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Abstract: Problem statement: In this study, we derive a new sufficient condition for asymptotic 
stability of the zero solution of delay-differential system of neural networks in terms of certain matrix 
inequalities by using a discrete analog of the new Lyapunov second method. 
Conclusion/Recommendations: The problem is solved by applying a novel Lyapunov functional and 
an improved delay-dependent stability criterion is obtained in terms of a linear matrix inequality. 
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INTRODUCTION 
 
 In recent decades, neural networks have been 
extensively studied in many aspects and successfully 
applied to many fields such as pattern identifying, 
voice recognizing, system controlling, signal 
processing systems, static image treatment and 
solving nonlinear algebraic system (Alfaris et al., 
2008; Bay and Phat, 2002; Bezzarga and Bucur, 
2005; El-Said and EL-Sherbeny, 2005; Lekhmissi, 
2006; Sen, 2004; 2005a; 2005b; Sen et al., 2005; 
Sharif and Saad, 2005; Waziri et al., 2005). Such 
applications are based on the existence of equilibrium 
points and qualitative properties of systems. In 
electronic implementation, time delays occur due to 
some reasons such as circuit integration, switching 
delays of the amplifiers and communication delays, 
etc. Therefore, the study of the asymptotic stability of 
neural networks with delays is of particular 
importance to manufacturing high quality 
microelectronic neural networks.  
 In this study, we consider delay-differential 
system of neural networks of the form 
  
u(k 1) Cu(k) BS(u(k h)) f+ = − + − +  (1) 
 
where nu(k)∈Ω ⊆ R  is the neuron state vector, h 0,≥  

1 nC diag{c , ,c }= … , ic 0≥ , i 1,2,...,n=  is the n n×  
constant relaxation matrix, A  is the n n×  constant 
weight matrices, n

1 nf (f , ,f )= ∈… R  is the constant 
external input vector and T

1 1 n nS(z) [s (z ), ,s (z )]= …  with 

[ ]1
is C ,( 1,1)∈ −R  where is  is the neuron activations 

and monotonically increasing for each i 1,2,...,n= . 
 The asymptotic stability of the zero solution of 
the delay-differential system of neural networks has 
been developed during the past several years. Much 
less is known regarding the asymptotic stability of the 
zero solution of the delay-differential system of 
neural networks. Therefore, the purpose of this study 
is to establish new sufficient condition for the 
asymptotic stability of the zero solution of (1) in 
terms of certain matrix inequalities. 
 
Preliminaries: Lemma 1 (Agarwal, 1992) the zero 
solution of difference system is asymptotic stability if 
there exists a positive definite function 

nV(x(k)) : +→R R  such that: 
 

20 : V(x(k)) V(x(k 1)) V(x(k)) x(k)∃β > Δ = + − ≤ −β  
 
along the solution of the system. In the case the 
above condition holds for all x (k)∈Vδ, we say that 
the zero solution is locally asymptotically stable. 
 We present the following technical lemmas, 
which will be used in the proof of our main result. 
 
Improved stability criterion: In this section, we 
consider the new sufficient condition for asymptotic 
stability of the zero solution u∗  of (1) in terms of 
certain matrix inequalities. Without loss of generality, 
we can assume that *u 0,S(0) 0= =  and f =0 (for 
otherwise, we let *x u u= −  and 
define * *S(x) S(x u ) S(u ))= + − . 
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 Throughout this study we assume the neuron 
activations i is x( ) , i 1,2, ,n= …  is bounded and 
monotonically nondecreasing onR  and i is x( )  is 
Lipschitz continuous, that is, there exist constant 

il 0> ,  i 1 2 n= , , ,…  such that: 
  

i 1 i 2 i 1 2s (v ) s (v ) l v v ,− ≤ − 1 2v v∀ ∈, R  (2) 
 
By condition (2), i is x( )  satisfy 
 

i i i is (x ) l x ,≤  i 1,2,...,n=  (3) 
 
Where: 
 

nx(k)∈R  = The state vector 
C and B = Known constant matrices 
h (k>0) = A time-varying delay satisfying 0<h 
(k)≤h h = A positive integer 
 

MATERIALS AND METHODS 
 
 The zero solution of difference system is 
asymptotic stability if there exists a positive definite 
function nV(x(k)) : +→R R  such that: 
 

20 : V(x(k)) V(x(k 1)) V(x(k)) x(k)∃β > Δ = + − ≤ −β  
 
along the solution of the system. In the case the 
above condition holds for all x (k)∈Vδ, we say that 
the zero solution is locally asymptotically stable. 
 

