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Abstract: Problem statement: More advanced control techniques have been developed in recent 
decades following the great progress of calculations means. Without considering the constraints on 
system variables, the response of controlled system moves away from the desired response. Hence the 
control strategy must provide the ability to integrate these constraints in the design phase of the 
controller. Approach: This study presents a design of robust dynamic controller which was based on 
the control strategy MPC for an uncertain discrete system described by a multimodel by solving an 
optimization problem. The Model Predictive Control (MPC) strategy uses a dynamic model of the 
process in order to predict its future behavior. This control strategy, that we propose, makes it possible 
to integrate these constraints in the design phase of the controller. The design of the robust dynamic 
controller must maintain the stability and performance of the system in the presence of uncertainties. 
The principle of this method was to solve, at each calculation step, a convex optimization problem that 
calculates the matrices characterizing the dynamic controller. LMI formulation of the constraints, on 
process variables, was introduced into the design phase of the dynamic controller robust. The 
optimization study was also implemented in the MATLAB software and simulation studies had been 
presented. Results: Simulation results had proved the effectiveness of this study. The robust dynamic 
controller designed for uncertain systems guarantees stability in closed loop systems by integrating 
constraints on system variables. Conclusion: The described approach explain how to integrate 
constraints, MPC type, during the phase of design of the robust controller: the simulation concluded on 
a benchmark proof the powerful of this approach.  
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INTRODUCTION 
 
 In recent years, control engineers have been 
attracted by the multi-model approach that have used in 
various industrial applications such as the identification of 
nonlinear dynamic systems, stability and control of 
systems (Chadli, 2002; Chadli et al., 2009; Akhenak et al., 
2004) and its contribution to the state estimation and 
diagnosis of systems represented by multimodels (Maherzi 
et al., 2007; Santhakumar and Asokan, 2010; 
Kanthalakshmi and Manikandan, 2011). 
 This approach allows the representation of the 
dynamic behavior of a nonlinear system as an 
aggregation of local linear models, (Elfelly et al., 
2010). Each one is a linear system valid around an 
operating point. 
 This technique reduces the problem of identification 
of a nonlinear system to an identification of sub-models 
using input and output data of different operating points. 
 In this study, we propose the conception of a 
robust dynamic controller applied to a nonlinear 

system represented by multimodel approach (Torre 
and Migliore, 2011; Richalet et al., 2005). 
  The designing of the dynamic controller is based 
on the predictive control strategy which consists to 
resolve, at each calculation step, a convex optimization 
problem in order to calculate the matrices 
characterizing the dynamic controller.  
 Determination of matrices is given by the Linear 
Matrix Inequalities (LMI) (Boyd et al., 1994) via the LMI 
toolbox of the Matlab  Software.  
 This study describe how to synthesis a robust 
dynamic controllers for the control and command 
uncertain nonlinear systems where uncertainties is 
polytopic and using an observer. 
 

MATERIALS AND METHODS 
 
 Problem formulation: Let consider the nonlinear 
system described by the following discrete multi-model 
Eq. 1: 
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x(k 1) Ax(k) Bu(k)

y(k) Cx(k)

+ = +
 =

  (1)  

 
where, the uncertainties on A are a convex polytopic 
type defined by: 
  
With: 
 

N N
A = A  :  , =  : 0 , 1j j j jj 1 j 1

  ∈Γ Γ ≥ =∑ ∑ 
= =  

α α α α α
 

 
Where: 
x(k) ∈ ℝn  = The state vector 
u(k) ∈ ℝm = The vector control 
y(k) ∈ ℝq = The output vector 
A∈ℝn*n = The dynamic matrix containing the 

uncertainty 
B∈ℝn*m = The control matrix and C∈ ℝq*n is the 

output matrix 
 
 This system must satisfy the following condition 
that the (A, B) pair of matrices is controllable and the 
(A, C) pair of matrices is observable.  
 So, we propose a control low stabilizing the 
uncertain system described by (1) at each instant k by 
using a dynamic controller based on output feedback in 
order to minimize a coast function under constraints 
(Torre and Migliore, 2011). The dynamic controller is 
given by Eq. 2: 
 

x (k 1) A x (k) B y(k)c c c c
u(k) C x (k)c c

+ = +
 =

  (2) 

 
Where: 
 
xc(k) ∈ ℝn is The state vector controller, matrices  
Ac ∈ ℝn*n, Bc∈ ℝn*q and Cc ∈ ℝm*n

  Define the 
dynamic controller 
 Figure 1 describes the synoptic graph of an 
uncertain system with dynamic controller. 
 
