS attack endeavors to impede
legitimate users from occupying free places in the
service queue of the server by overwhelming the
queue with requests. To achieve this goal, the attacker
attempts to derive precise predictions as to when a
free space will be available in the queue of server (i.e.
by exploiting the HTTP persistent connection feature
of the server) and generates a request within the
predicted time. Then discussed the mechanism of
defense against such attacks.

Random Service Time (RST) as a defense
mechanism: Random Service Time (RST) (Macia-
Fernandez et al., 2010) as a defense mechanism
designed to make it less viable to predict the server

behavior by eradicating fixed patterns from the server’s
operation. RST attempts to randomize the constant
timeout of server so that the attacker will not be able to
foresee the answer instantly. Therefore, when the
service is ended by the service module, the module
stays locked for an extra time denoted as ∆tRST (Fig. 3).
Incorporating the ∆tRST, in the Round Trip Time (RTT)
computation, (i.e. the RTT being the period of time
between the response (a.k.a. answer) acquisition instant
(t1 in Fig. 3) and the receiving of the attack packet sent
as a response to the answer (t2 in Fig. 3), an empty
position present in the service queue can be occupied
by a legitimate user (because the attacker doesn’t know
the value of ∆tRST). The employed formulas for
obtaining the ∆tRST are not in the scope of this study. A
detailed explanation of this information on the attack
implementation is provided in (Jin et al., 2009). In this
research we considered multiple attack threads that
share information pertaining to connections to the
server. The attackers pool their data in a separate but
common queue, called positions queue that is made
available to all of them. In this way they are able to
improve the efficiency of the attack and prevent
sending attack traffic to the server with no benefit.

Fig. 2: Application server model (Macia-Fernandez et

al., 2010)

Fig. 3: HTTP low rate Dos attacks attack process when

using RST (Macia-Fernandez et al., 2010)

Am. J. Applied Sci., 9 (6): 909-916, 2012

913

Fig. 4: Main event scheduling mechanism in DES

Proposed discrete event simulator for performance
analysis of DoS: Figure 4 illustrates the main
components associated to the structure of the event
scheduling process in discrete event simulation. Upon
the completion of the initialization of the system state
variables and statistical counters, the scheduler selects
the event with the least start time from event list to be
executed and the clock will be advanced accordingly to
the start time of the selected event. The execution of
each event, the simulation related transactions will be
complemented by the checking of the Termination of
Simulation (ToS). If the requirements for ending the
simulation are met, the results will be generated.
 The essence of this research is embedded in the
development of the DES as a pertinent performance
analysis tool for the DoS represented in Fig. 2. The
derivation of the problem into fundamental queuing
models forms the basis of the developed simulator. The
attacks which originate from numerous origins are
derived to be represented by multiple sources. The
common service queue is mapped on a single queue
representation and the core resource as a single data
sink model was developed. Variations to this model can
be easily incorporated into the proposed simulator
based on the multitudes of elements (i.e. ‘m’ data sinks
and ‘x’ number of queues). Though, the mechanism of
security modeled encompasses a wide gradient of
computational activities, the approach adopted to form
the modularity of the developed simulator is to reduce
the distinction and form main clusters of events based
on the impact created in a holistic manner. Thus, two
types of events have been derived, which are the:
request arrival and request answer. Arrival is derived to

be either a legitimate user’s request or an attacker’s
request. This is done based on the acquired results of
the request impact onto the algorithm and its reactive
features. The request differentiation will befit the
attackers’ effort to disguise as legitimate user. The
further justification for choosing arrival and answer as
events is that they cause an obvious and substantial
change in the statistical composition of the system. In
this research, the statistical composition is taken to be
the number of requests. In complementing the logical
component of the developed simulator with those of the
simulator custodian, the time advancing approach was
developed. It should be noted that assigning start time
to events (i.e. the time an event is to occur) must ensure
the reflection of the actual sequence. In this research,
the commencement of the simulation is from time zero
and does not incorporate a system already in operation.
As such, it is obligatory for the first event to be an
arrival then only the corresponding answer event is
permitted to happen. The furnishing state variable is the
state of the server which is derived to be either idle or
busy. The performance metrics are utilized to
characterize the algorithms / systems under study. The
number of requests arrived and also the number of
requests answered, are defined as the statistical
measures that are used to both reflect the system ability
but more importantly in this research as the verification
tool for the developed simulator.
 The request arrival generation of legitimate users is
derived using the Poisson distribution. The C built-in
random number generator was adopted to generate the
random variable within the Poisson distribution and a
sequence of independent arrival times. In the effort to
make the comparative analysis of the developed
simulator with an existing standard for the purpose of
validation the following assumptions stated in (Macia-
Fernandez et al., 2010) has been adopted:

• At the beginning of simulation, the queue is full of

requests
• The queuing discipline is FCFS
• The Attacker sends a burst of traffic containing

three attack requests
• Poisson distribution is used for generation of both

types of request (i.e. attack request and legitimate
user request)

• Request generation rate is fixed for legitimate
users’ requests

• Service time is considered fixed
• New incoming requests will be ignored (dropped)

if the queue is full (packet discarding strategy)
• The length of queue is equal to the number of

attack threads

Am. J. Applied Sci., 9 (6): 909-916, 2012

914

Fig. 5: Main body of the simulation code

 By developing a discrete event simulator from
scratch, one can thoroughly dissect the functionalities
of the mechanism under study as compared to utilizing
simulation tools such as NS2. The pseudo-code of the
proposed and developed simulator is shown in Fig. 5.

