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Abstract: Problem statement: In this study, we introduced a new and real-life condition of 
Capacitated Arc Routing Problem (CARP), a model that represents vehicle’s operation in waste 
collection. In general, we studied the element of rain drops that affected the collected waste weight in 
total by imposed a new variable namely rainy weight age. In rainy days, the household refusals did not 
increase in volumes, but in weights due to rain drops. Consequently, this matter thus burdened 
vehicle’s capacity and prolonged its operation time. This dynamic variable thus changes the initial 
CARP model where the existing model did not consider other external elements that have effected onto 
the model. Approach: Then we developed and enhanced CARP by integrating stochastic demand and 
time windows to suit the models with our specific case. Results: Objectively, CARP with stochastic 
demand (CARPSD) and CARP with time windows (CARPTW) were designed to minimize the total 
routing cost and number of trips for a vehicle. Our approach is to design CARP models in almost likely 
to road layout in residential area and graphically this model is called mesh network. We also developed 
a constructive heuristic that is called nearest procedure based on highest demand/cost (NPHDC) and 
work in conjunction with switching rules to search the feasible solution. Conclusion: Our preliminary 
results show a higher cost and more trips are needed when the vehicle operates in rainy day compared 
to normal day operation. 
 
Key words: Arc routing problem, waste collection, stochastic demand, time windows, Vehicle 

Routing Problem (VRP), CARP model, rainy weight age, penalty cost 
 

INTRODUCTION 
 
 Managing waste is a mammoth task as it needs to 
be collected, transported and finally disposed of. 
Beltrami and Bodin (1974) were firstly introduced 
Vehicle Routing Problem (VRP) in municipal waste 
collection in New York City where 25,000 tons of 
waste needed to be collected. In general, Capacitated 
Arc Routing Problem (CARP) is another kind of 
routing problem specifically designed to formulate 
vehicle routing operation in solid waste collection or 
snow plow. This routing model was introduced by 
Golden and Wong (1981) and considered as a special 
domain of VRP but on the other hand, CARP has been 
comparatively neglected. Since then, CARP progressed 
in theory and applications and had shown important 
roles in waste collection industry. Some of the latest 
developments and applications of CARP could be seen 
in Letchford and Oukil (2009); Christiansen et al. 
(2009); Santos et al. (2010); and Gouveia et al. (2010). 

 However, very few researches considered external 
factors (such like weather and temperature) in modeling 
CARP. To our knowledge, Amponsah and Salhi (2004) 
has considered element of hot weather in modeling 
CARP and developed a constructive heuristic based on 
look ahead strategy which takes into account the 
environmental aspect as well as the cost to solve the 
routing of garbage collection. Another work is done by 
Hsu et al. (2007) where the time-varying temperatures 
and human interaction during cargo opening have 
affected onto VRP model. However, their work was 
done onto food transportation and in contrary was 
applied to VRP which in practice its vehicle’s operation 
is difference to CARP. By this means, this study tries to 
investigate the influence of rainy weather onto vehicle’s 
operation in waste collection. Objectively, this study 
aims to determine the total cost for a vehicle and 
constructing the routes that minimizes the total trips 
needed to complete the services for both weather-type 
operations.  
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Fig. 1: Common layout of residential houses in 

Malaysia 
 
 CARP and VRP are coexist with the same purpose 
but originated from different problem background. In 
CARP, customers’ demands are located along the arcs 
and the vehicle is giving its service when it moves from 
one arc to another. While VRP, which is also known as 
node based routing; the vehicle is giving its service 
when it arrives at a certain node or point. In other 
words, in waste collection from CARP point of view, 
the customers are located along the arcs, not at the 
nodes. Both are NP-hard problems, rich in research and 
no method could be claimed as the best so far. A 
method usually fit for one specific problem and only 
suit for a certain routing model. Met heuristic methods 
such as tabu search or genetic algorithms however are 
the popular solutions used by mathematician in order to 
find the optimal routing path of the vehicles and to seek 
the lowest cost. 
 The mathematical structure of CARP is a network 
graph where each junction is jointed by a point (node) 
and lines are drawn connecting two nodes, called arcs 
or edges. The operation of the vehicle starts and ends at 
the depot, O and services each arc only once. The 
customers’ demands (or quantity of garbage), qij > 0 
and service cost, cij > 0 are associated to every arcs. The 
total demand, Q must not exceed the capacity of the 
vehicle, W, that is Q≤W. In CARP, each arc in the 
graph can be traveled in both direction and each vertex 
corresponds to a road junction (node). Some variants 
extensions on CARP also can be seen Lacomme et al. 
(2005); Chu et al. (2006) where periodic CARP 
(PCARP) was applied; Bautista et al. (2008) and 
Christiansen et al. (2009) solved mixed CARP 
(MCARP) and CARPSD respectively.  
 This study also describes a new model of CARP, 
by introducing a mesh network which approximately 
represents the layout of resident houses area in 
Malaysia. Basically, the houses are located side by side 
along the road and each road is connected by a main 
road as the backbone (Fig. 1).  