Characterization of unmeasured states:  
Mathematic model of uncertain system based on 
multi-model approach: Another description of the 
system described by (1) and (2) is given by Eq. 3: 
 

 
e e

e

e

ˆ ˆx (k 1) A(k)x (k) Bu(k)

ˆu(k) K(k)x (k)

ˆy(k) Cx (k)

 + = +
 =
 =

  (3) 

 
Where:  

[ ]

A 0 B2n*2n 2n*mˆ ˆA(k) R  ; B(k)= R
B (k)C A (k) 0c c

q*2n q*2nˆ ˆC(k) C 0 R  ; K (k) 0 C (k) R  ; c

x(k) 2nx (k ) Re x (k)c

    
= ∈ ∈    

  
 = ∈ = ∈   


  = ∈ 
 

 

  
Quadratic function: We consider a coast function of 
quadratic infinite horizon that weights the value of the 
control efforts and system states. This function can be 
expressed as Eq. 4: 
 

( ) ( ) ( )
( ) ( )

T ˆx k i \ k .Q.x k i \ ke eJ k
Ti 0 u k i \ k .R.u k i \ k

 + +∞  = ∑∞  = + + +  

  (4) 

 
where, xe(k+i\k) is the expectation value of the state at 
time k+i, knowing the state xe(k\k) Let consider the 
following quadratic function Eq. 5: 
 

( ) T
L e e eV x (k \ k) x (k \ k) .P.x (k \ k)=

 
(5) 

 
where, P=P(k\k) is constant and VL(0)=0. 
 This function must satisfy the following inequality 
Eq. 6: 
  

 
( ) ( )
( )

( ) ( )
( ) ( )

V x (k \ k ) V x (k i 1 \ k )e eL L
V x (k \k )eL

T ˆx k i \ k .Q.x k i \ ke e
T

u k i \ k .R.u k i \ k

∆ = + +

− +

 + +
 ≤ −
 
+ + +  

  (6) 

 
 The quadratic function given by (5) represents the 
upper born of the coast function given by (4); so we can 
satisfy the following condition Eq. 7: 
 

( ) ( )( )L eJ k V x k \ k∞ ≤   (7) 
  
 The result given by (7) introduces an approach that 
consists in synthesizing a dynamic controller based on 
output feedback by minimizing the quadratic function 
(5) under the condition (6). 
 

 
 
Fig. 1: System controlled by a robust dynamic 

controller 
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Fig. 2: System controlled by a robust dynamic 

controller with an observer  
 

 
 
Fig. 3: Synoptic of a real system: two masses 

connected by a spring 
 
 The state vector can be expressed as Eq. 8: 
 

 
( )
( )

r n

m

x k
x(k) R

x k

 
= ∈ 
 

  (8) 

 
Where: 
 
xr(k) ∈ R n-p : unmeasured states: 
xm(k) ∈ R p : measured states: 
 
xr(k) belongs to the convex polytope defined from 
membership intervals of xr components Eq. 9: 
 

min max
r,i r,i r,ix x (k) x≤ ≤   (9) 

 
i= 1, 2, …, n-p; 
 
xr

j(k), j = 1, 2, …, l, the vertices of this polytope.
 The uncertain states are given by Eq. 10: 
 

( )
( )

j
r n

j
m

x k
(k) R

x k

 
= ∈ 
  

χ   (10) 

 
j = 1, 2, …, l; 
 The membership of the vector field is given as 
follows: 
 

