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Abstract: Problem statement: Because of the distance between the skull and the brain and their 
different resistivity’s, Electroencephalogram (EEG) recordings on a machine is usually mixed with the 
activities generated within the area called noise. EEG signals have been used to diagnose major brain 
diseases such as Epilepsy, narcolepsy and dementia. The presence of these noises however can result 
in misdiagnosis, as such it is necessary to remove them before further analysis and processing can be 
done. Denoising is often done with Independent Component Analysis algorithms but of late Wavelet 
Transform has been utilized. Approach: In this study we utilized one of the newer Wavelet 
Transform methods, Translation-Invariant, to deny EEG signals. Different EEG signals were used to 
verify the method using the MATLAB software. Results were then compared with those of 
renowned ICA algorithms Fast ICA and Radical and evaluated using the performance measures 
Mean Square Error (MSE), Percentage Root Mean Square Difference (PRD) and Signal to Noise 
Ratio (SNR). Results: Experiments revealed that Translation-Invariant Wavelet Transform had the 
smallest MSE and PRD while having the largest SNR. Conclusion/Recommendations: This indicated 
that it performed superior to the ICA algorithms producing cleaner EEG signals which can influence 
diagnosis as well as clinical studies of the brain. 
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INTRODUCTION 

 
 The language of communication with the nervous 
system is electric so when the neurons of the human 
brain process information, they do so by changing the 
flow of electrical currents across their membranes. 
These changing currents generate electric and magnetic 
fields that can be recorded from the surface of the scalp. 
The electric fields are measured by attaching small 
electrodes to the scalp. The potentials between different 
electrodes are then amplified and recorded as the 
Electroencephalogram (EEG); which means the writing 
out of the electrical activity of the brain (that which is 
inside the head). EEG recordings therefore, show the 
overall activity of the millions of neurons in the brain.  
 The human EEG was first recorded in 1924 (Unser 
and Aldroubi, 1996) and since then it has acquired an 
important role as a diagnosis tool in medicine and brain 
research. Being a physical system however, EEG is 
subjected to random disturbance. The measurements or 
observations are generally contaminated with other 

non-cerebral signals called artifacts or noise caused by 
the electronic and mechanical components of the 
measuring devices. The recorded signal is therefore a 
sum of the true EEG signal x[t] and the non-cerebral 
noise n[t]: 
  
s[t] =x[t]+n[t]  (1) 
 
 These artifacts sometimes mimic EEG signals and 
overlay these signals resulting in distortion making 
analysis impossible. EEG is among the noisiest 
biosignals (Celka et al., 2008) and in clinical practice; 
areas with artifacts are cancelled, resulting in 
considerable information loss-resulting sometimes in 
misdiagnosis. Artifacts must therefore be eliminated or 
attenuated to ensure correct analysis and diagnosis. 
Through the years there have been different methods of 
denoising including artifacts rejection, regression and 
Principal Components Analysis (PCA). Croft and Barry 
(2000) in their study reviewed a number of these 
methods when denoising EEG signals and focused on the 
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merits of these methods. Klados et al. (2009) went on the 
compare different methods for denoising EEG and found 
them to be relatively good. The most recent methods 
utilized very often are Independent Component Analysis 
(ICA) and Wavelet Transform (WT). 
 Independent Component Analysis (ICA) originated 
from the field of Blind Source Separation (BSS) 
(Comon, 1994). In the BSS problem, a set of 
observations is given while the underlying signal 
information is hidden. The mixing weights of the 
individual signals are unknown. The BSS problem is 
aimed at identifying the source signals and/or the 
mixing weights so as to separate these information 
sources into signal domain, feature domain or model 
domain (Chien et al., 2008). The basic assumptions in 
the ICA method have the statements that the source 
signals are mutually independent and non-Gaussian 
distributed. ICA therefore calls for the separation of the 
EEG into its constituent Independent Components (ICs) 
and then eliminating the ICs that are believed to 
contribute to the noise.  
 Different types of ICA algorithms were proposed 
in the last 10-12 years. Most of them suppose that the 
sources are stationary and are based explicitly or 
implicitly on high order statistics computation. 
Therefore, Gaussian sources cannot be separated, as they 
don’t have higher than 2 statistic moments. Other types 
of algorithms do not make the stationarity hypothesis and 
use the non stationary structure of the signals (i.e., their 
time or frequency structure) to separate them. These 
methods use Second Order Statistics (SOS) only and 
they are called SOS algorithms. As EEG signals are 
highly non stationary, these type of algorithms are the 
most widely used to denoise.  
 Like ICA, Wavelet Transform (WT) has been used 
to study EEG signals (Bhatti et al., 2001; Der and 
Steinmetz, 1997; Alfaouri et al., 2009; Inuso et al., 
2007; Nenadic and Burdick, 2005; Kumar et al., 2008a; 
Unser and Aldroubi, 1996) successfully because of its 
good localization properties in time and frequency 
domain (Ghael et al., 1997). Here, the EEG signals pass 
through two complementary filters and emerge as two 
signals-approximation and details. This is called 
decomposition or analysis. The components can be 
assembled back into the original signal without loss of 
information. This process is called reconstruction or 
synthesis. The mathematical manipulation, which 
implies analysis and synthesis, is called Discrete 
Wavelet Transform (DWT) and inverse discrete 
wavelet transform. There have been many approaches 
to denoising using WT; those based on shrinkage are 
the most popular (Mastriani and Giraldez, 2006) where 
the EEG signals are decomposed into wavelets and 
noise removal done using thresholding and shrinkage.  