MATERIALS AND METHODS 
 
Data source: The primary data is a real-life observation 
on solid waste collection in Johor Bahru, the capital city 
of Johor, Malaysia for 32 operational days. We 
collected the raw data onto one identical truck operation 
in waste collection sub-contractor in South Johor. We 
delivered our study on one residential area in Johor 
Bahru that 1266 houses involved in this research. The 
Table 1 below displays primary or raw data for one 
identical truck in 32 operational days. 
 Table 1 clearly shows that 40% of operations in 
rainy days increased the service time between 108 to 
112 minutes, which is only 100-103 minutes in normal 
days. The truck travelled longer distance in rainy days 
in order to complete its services as compared to normal 
days. This can be seen where approximately 56% of 
operation days is more than 5 kilometres routing 
distance during rainy days. In contrary during normal 
days, usually it was below 5 km distance covered. 
Moreover, the truck carried over capacity is 86% in 
rainy days compared to only 24% in good and clear 
weather. Table 2 below depicts the mean, minimum 
and maximum value for serviced time (ts), routing 
distance (D) and customers’ demand or quantity on 
arc (q) for both normal and rainy operation days. The 
mean for ts, D and q during rainy days is higher when 
compared to normal days. In summary, the vehicle 
serviced longer time during rainy days; traveled in 
longer distance and had higher customers’ demands if 
compared to normal days. 
 Next, we pursue to distribution analysis in order to 
recognise the different behaviour of both kinds 
operations. This analysis examined the ts, D and q by 
distinguished the weather-type data according to a 
certain distribution. We carried out this analysis 
because of two purposes. Firstly, the analysis tries to 
identify which distributions to use for generating the 
test instances in order to be able to give a consistent and 
precise description of the developed system. Secondly, 
it is paramount importance to provide CARP models 
with the necessary and accurate information before 
constructing the models. We reported the findings.  
 
Problem identification: The conducted interview from 
the case study and primary data had shown the 
significant routing problem when it comes to a rainy 
day. In rainy day, rain drops into the open garbage or 
open bin and increased the waste weights. Similar 
condition happens when the open-top container truck is 
used to picking-up the waste. In other words, the 
household refusal in rainy day did not increase in 
volumes, but in weights due to rain drops. This variable 
thus affected the vehicle’s capacity in total.  
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Table 1: Primary data for an identical truck in 32 operational days 
Day weather ts D q Day weather ts D q 
1 hr 104 4980 *5390 17 hr 109 4800 *6280 
2 g and c 106 4970 4520 18 g and c 99 4120 4875 
3 gandc 101 5070 3900 19 g and c 102 3980 4725 
4 gandc 102 4770 *6080 20 r 110 5030 *5235 
5 r 111 5130 4520 21 g and c 98 4350 3890 
6 hr 105 4610 *5560 22 hr 117 5060 *6800 
7 hr 114 5420 *7105 23 hr 108 4910 *6105 
8 gandc 112 4920 5010 24 g and c 101 4210 4200 
9 gandc 100 4440 4360 25 g and c 104 4320 *5400 
10 hr 109 5040 *5875 26 r 113 5080 *5490 
11 gandc 104 4730 4110 27 g and c 99 4450 4390 
12 gandc 100 4540 4980 28 g and c 102 4790 *5400 
13 hr 108 4980 *6960 29 r 104 5060 *5235 
14 gandc 99 4480 4005 30 g and c 97 4380 4020 
15 gandc 103 4950 4000 31 hr 120 5180 *6800 
16 hr 116 5600 *7400 32 r 108 5110 *5250 
g and c=good and clear, r=rain,hr =heavy rain, ts :serviced time (mintues),D: routing distance (meter),q:customers’ demands(Kg), w=5100kg, 
*exceed capacity 
 
Table 2: ts, D and q for normal and rainy operation days 
 Normal 
Weather ---------------------------------------------------------- 
Variable Mean Min. Max. 
ts 102.00 97 112 
D 4560.59 3980 5070 
Q 4602.65 3890 6080 
----------------------------------------Rainy------------------------------------- 
ts 110.93 104 120 
D 5062.00 4610 5600 
Q 5975.00 4520 7400 