{ }o jC  , j=1,2,...,lΩ = χ  

l l

j j j j
j 1 j 1

x(k) (k) ;  ; =  ; 0; 1 
= =

  = ∈ Γ Γ ≥ = 
  

∑ ∑λ χ λ λ λ λ  

 
Design of the robust dynamic controller: 
Observer: Let consider that χ(k) = χ(k|k) the state 
value of (1) and xc (k|k) the state value of the controller 
(2) at each instant k. Vectors umax and ymax are knowing. 
 Uncertain discrete system (1) is asymptotically 
stabilized by a dynamic controller with output 
feedback, minimizing an upper born of the quadratic 
constrained if it exist at each sampling time matrices 
Z, H∈ ℝn*n, L ∈ ℝm*n, F, H∈ ℝn*q and symmetric 
positive matrices definite X, Y, P ∈ ℝn*n solutions of 
the following optimization problem Eq. 11-15 (Torre 
and Migliore, 2011; Ababneh et al., 2011) 
 
miny  (11) 
 
Under: 
 

( ) ( )
( )

( ) ( ) ( )

j c

j

T T

j c j

Y I Y k Vx k

I X k

Y k Vx k k I

0, j=1, 2, ...l,

  χ +  
 χ
 
  χ + χ  

>

  (12)  

  
  

 
( )

( )

T T 1/2

TT T 1/2 1/2

1/2

1/2 1/2

Y I YA FC Z 0 0

I X A AX BL 0 0

YA FC A Y I 0 Q
0

Z AX BL I X LR XQ

0 0 0 R .L I 0

0 0 Q Q X 0 I

+ 
 + 
 +
 >
 +
 

γ 
 γ 

  (13) 

 

 T

2
max

Y I 0

I X L 0

0 L U .I

 
 > 
 
 

  (14) 

 
T T

T T T T T

2
max

Y I A C

I X XA C L B C 0

CA CAX CBL y .I

 
 + > 
 +   

(15) 

 
 Matrices X, Y, L, M and Z solutions of the 
optimization problem (11) are calculated at each instant 
k allowing the determination of matrices Ac, Bc and Cc 
of the dynamic controller.  
 To determinate a robust dynamic controller 
(Maherzi et al., 2007), the use of an observer is 
necessary and can be described as in Fig. 2 and 3. 
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 The observer can be expressed as follows Eq. 16: 
 

[ ]0ˆ ˆ ˆx(k 1) Ax(k) Bu(k) L y(k) y(k)

ˆ ˆy(k) Cx(k)

 + = + + −


=
  (16) 

 
 The observation error is given by Eq. 17: 
  

ˆx xε = −   (17) 

  
 So, the dynamic of the error is given by Eq. 18: 
 

( ) ( ) ( )0k 1 A L C kε + = − ε  (18) 

 
 To satisfy the asymptotic stability of (1) using an 
observer, the following condition must be verified Eq. 19: 
 

[ ]

T T T T

T

P A G C H
0

GA HC G G P

  −  >
  − + −  

  (19) 

 
 The observation gain is given by: Lo=G-1H. 
 Matrices P, H, G solutions of the optimization 
problem (11), are calculated at each time k in order to 
determine the matrices Ac, Bc and Cc defining the 
dynamic controller. 
 
Designing of the dynamic controller: To design the 
dynamic controller, we develop the LMI formulation of 
the constraints based on the invariant ellipsoid 
technique. We add also the multi-model representation 
of uncertain system and the observer’s stability 
condition. The set of matrices inequalities allows the 
calculus of the matrices solution of the optimization 
problem to deduce the robust dynamic controller (the 
construction of the controller is updated at each 
calculation step).  
 After obtaining the solutions of different systems 
mentioned above, the construction of the robust dynamic 
controller can be done by calculating the matrices (Ac, Bc 
and Cc). Each matrix is given by Eq. 20: 
 

( )
( )

1

c

1

c

c

A 1 YX .M

B 1 YX .F

C L

−

−

 = −
 = −
 =


  (20) 

 
 As application, we use the benchmark developed 
by (Kothare et al., 1994; Zermani et al., 2011) as a 
numerical example. 
 The uncertain system of order 4 is described by 
Eq. 21: 

 

( )
( )
( )
( )

( )
( )
( )
( )

( )
( )
( )
( )