Performance metrics: The mean in-system time which
is the total in-system time divided by number of requests
answered is adopted from (Macia-Fernandez et al., 2010)
as the performance metrics. In-system time is the time
passed between the arrival of a request and the
generation of its corresponding answer. Thus, it can also
be adopted as the delay in service queue for a request
plus the required service time. Mean in-system time is of

great importance due to the fact that it is able to assist the
process of judging the influence of RST as a defense
mechanism on the ordinary behavior of the server. An
ideal defense technique should minimize this impact.
 In addition to mean in-system time, the two other
performance metrics used include average delay and
average queue size. Average delay is calculated is done
by dividing the total delay by the number of requests
answered. The average buffer (queue) size is the total
queue size divided by simulation clock for each
experiment as illustrated in Fig. 5 (i.e., the
buffer_management function). This provisions that the
queue occupancy at each discrete time segment is
reflected by the area under the curve.

Am. J. Applied Sci., 9 (6): 909-916, 2012

915

RESULTS AND DISCUSSION

 The primary function of the acquiring the results
is to utilize as a testimony of the simulator validity.
This was done by incorporating the control
parameters stated in Table 2 which is in tangent with
(Macia-Fernandez et al., 2010).

Table 2: Values for parameters in system

Parameters Values
Duration of attack burst 0.4s
Time between attack packets in a burst 0.2s
Mean service time 12s
Interval between legitimate user‘s requests 3s
Number of server threads (modules) 1
Number of positions in service queue N = 4
Number of attack threads N = 4
Attack duration (Termination of Simulation) 50,000
RTT 1s

Fig. 6: Comparison of Mean in-system time

performance metric in both simulators

Fig. 7: Average delay in developed discrete event simulator

Fig. 8: Average buffer size in developed discrete event
simulator

The acquired results are compared with the results
obtained from the NS2 based results obtained by
(Macia-Fernandez et al., 2010). The results for the
mean in-system times (Fig. 6) have shown that the
value of this performance metric rises by ∆tRST. This is
due to the fact that ∆tRST is added to the service time
while the request is being served in the server. The
results are consistent and equivalent to the graph gained
in (Macia-Fernandez et al., 2010) with negligible
deviation (Fig. 6). This percentage deviation serves as a
validation of the developed simulator. The analysis of
the average delay, shows an increase as the ∆tRST

increases. Figure 7, displays this observations since the
rise of ∆tRST would result in increasing the time that a
request remained in the server. Figure 8 demonstrates
that the average buffer size is almost equal to 4 (the
maximum queue size) for all experiments. This implies
that the service queue is in the overflow state (full of
requests) in most cases. Based on our assumptions,
most of the time valid and invalid requests (attack
requests) compete to seize the positions in queue. So
the buffer is kept full during simulation.

CONCLUSION

 In this study, a detailed description of the design
and development of a newly proposed discrete event
simulator for the purpose of providing an efficient and
scalable performance analysis tool for the analysis of
HTTP low rate DoS attacks has been provided. There
are many trade-offs between exploiting general purpose
simulation software and utilizing existing simulators.
As for the latter, the developer has the opportunity to
grasp the fundamentals of discrete event simulation as
well as having the space to customize the event
characteristics and simulation components precisely
and tangibly. In addition, multitudes of decisive factors
such as size, memory usage, portability, license,
running time, utilizing general-purpose programming
languages and ease of use served as major motivation
factors which contribute to the constant proliferation of
performance analysis tools. The ease-of-use attribute,
small-scale, platform-independent (which only needs a
general purpose C compiler) and customized C discrete
event simulator with remarkably low execution time
gracefully confirms this. The future enhancement
encompasses the development of other elements of
discrete event simulators for varying analysis such as
those concerning other security issues such as Intrusion
Detection Systems in particular.

Am. J. Applied Sci., 9 (6): 909-916, 2012

916

REFERENCES

Begg, L., W. Liu, K. Pawlikowski, S. Perera and H.

Sirisena, 2006. Survey of simulators of next
generation networks for studying service
availability and resilience. Technical Report, TR-
COSC 05/06. Department of Computer Science
and Software Engineering, University of
Canterbury, Christchurch, New Zealand.