  
 Chaotic routing frequently occurs in rainy days due 
to uncertainty in customers’ demands. During the good 
and clear weather, the total quantity Σqij ≤W, where W 
is the truck maximum capacity. The demand or quantity 
qij is probabilistic to a certain distribution and W is a 
fixed constant. However, rain drops or water level is the 
new variable that affected the total weight of collected 
garbage and changed normal day stochastic.  
 This problem inherits the time window issue as the 
longer service time (because of more trips) 
consequently prolonged the total operational time. In 
time windows problem, the arcs requiring service have 
to be serviced between certain time duration. In our 
case, the truck must operate in a specific time window 
constraints due to a limited time of disposal activity. 
Due to security reason, the dumpsite will be closed at 5 
pm, so all activities must be completed before that hour. 
Thus, 1≤tp≤9, where tp is the total operational time 
allowed that is from 8-5 pm. The significance problems 
arise when the truck driver has to re-route from initial 
plan in order to collect the highest demand of waste 
before proceeds to disposal activity. Sometimes during 
rainy day, the truck did not complete their zone 
collection in one trip due to overload carriage and 
limited of time. In addition, sometimes the truck also 

failed to transport the loads to the dumpsite in the same 
operation day. By this means, this incomplete task 
needs to be continued on the next operation day (next 
morning) and the truck must start its collection from the 
uncovered yesterday routes (if occurs). 
 This different scenario of weather-type needs to be 
further examined in order to recognize and segregate 
the model of arc routing problem. Similar case study 
could be seen in Irhamah and Ismail (2009) and Ismail 
and Irhamah (2008). This research tries to refine CARP 
model with stochastic demand (CARPSD) and CARP 
with time windows (CARPTW) according to specific 
case of truck operation in waste collection by taking 
into account the element of rain drops.  
  
Research approach: Firstly, in rainy day, customers’ 
demands become more dynamic and change the normal 
day behavior. The rain drops increased the customers’ 
demands and hence burdened vehicle’s capacity in 
total. In this study, we define a rainy day as a day with 
rainfall amount equals to or exceeds 0.1 mm as a 
standard determined by Department of Statistics 
Malaysia, 2007.  
 
Rainy weightage: We simply implemented this 
character onto vehicle operation by measuring the water 
level in the truck’s leach tank. For modeling purpose, 
we imposed rain drops weightage, r and the scale is 
given as 0.1≤r≤1.0. The r variable suggests that the 
quantity of collected garbage qij might increase in 
maximum double drastically and exceeds the truck 
capacity during rainy day operation. Stochastic 
demands become more dynamic and vary to a certain 
distribution   and    change   the   normal   day  pattern. 
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Fig. 2: Three components of a mesh network (a) corner; 

(b) outer; (c) inner; (d) complete 
 
We formulate the customers’ demands in rainy day as 
given by r.qij+Σqij≤W, where r[min, max] = r[0.1, 1.0]. 
Furthermore, loading process reaches capacity W is 
faster during rainy day because of the waste’s weight is 
increases with the same relation. Consequently to this 
matter, chaotic routing happens when the truck needs to 
add more trips in order to collect all demands. 

 To differentiate the calculation of collected 
demands between normal and rainy days, we provide 
this example. In normal weather, the capacitated 
quantity of the customers’ demands is given by Σqij≤W. 
Let say the initial collected demand in normal weather 
is qij = 1500 kg and the vehicle’s capacity, W is fixed to 
3000 kg. Let say during a rainy day which rainfall 
amount equals to 0.5 mm, the inequation of collected 
demands is given by inequation r.qij + Σqij≤ W, where 
r[min, max] = r[0.1, 1.0]. Thus, for r = 0.5, 0.5(1500) + 
1500 = 2250 kg. So, the total estimate quantity which 
affected by rain drops equal to 0.5 mm is 2250 kg. This 
amount is not exceeding the total capacity, W = 3000 kg, 
but however increased 750 more kilograms of weight. 
This inequation explained why the collected demands (or 
household refusals) are heavier during rainy day when 
compared to good weather day operation.  
 Secondly, in rainy days, the operational time of the 
vehicle is longer than normal days because more trips are 
needed to accomplish all collections. This situation then 
prolonged the normal time window. This time window 
constraints increase the complexity of determining 
optimal delivery routing. In this research, CARP with 
time window (CARPTW) is formulated and the penalty 
cost, P is implemented if the lateness occurs. 
  