RESULTS AND DISCUSSION 
  
Theorem 3.1 The zero solution of the delay-
differential system (1) is asymptotically stable if 
there exist symmetric positive definite matrices 
P,G,W  and 1 nL diag[l , , l ] 0= >… satisfying the 
following matrix inequalities: 
 

T T

T T

C PC hG P C PBL
0

LB PC LB PBL
⎛ ⎞+ −

ψ = <⎜ ⎟
⎝ ⎠

 (4)  

 
Proof Consider the Lyapunov function 

1 2V(y(k)) V (y(k)) V (y(k))= + , where: 
 

T
1V (y(k)) x (k)Px(k)= , 

 
k 1

T
2

i k h(k)
V (y(k)) (h(k) k i)x (i)Gx(i)

−

= −

= − +∑  

 

P,G  being symmetric positive definite solutions of 
(4) and [ ]y(k) x(k),x(k h(k)) .= −   
 
 Then difference of V(y(k))  along trajectory of 
solution of (1) is given by: 

1 2V(y(k)) V (y(k)) V (y(k))Δ = Δ + Δ  
 
Where: 
 
 1 1 1V (y(k)) V (x(k 1)) V (x(k))Δ = + −    

T

T

[ Cx(k) BS(x(k h(k)))] P
[ Cx(k) BS(x(k h(k)))] x (k)Px(k)
= − + −

× − + − −
T T

T T

T T

T T

x (k)[C PC P]x(k)
x (k)C PBS(x(k h(k)))
S (x(k h(k)))B PCx(k)
S (x(k h(k)))B PBS(x(k h(k))),

= −

− −

− −

+ − −
k 1

T
2

i k h(k)

k
T

i k h(k) 1

k 1
T

i k h(k)

V (x(k)) (h(k) k i)x (i)Gx(i)

(h(k) (k 1) i)x (i)Gx(i)

(h(k) k i)x (i)Gx(i),

−

= −

= − +

−

= −

⎛ ⎞
Δ = Δ − +⎜ ⎟

⎝ ⎠

= − + +

− − +

∑

∑

∑

 (5) 

     
where (3) is utilized in (5), respectively. 
          
Then we have: 
  

T T T

T T T T

T T T T

T T

V x (k)[C PC hG LA PAL P]x(k)
x (k)[C PAL C PBL LA PBL]x(k h(k))
x (k h(k))[LA PC LB PC LB PAL]x(k)
x (k h)LB PBLx(k h(k))

Δ ≤ + + −

− + + −

− − + +

+ − −

  

 
where  [ ]y(k) x(k),x(k h)= −  and: 
 

T T

T T

C PC hG P C PBL
.

LB PC LB PBL
⎛ ⎞+ −

ψ = ⎜ ⎟
⎝ ⎠

 

 
On the above estimation we use: h(k) h,≤  and 

T Th(k)x (k)Gx(k) x (k)Gx(k).≤  By the condition (4), 
V(y(k))Δ  is negative definite, namely there is a 

number 0β >  such that 2V(y(k)) y(k) ,Δ ≤ −β  and 
hence, the asymptotic stability of the system 
immediately follows from Lemma 1. This completes 
the proof.  
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Remark 1: Theorem 1 gives a sufficient condition 
for the asymptotic stability of delay-difference 
system (1) via matrix inequalities. These conditions 
are described in terms of certain symmetric matrix 
inequalities But Wahab and Mohamed (2008) these 
conditions are described in terms of certain 
nonsymmetric matrix inequalities. 

CONCLUSION 
 
 In this study, an improved delay-dependent 
stability condition for discrete-time linear systems 
with interval-like time-varying delays has been 
presented in terms of an LMI.  
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