1 1

2 2

3 3

4 4

1

2

3

4

1 0 0.1 0
0

x k 1 x k0 1 0 0.1
0

x k 1 x kr r u(k)0.10.1 0.1 1 0x k 1 x km m
m

x k 1 x kr r
00.1 0.1 0 1

m m

x k

x k1 0 0 0
y(k)

x k0 1 0 0

x k

  
      +         +     = + −     +              +     −     

 
 

  =     
 









(21) 

 
m is the masse equal to 1 and r is the spring constant. 
r ∈ [0.1, 2.1]: subject of uncertainty. 
 The value of the input constraint is umax=1. 
 Positions of the two masses are given by x1 and x2, 
while x3 and x4 are their speeds which are unmeasured.  
Let consider the multi-model representation of the 
uncertainty in A is given by Eq. 22: 
 

2

j j
j 1

A A
=

=∑α   (22) 

 
Where: 
  

1
min min

min min

2
max max

max max

1 0 0.1 0

0 1 0 0.1
A  

0.1r 0.1r 1 0

0.1r 0.1r 0 1

1 0 0.1 0

0 1 0 0.1
A

0.1r 0.1r 1 0

0.1r 0.1r 0 1

 
 
 =
 −
  − 

 
 
 =
 −
  − 

 

 
And αj the activation function satisfying Eq. 23: 
  

2

j
j 1

1
=

=∑α   (23)  

 
With: 
 

( )( )1 1

1 2

1 tanh x k / 2

1

α = −

α = −α  

 
 Initial conditions of the system and the dynamic 
controller are respectively  
 
• x(0)=[1 1 0 0]T  
• xc(0)=[0 0 0 0]T 
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RESULTS 
 
 The resolution of different inequalities constituting 
the optimization problem via the LMI formulation with 
Matlab software is given as follows. 
 The multi-model representation gives as the 
opportunity to find an interval [rmin, rmax] generating 
the maximum variation of the uncertainty and for 
which matrix inequalities for the optimization problem 
still feasible. 
 
Without observer: 
 
• For rmin=0.9 and rmax=1.1: 
 
 The execution of the algorithm on Matlab  allows 
for minimal γ and the responses on closed-loop of the 
uncertain system. The behavior of the responses system 
(y1 and y2) is given by Fig. 4. 
 The minimal value of γ is 90.8722. 
 Figure 4 proves that the robust dynamic controller 
stabilizes the uncertain system. Hence the efficiency of 
the study proposed in this study. 
 
• For rmin=0.1 and rmax=2.1: 
 
 The execution gives: 
 The minimal value of γ is 90.8722. 
 We observe a transient behavior of the responses 
system (y1 and y2) at the beginning. In permanent 
regime, the robust dynamic controller stabilizes the 
uncertain system: confirmation of the effectiveness of 
the proposed study. 
 
With observer: The use of the observer gives the 
following results: 
 
• For rmin=0.9 and rmax = 1.1: 
 
The minimal value of γ is 90.8722. 
 

 
 

Fig. 4: The time responses of the system outputs for r ∈ 
[0.9, 1.1]  

 
 
Fig. 5: The time responses of the system outputs for r ∈ 

[0.1, 2.2]  
 

 
 
Fig. 6: The time responses of the system outputs with 

observer for r ∈ [0.9, 1.1] 
 

 
 
Fig. 7: The time responses of the system outputs with 

observer r ∈ [0.1, 2.2] 
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Fig. 8: The system responses y1  
 

 
 

Fig. 9: The system response y2  
 

 
 
Fig. 10: The control low behavior 
 
 The dynamic controller guarantees the stability of 
the system and despite the oscillations: 
 
• For rmin=0.1 and rmax = 2.1: 

  The minimal value of γ is 90.8722. 
 We note that the controller stabilizes the system in 
case, faster than previously case.  
 

DISCUSSION 
 
 A comparison study is developed in this study.  
 Different results prove the effectiveness of the 
study developed in this study. We note that the response 
of the controlled system with observer is less oscillatory 
than the system controlled without observer. The 
stabilization of the system is verified.  
 We also note that for large ranges of uncertainty, 
the behaviour of the response of the outputs of the 
controlled system with observer is the best as proved in 
following Fig. 5-7. 
 Figure 8-10 gives respectively the system 
responses y1, y2 and the optimal control low u in the 
two cases (with and without observer).  
  The dynamic controller with the observer is 
more robust than without observer in term of 
stability of the system. 
 