Problem statement: From the above explanation, we 
choose CARPSD and CARPTW to represent our waste 
collection operational problem. The proposed and 
redefine models are designed to seek the solutions for 
rainy days of this question; How to optimize the route 
plan and minimize the total cost and trips in rainy days? 
Then, we developed an Exact Algorithm (EA) namely 
nearest procedure based on highest demand/cost ratio 
(NPHDC) which work in conjunction with switching 
rules to search for feasible solution. Algorithms for 
dynamic CARP are considerably more intricate than 
deterministic and it calls for efficient algorithm that is 
able to work in accepted reasonable time since the 
immediate requests could be provided. 
 
Modeling CARP according to mesh network: The 
structure of a mesh network is assembled by three 
components; corner, outer and inner (Fig. 2a-d). A 
complete but simple mesh network of 9 nodes and 12 
arcs as depicts in Fig. 2d. Hence, we redefine our 
CARP according to Hertz et al. (2000) as an undirected 
graph, G = (V, E) where V = {vo, v1, v2, …, vn} is a 
vertex set and A = {vij∈V,i≠j} is an arc set. Vertex v1, 
v3, v5 and v7 are the vertices corner, VC where VC∈V. 
Vertex v2, v4, v6 and v8 are the outer, VT where VT∈V. 
Lastly, v9 is the inner vertex, VN where VN∈V, thus (VC 
, VT , VN∈V).  
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Fig. 3: Johnson SB distribution for nett weight of 

customers’ demands (in kilograms) in normal 
weather operations 

 

 
 
Fig. 4: Uniform distribution for nett weight of  

customers’ demands in rainy operation days  
 
Table 3: Goodness of fit for Johnson SB distribution of customers’ 

demands in normal weather operations 
Methods KS AD CS 
Statistic 0.10018 0.23275 0.21946 
Critical value 0.31796 2.5018 5.9915 
Degree of freedom - - 2 
p-value 0.98885 - 0.89608 
Reject? No No No 
Rank 2 1 3 
 
 Given a connected graph G (V,E A)= ∪ , with V as 
the set of nodes (vertices), E is the set of edges 
(E VxV)⊆ and A is a set of arcs (A VxV)⊆ . CARP has 
a traversal cost for each edge and arc with demand, qij ≥ 
0 for each edge (i, j) which must be served by one 
vehicle once without exceeds the capacity, W. The 
problem is to find a number of circuits each of which 
passes through the depot which satisfies demands at 
minimal total cost. We denote cij as the cost of an edge 
(arc) (i, j) ∈ E(A) and xijk as the number of times edge 
(arc) (i, j) ∈E∪A is traversed in trip k. Furthermore, for 
mesh network architecture, the vehicle must start its 
collection from any corner vertex and moves along the 
backbone before it choose the outer joint. When the 
vehicle is inside the network, the vehicle may choose 
either one of three arcs to begin collection at the inner 

area. Objective function of CARP as formulated is 
given by: 
  

ij ijk

K

(i, j) E k 1
Minimize c x

∈ =
∑ ∑    

 
 Subject to:  
 

ipk pik
p V p V

x x i V,k 1,2,.....,k
∈ ∈

= ∀ ∈ =∑ ∑  (1) 

 

ijk

K

y
k 1

1, (i, j) R
=

= ∀ ∈∑  (2)  
 

ijk ijkx y , (i, j) R,k 1,2,..,k≥ ∀ ∈ = ,  (3) 
 

ij ijk

(i, j) R
q y W,k 1,2,..,k

∈

≤ =∑  (4) 

 

ij ijkij ijk
(i, j) R (i, j) R

r q y q y W
∈ ∈

⎡ ⎤
+ ≤⎢ ⎥

⎣ ⎦
∑ ∑ ,  

 
r[min, max] = t[0.1, 1.0] , k = 1, 2,…, K (5) 
 
 Equation 1 ensures route discrete continuity. 
Equation 2 states that each edge with positive demand 
is serviced exactly once. Inequation (3) guarantees that 
the traversal circuit k covers the edge (i, j) ∈ R if it 
delivers its demand. Vehicle capacity is not violated on 
account of inequation (4) and (5) where r is rainy 
weightage that increase the waste weight depends on 
rain drops and the scale is 0.1≤ r ≤ 1.0. Inequation (4) 
formulates the CARPSD in normal days that followed 
Johnson SB distribution with γ = 0.83016, δ = 0.71672, 
λ = 2.8661 and ξ = 3.7468 as depicts below in Fig. 3. 
The Probability Density Function (PDF) of Johnson SB 
is given by: 
 