Ghazali, K.W.M., and R. Hassan, 2011. Flooding
distributed denial of service attacks-A review. J.
Comput. Sci., 7: 1218-1223. DOI:
10.3844/jcssp.2011.1218.1223

Guirguis, M., A. Bestavros and I. Matta, 2006. On the
impact of low-rate attacks. Proceedings of the
IEEE International Conference on
Communications, (ICC’ 06), IEEE Xplore Press,
Istanbul, pp: 2316-2321. DOI:
10.1109/ICC.2006.255115

Jensen, M., N. Gruschka and N. Luttenberger, 2008.
The impact of flooding attacks on network-based
services. Proceedings of the ARES 2008 3rd
International Conference on Availability, Security
and Reliability, March 4-7, IEEE Xplore Press,
Barcelona, pp: 509-513. DOI:
10.1109/ARES.2008.16

Jin, G., H. Zhang, H. Zhang and Z. Xie, 2009.
Simulation research on DoS attacks and defenses
mechanisms. Proceedings of the 2nd International
Conference on Intelligent Networks and Intelligent
Systems, Nov. 1-3, IEEE Xplore Press, Tianjin, pp:
138-141. DOI: 10.1109/ICINIS.2009.44

Kuzmanovic, A. and E.W. Knightly, 2006. Low-rate
TCP-targeted denial of service attacks and counter
strategies. IEEE/ACM Trans. Netw., 14: 683-696.
DOI: 10.1109/TNET.2006.880180

Lin, C.H., J.C. Liu, F.C. Jiang and C.T. Kuo, 2008. An
effective priority queue-based scheme to alleviate
malicious packet flows from distributed DoS
attacks. Proceedings of the 4th International
Conference on Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), Aug. 15-
17, IEEE Xplore Press, Harbin, 1371-1374. DOI:
10.1109/IIH-MSP.2008.270

Luo, H. and M.L. Shyu, 2005. The protection of QoS
for multimedia transmission against denial of
service attacks. Proceedings of the 7th IEEE
International Symposium on Multimedia, ISM
2005, Dec. 12-14, IEEE Xplore Press, pp: 6-6.
DOI: 10.1109/ISM.2005.115

Macia-Fernandez, G., J. E. Diaz-Verdejo and P. Garcia-
Teodoro, 2008. Evaluation of a low-rate DoS
attack against application servers. Comput.
Security, 27: 335-354. DOI:
10.1016/j.cose.2008.07.004

Macia-Fernandez, G., J.E. Diaz-Verdejo and P. García-
Teodoro, 2006. Low rate DoS attack to
monoprocess servers. Lecture Notes Comput. Sci.,
3934: 43-57. DOI: 10.1007/11734666_5

Macia-Fernandez, G., R. A. Rodriguez-Gomez and J. E.
Diaz-Verdejo, 2010. Defense techniques for low-
rate DoS attacks against application servers.
Computer Networks, 54: 2711-2727. DOI:
10.1016/j.comnet.2010.05.002

OMNeT++, 2001-2009. What is OMNeT++?
OMNeT++ Community.

OPNET, 2012. OPENT IT Guru network planner
network planning and engineering enterprises.
OPNET Technologies, Inc.

Reineck, K.M., 2008. Evaluation and comparison of
network simulation tools. M.S. Thesis, University
of Applied Science Bonn-Rhein-Sieg, Department
of Computer Science.

Rhazi, A.E., S. Pierre, and H. Boucheneb, 2007. A
secure protocol based on a sedentary agent for
mobile agent environments. J. Comput. Sci., 3: 35-
42. DOI: 10.3844/jcssp.2007.35.42

Robinson, S., 2004. Simulation: The Practice of Model
Development and Use. 1st Edn., Wiley Press,
Chichester, ISBN-10: 0470847727 pp: 316.

Shevtekar, A. and N. Ansari, 2006. Do low rate DoS
attacks affect QoS sensitive VoIP traffic?
Proceeding of the IEEE International Conference
on Communications, (ICC’ 06), IEEE Xplore
Press, Istanbul, pp: 2153-2158. DOI:
10.1109/ICC.2006.255089

SNT, 2008-2012. Simulation, software and services for
planning, testing and training. QualNet Network
Simulator, Scalable Network Technologies Inc.

SOPHOS, 2011. Security threat report. SOPHOS Ltd.
Viswanathan, A., V.P. Arunachalam and, S. Karthik,

2012. Geographical division traceback for
distributed denial of service. J. Comput. Sci., 8:
216-221. DOI: 10.3844/jcssp.2012.216.221

Zhu, Q., Z. Yizhi and X. Chuiyi, 2011. Research and
survey of low-rate denial of service attacks.
Proceedings of the International Conference on
Advanced Communication Technology, Feb. 13-
16, IEEE Xplore Press, Seoul, pp: 1195-1198.