CONCLUSION 
 
 In this study, we present a design of dynamic 
controller by resolving an optimization problem to control 
an uncertain system described by multi-model approach. 
The developed robust dynamic controller is based on 
predictive control low. This study is validated by an 
illustrative example and the implementation of the LMI 
formulation of the optimization problem in Matlab© or 
Scilab©. The results proof the efficiency and utility of the 
proposed study and we note that for large ranges of 
uncertainty, the behavior of the response of the outputs of 
the controlled system with observer is better. 
 

REFERENCES 
  
Ababneh, M., I. Etier, M. Smadi and J. Ghaeb, 2011. 

Synchronization of chaos systems using fuzzy 
logic. J. Comput. Sci., 7: 197-205. DOI: 
10.3844/jcssp.2011.197.205 

Akhenak, A., M. Chadli, D. Maquin and J. Ragot, 2004. 
State estimation of uncertain multiple model with 
unknown inputs. Proceeding of the 43rd IEEE 
Conference on Decision and Control, Dec. 14-17, 
IEEE Xplore Press, USA., pp: 3563-3568. DOI: 
10.1109/CDC.2004.1429265 

Boyd, S., L.E. Ghaoui, E. Feron and V. Balakrishnan. 
1994. Linear Matrix Inequalities in System and 
Control Theory. 1st Edn., SIAM, Philadelphia, 
ISBN: 0898714850, pp: 203.  



Am. J. Applied Sci., 9 (6): 851-857, 2012 
 

857 

Chadli, M., 2002. Stability and control of systems 
described by multi-models. Thesis, Doctoral 
school IAEM, Lorraine, France. 

Chadli, M., A. Akhenak, J. Ragot and D. Maquin, 2009. 
State and unknown input estimation for discrete 
time multiple model. J. Franklin Inst. 346: 593-
610. DOI: 10.1016/j.jfranklin.2009.02.011 

ElFelly, N., J. Dieulot, P. Borne and M. Benrejeb, 2010. 
A Multimodel approach of complex systems 
identification and control using neural and fuzzy 
clustering algorithms. Proceedings of the 9th 
International Conference on Machine Learning 
and Applications (ICMLA), Dec. 12-14, IEEE 
Xplore Press, Washington, DC., pp: 93-98. DOI: 
10.1109/ICMLA.2010.21 

Kanthalakshmi, S. and V. Manikandan, 2011. Fault 
tolerant control using proportional-integral-
derivative controller tuned by genetic algorithm. 
J. Comput. Sci., 7: 1187-1193. DOI: 
10.3844/jcssp.2011.1187.1193 

Kothare, M., V. Balakrishnan and M. Morari, 1994. 
Robust constrained model predictive control using 
linear matrix inequalities. Automatica, 32: 440-
444. DOI: 10.1109/ACC.1994.751775  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maherzi, E., J. Bernussou and R. Mhiri, 2007. Stability 
and stabilization for uncertain switched systems, a 
polyquadratic Lyapunov approach. Int. J. Sci. 
Tech. Automatic Control, 1: 61-73.  

Richalet, J., G. Lavielle and J. Mallet, 2005. Predictive 
control: Implementation and industrial 
applications. Editions Eyrolles. 

Santhakumar, M. and T. Asokan, 2010. A self-tuning 
proportional-integral-derivative controller for an 
autonomous underwater vehicle, based on taguchi 
method. J. Comput. Sci., 6: 862-871. DOI: 
10.3844/jcssp.2010.862.871 

Torre, M. and E.G. Migliore, 2011. Design and 
implementation of a predictive control strategy 
based on an industrial controller. IEEE Latin Am. 
Trans., 9: 638-643. DOI: 
10.1109/TLA.2011.6030970  

 Zermani, M.A., E. Feki and A. Mami, 2011. 
Application of adaptive predictive control to a 
newborn incubator. Am. J. Eng. Applied Sci., 4: 
235-243.  DOI: 10.3844/ajeassp.2011.235.243 

 
 