 21 zf (x) exp( ( ln( )) )
2 1 z2 z(1 z)

δ
= − γ + δ

−λ π −
 

 
where, xξ ≤ ≤ ξ + λ . Three goodness of fit 
(Kolmogorov-Smirnov, KS; Anderson-Darling, AD; 
and Chi-squared, CS) are tested to conform the 
proposed distribution. The result is shown in Table 3.  
 In contrary, inequation (5) formulates the CARPSD 
in rainy days that tend to fall in Uniform distribution 
with a = 4.4512 and b = 7.4988 as displays in Fig. 4. 
The PDF of Uniform distribution is given 

by 1f (x)
b a

=
−

; where a ≤ x ≤ b. Then three goodness of 

fit (KS, AD and CS) are tested to accept the suggested 
distribution. We display the result in Table 4. 
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Table 4: GOF tests for Uniform distribution on net weight of 
customers’ demands in rainy operation days 

Methods KS AD CS 
Statistic 0.12385 0.24128 0.08782 
Critical value 0.3376 2.5018 3.8415 
p-value 0.95355 - 0.76697 
Degree of freedom - - 1 
Reject? No No No 
Rank 3 2 10 

  
 The next constraints of CARP are: 
 

ijk jpk

(i, j) V[S] ( j,p) S
M x x

∈ ∈

≥∑ ∑  (6) 

 
yijk∈{0, 1},∀(i,j)∈R, k = 1, 2, …,K (7) 
 
xijk∈Z+,∀(i,j)∈R, k = 1, 2, …,K (8) 
 
 Inequation (6) prohibits the formation of 
(infeasible) subtours. Integrality restrictions are given 
in Eq. 7 and 8: 
 

ijk

I if the edge (Arc) (i, j) R
Y is covered in trip k

0 otherwise

∈⎧
⎪= ⎨
⎪
⎩

 

 
 M is a large constant greater than or equal to the 
sum of traversals of edges and arcs in a given S ⊆R, V[S] 
is the set of nodes incident to the arc set S, k denotes a 
trip and K is the maximum number of trips allowed.  
 Incorporating time element into CARPTW is 
obviously difficult as it needs many time subsets to 
consider. In waste collection, total operation time 
including service time, routing time and delivery time. 
Service time is the time taken by the vehicle to collect, 
load and compress the garbage bags. In real-life 
operation and especially within a dynamic setting the 
on-site service times are subject to stochasticity.  
 In most distribution contexts, the on-site service 
time in municipal waste collection involves picking-up 
and compressing the household refusals. In most cases, 
these activities require human interaction of some form. 
The time spent on this situation could of course vary 
from few seconds to several minutes. Larsen (2001) 
convinced that using a constant service times might not 
be the most appropriate approach. Routing time is the 
time taken by the vehicle to move from one arc to 
another arc. Meanwhile delivery time is the time taken 
by the vehicle from the last customer to the dumpsite 
for disposal activity. By this means, we define the total 
operation time as: 

ijk ijk

K

x x k
(i, j) E,k 1

OT ST DT
∈ =

= +∑  (9) 

 

ijk ijk

K

x x
(i, j) E,k 1

ST OT 9
∈ =

< ≤∑  (10) 

 

ijk

K

x
(i, j) E,k 1

ST
∈ =
∑ is stochastic service time that followed 

Log-Logistic 3P with parameters a = 4.6384, b = 
8.0149 and r = 93.422 in normal days. Meanwhile in 
rainy days operation, this variable is stochasticity to 
Log-Logistic 3P with parameters a = 6.0999, b = 
14.888 and r = 95.496. Inequation (10) ensures the 
service times is not exceed the allowed operation time, 
OTxijk. In our case, OTxijk is considered as hard time 
window when only 9 hours allowed as working time 
per day. Furthermore, the disposal activity must be 
completely done before last hour (at 5 pm) as the 
dumpsite will be shut off due to security reason. We 
assumed delivery time, DT as random because the 
vehicle chooses the same path every delivery time and 
this parameter is varied by considering traffic 
congestion. We applied constraints (1)-(8) in modeling 
CARPTW. However, in programming context, we 
developed both models (CARPTW and CARPSD) 
separately for comparison purpose but both models are 
designed to produce feasible routing solution at 
minimum cost by using the same objective function. 
 
Relaxation time windows: In previous discussions, we 
highlighted that our vehicle operations are comply with 
certain time windows. The critical measurement in this 
operation is whether our vehicle can meet delivery 
time, DT without surpass the lateness or not. One 
difficulty during disposal activity is inconsistent rules 
enforcement at management level of the disposal site. 
The time window constraints as discussed in previous 
sections are hard constraints, which cannot be violated. 
This hard time window constraints increase the 
complexity of determining optimal delivery routing. 
However, in real situation the vehicles are permitted to 
dispose if they are not too late. In order to tackle this 
problem, we apply relaxation to soften hard time 
window. Soft time window in contrast, constraints can 
be violated but with a penalty cost. When the vehicle 
arrives within acceptable late delivery, it is still allowed 
to dispose off but with a penalty cost. A benchmark 
study is done by Nazif and Lee (2010) on VRP with 
Time Windows (VRPTW) and solves it with genetic 
algorithm approach. Another studies that have 
considered vehicle routing problem with time window 
constraints and have constructed penalty costs to reflect 
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violation of these time windows can be seen in 
Koskosidis et al., 1992; and Sexton and Choi, 1986. We 
depict the relationship between penalty cost and arrival 
time in Fig. 5.  
  
Penalty cost for late delivery: In the Fig. 5 above, 
arrival within normal time window is depicts as [0, s]. 
However, time window is violated within acceptable 
delay is shown in (s, S]. Vehicle operators will be 
charge a penalty cost of P1 if the arrival time is within 
this soft time window. Relation between violations of 
hard time window and penalty cost is shown by P2 if 
arrival is too late with unacceptable delay, At > S. The 
penalty cost, due to violating the upper bound of the 
time window can be formulated as:  
 

t

I t

2 t

0 if A [0,s]
P P if A A(s,S]

P if A S

⎧ =
⎪= =⎨
⎪ >⎩

 

 
 In order to determine delivery time, let DT denote 
the delivery time on the link (vn, vo). Let A and A` 
denote the set of links without traffic congestion and 
with probability of traffic congestion respectively, 
A⊆A` . For every link (vn, vo)∈A, delivery time on link 
(vn, vo) can be expressed as no oDT = β , where oβ  is a 
time parameter. Assume some links of A’ have the 
probability p of being congested. For every link (vn, 
vo)∈A`, delivery time, no o oDT p= β + β : 
 

0 n o
no

0 0 n 0

if (V ,V ) A
DT

p if (V ,V ) A`
⎧ β ∈⎪= ⎨
β + β ∈⎪⎩

 

 

 
 
Fig. 5: The relationship between arrival time and 

penalty cost 

 We extended this formula to calculate delivery 
cost, DC from node vn (last collected customer on link) 
to node vo (dumpsite). For every link (vn, vo)∈A`, 
delivery cost on link (vn, vo) can be expressed 
as no oDC = β , where oβ  is a time parameter. Delivery 
cost, DCno which affected by traffic congestion is given 
by no o oDC p= β + β : 
 

o no n o
no

o o no n o

c if (v ,v ) A
DC

(p )c if (v ,v ) A`
⎧ β ∈⎪= ⎨

β + β ∈⎪⎩
 

 
 Because of the randomness of delivery time on 
links, arrival time at dumpsite is also characterized as 
random variable. Since the real-time traffic conditions 
for every link (vn, vo) is unknown before departure from 
node vn, arrival time at the vo (dumpsite) is difficult to 
predict. We defined DTno = (s, S] as acceptable lateness 
which to be the amount of lateness between the normal 
time windows upper bound, s < DTno= S and the actual 
arrival time. We impose this lateness delivery as a soft 
time window constraint that can be violated. However, 
too late delivery is considered as hard time window. In 
real life scenario, the vehicle is totally prohibited to enter 
the landfill if its surpass 7 pm. Thus, the vehicle must 
travel back to the depot with incomplete task of that day. 
Consequently, penalty cost for incomplete mission would 
be higher (depict as P2 in Fig. 5). The penalty cost which 
incurred into delivery cost is given by: 
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Heuristic solution: It is necessary to generate a number 
of solutions to initialize the main search process. The 
choice of the initial solution is known to be important. 
Perttunen (1994) investigated whether the use of a 
constructive heuristic leads to better results than using 
random initial solutions. He found that the use of initial 
solutions generated by applying a constructive 
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heuristic, instead of a random initial solution, typically 
improve the performance of the algorithm. In this study, 
we generated the initial solution by using nearest 
procedure based on highest demand/cost ratio 
(NPHDC). NPHDC is a simple heuristic approach and 
it is similar to Nearest Neighbor (NN) and Cheapest 
Edge (CE) method. The different between the both 
methods is only on the move criterion, but the 
algorithm is almost similar. The NPHDC used highest 
demand (or demand ratio) to move from one node to 
another, while CE used least cost as its priority.  
 By using NPHDC, the vehicle starts travelling 
from the depot. It will moves from one arc to another 
with the required arc being served in a route that has 
the highest demand/cost. It will continue until all arcs 
have been served. When no remaining required arcs 
can be feasibly added to the route, the route is 
completed by the vehicle returns to the depot through 
minimum cost of deadheading path. We implemented 
nearest procedure in order to find the first service 
route after traveling from the depot. Notations of 
variables are as follows: 
 
yinit = 0, number of routes before first  
cycle starts (11) 
 
qinit = 0, initial capacity for one vehicle 
 before first cycle starts (12) 
 
cinit = 0, initial cost for one vehicle 
 before first cycle starts (13)  
 
cij , cost from point i to point j (14) 
 
Ei+1 , next successor edge (15) 
 
y = yinit + 1, count of routes after each 
 cycle starts (16) 
 
qnew = qinit + qij , capacity at route ij (17) 
 
qbalnew = q – qnew , balance of capacity 
after collection at route ij (18) 
 
cnew = cinit + cij , sum of route cost from  
depot to point i to point j (19) 
 
c = cinit + cnew , increase of cost while 
 increase the number of routes (20) 
 

qnew 
n

new
q i

q : i 1
=

= +∑ , sum of capacity from 

 point i to point n, assigned to 
capacity variable (21) 

n

ba ln ew
q i

q : w i 1
=

= − +∑ , balance capacity 

 from point i to point n, assigned 
 to balance capacity variable (22) 
 

ijnewC : c=∑ , sum of all route cost, 
 assigned to cost variable (23)  
 
qinit := qnew , new capacity reassign to 
 initial capacity after each cycle  (24)  
 
cinit := cnew , new cost reassign to  
initial cost after each cycle (25)  
 
qbalnew ≥ q , decision operator  
for capacity (26) 
 
 NPHDC build a feasible route by inserting at every 
iteration an unrouted customer into a previous 
continuity serviced routes. This process is performed 
one route a time: 
 
Step 1: Input W. Generate random number, V and E; 

depot O = initial, yinit = 0, qinit = 0, cost cinit = 0, 
capacity q = W, trip k = 0.  

Step 2: From O, k := k + 1, find the successor 
customer, Vi using NPHDC, compare and 
choose the best Vi and E(i, j). Set y = yinit + 1, 
count new weight, qnew = qinit + qij and qbalnew = 
W – qnew. Count new cost, cnew = cinit + cij. 

Step 3: If qbalnew < W, then check the next successor, 

Vi+1. Assigned
n

new
q i

q : i 1
=

= +∑ and 

n

ba ln ew
q i

q : W i 1
=

= − +∑ . If qbalnew≤ 0 then stop and 

check all serviced E(i, j). If E(i, j) = E(n-1, n) then go 
to Step 4. If E(i, j)≠E(n-1, n) then go to Step 2. 
Assigned yinit := y. Terminate all served edges 
and go to Step 2.  

Step 4: Repeat Step 3 until all served En. Assigned cnew 
:= ijnewC : c=∑ , qinit := qnew and cinit := cnew. 
Void all served y. Count all variables.  

 
RESULTS 

 
 The performance of NPHDC has been tested and 
evaluated. We modeled our case of operational waste 
collection for one identical truck is likely similar to 
road layout in our case study. This Mesh Network 
(MN) of CARP graph for 33 nodes and 54 arcs is 
shown in the Fig. 6. 
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Fig. 6: Mesh network for 33 nodes and 54 arcs 
 
Table 5: Start procedure using NPHDC 
Vx X(i, j) qij cij qij/cij 
1 X(1, 2) 150 8 18.75 
 X(1, 12) 129 4 32.25 
6 X(6, 5) 156 10 15.60 
 X(6, 7) 170 10 17.00 
25 X(25, 24) 149 7 21.30  
 X(25, 26) 135 6 22.50 
31 X(31, 30) 156 6 26.00 
 X(31, 32) 140 3 46.70 
33 X(33, 28) 118 5 23.60 
 X(33, 32) 121 2 60.50 
 
Table 6: Switching procedure according tohighest demand 
n X(i, j) qij cij qij/cij 
15 X(15, 10) 166 7 23.7 
 X(15, 14) 132 4 33.0 
 X(15, 16) 160 8 20.0 
 X(15, 22) 160 9 17.8 
 
Table 7: Initial solution of different problem instances for normal 

and rainy weather 
MN  Capacity, Normal 
------------------ W (kg) -------------------------------------------- 
#n #R  c #K CPU time (ms) 
10 13 1000 141 2 17 
15 22 3000 264 2 4 
33 54 5100 480 3 21 
50 85 9000 878 2 1028 
-------------------------------------------Rainy---------------------------------- 
10 13 1000 286 4 6 
15 22 3000 286 3 7 
33 54 5100 480 2 7 
50 85 9000 965 3 3033 
 
 We determined the characteristics of moves to 
some rules: 
 
• The trip must starts at any corner vertex. In the 

above example the first move must begin at either 
node 1, 6, 25, 31 or 33. We demonstrate the 
procedure in Table 5. Arc X (33, 32) is chosen 
according to NPHDC  

• From vertex corner, the chosen of moving 
neighborhood is based on the NPHDC 

• If collection of the truck is reaching its capacity, 
the criteria suddenly swift to highest demand. This 
variable is called pre-capacity, r which is r < W. 
Let say the truck at node 15 and the pre-capacity, r 
is set to 450 kg with initial carried quantity q = 430 
kg and maximum capacity, W = 600 kg. At node 
15, the options are as shown in Table 6. Arc X (15, 
10) is chosen with aim to maximize the collected 
demand without exceeding truck’s capacity W, that 
is q = 596kg which is less than W = 600kg. Instead 
of choosing arc X(15, 14) due to its highest ratio, 
however the capacity is not fully utilize since we 
got the total carried quantity q = 562 kg only. 

 
 We developed a computer program using C# 
language and run on Intel Celeron processor with 504 
MB RAM. We set the customers’ demands followed 
Johnson SB distribution with γ = 0.83016, δ = 0.71672, 
λ = 2.8661 and ξ = 3.7468 in normal operation days. 
Meanwhile in rainy days, the customers’ demands 
followed Uniform distribution with a = 4.4512 and b = 
7.4988. We also tested the algorithm with different sets 
of capacity, c, number of nodes and arcs. The smallest 
problem instances were set to 10 nodes and the biggest 
problem instances were set to 50 nodes. Our real case 
which is 33 nodes is considered as a moderate problem 
of CARP. The result is displays in Table 7. 
 

DISCUSSION 
 
 In this study, we solved different set of mesh 
networks of CARP models namely as CARPSD and 
CARPTW, where both models were designed based on 
different weather-type (normal and rainy). The 
developed models represent the real case of truck 
operation in waste collection specifically in Johor 
Bahru, Malaysia. We redefined the CARP almost 
similar to a mesh network and incorporating stochastic 
element in customers’ demands and time windows. 
Objectively, CARPSD and CARPTW were redefined to 
present a real-life problem of waste collection and to 
provide adequate information in modeling phase. The 
objective in this study is to find the feasible solution 
using nearest procedure based on highest demand/cost 
(NPHDC) heuristic. This heuristic works in conjunction 
with switching rules in order to maximize the collection 
without exceeding vehicle’s capacity. In general, by 
omitting the third trial, the sample results of 10, 15 and 
50 nodes showed that the same mesh network of 
CARP/CARPTW produced higher total cost and more 
trips are needed to complete all collection when 
operating in rainy days compared to normal days. We 
assumed that 10 and 15 nodes instances as low level 
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problem, 33 as intermediate and 50 as high problem of 
mesh network to solve. 
 

CONCLUSION 
 
 Our algorithm seems to produce the static result 
after considerably enough ten runs. The preliminary 
results are considered reliable and feasible as we 
expected that the higher total cost and more trips in 
rainy day operation. As far to this level, the algorithm 
produced consistent and stable output. The tested of a 
real scenario for truck operation which consists of 33 
nodes and 54 arcs is considered as moderate CARP test 
instances. Moreover, the algorithm is good from 
stability point of view. We also showed that all 
algorithms could be used to yield reasonably good 
results for the standard CARP model. The test on a 
larger customer, perhaps up to 100 nodes should be 
extended further to find more variation in the results. In 
addition, feasible solution based on Nearest Procedure 
of the Highest Demand/Cost (NPHDC) also good in 
appointing a starting point in the entire searching 
process. Lastly, we developed the algorithm without 
any intention to compete with other heuristic or 
metaheuristic methods. 
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