 Akin (2002) investigated the performance of WT 
and found that it was better in detecting brain diseases 
when compared with fast Fourier transform. Found the 
same as (Akin, 2002). Unser and Aldroubi (1996) 
went on to show that wavelets are good at denoising 
EEG signals as well as other biomedical signals. 
Wavelet transform has therefore emerged as one of the 
superior technique in analyzing non-stationary signals 
like EEG. Its capability in transforming a time domain 
signal into time and frequency localization helps to 
understand the behavior of a signal better.  
 Our research has found however that the denoising 
of EEG signals have been based on the Discrete 
Wavelet Transform (DWT) (Kumar et al., 2008b) and 
the Stationary Wavelet Transform (SWT) (Kumar et 
al., 2008a). In this study we look at another form of 
wavelet transform-Translation-Invariant proposed by 
(Coifman and Donoho, 1995), in denoising EEG. We 
have found no research which applies this method. Its 
performance is compared to known ICA methods when 
denoising the same EEG signals. We found that the 
expected performance of each is not the final result. 
From theoretical analysis and experimental results, we 
found that Translation Invariant denoising performed 
much better than any of the ICA algorithms as well as 
orthogonal wavelets.  
 The study is organized as follows. We describe WT 
and ICA for understanding then the methodology and 
experimental results for denoising are presented. 
Finally we presented the conclusion. 

 
Supporting literature: 
EEG signals: The nervous system sends commands 
and communicates by trains of electric impulses. When 
the neurons of the human brain process information 
they do so by changing the flow of electrical current 
across their membranes. These changing current 
(potential) generate electric fields that can be recorded 
from the scalp. Studies are interested in these electrical 
potentials but they can only be received by direct 
measurement. This requires a patient to under-go 
surgery for electrodes to be placed inside the head. This 
is not acceptable because of the risk to the patient. 
Researchers therefore collect recordings from the scalp 
receiving the global descriptions of the brain activity. 
Because the same potential is recorded from more than 
one electrode, signals from the electrodes are supposed 
to be highly correlated. These are collected by the use 
of an electroencephalograph and called 
Electroencephalogram (EEG) signals.  
 Understanding the brain is a huge part of 
Neuroscience and the development of EEG was for the 
elucidation of such a phenomenon. The morphology of 
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the EEG signals has been used by researches and in 
clinical practice to: 
 
• Diagnose epilepsy and see what type of seizures is 

occurring 
• Produce the most useful and important test in 

confirming a diagnosis of epilepsy 
• Check for problems with loss of consciousness or 

dementia 
• Help find out a person's chance of recovery after a 

change in consciousness 
• Find out if a person who is in a coma is brain-dead 
• Study sleep disorders, such as narcolepsy 
• Watch brain activity while a person is receiving 

general anesthesia during brain surgery 
• Help find out if a person has a physical problem (in 

the brain, spinal cord, or nervous system) or a 
mental health problem 

 
 The signals must therefore present a true and clear 
picture about brain activities. Being a physical system, 
recording electrical potentials, present EEG with 
problems; all neurons, including those outside the brain, 
communicate using electrical impulses. These non-
cerebral impulses are produced from: 
 
• Eye movements and blinking-Electrooculogram 

(EOG) 
• Cardiac Movements-Cardiograph (ECG/ EKG) 
• Muscle Movements-Electromyogram (EMG) 
• Chewing and Sucking Movement-Glossokinetic 
• The machinery used to record signals  
• The power lines  
 
 EEG recordings are therefore a combination of 
these signals called artifacts or noise and the pure EEG 
signal defined mathematically in Eq. 1. The presence of 
these noises, n(t), introduce spikes which can be 
confused with neurological rhythms. They also mimic 
EEG signals, overlaying these signals resulting in signal 
distortion (Fig. 1). Correct analysis is therefore 
impossible, resulting in misdiagnosis in the case of 
some patients. Noise must be eliminated or attenuated. 
The method of cancellation of the contaminated 
segments, although practiced, can lead to considerable 
information loss thus other methods such as Principal 
Components Analysis (PCA), the use of a dipole model 
and more recently ICA and WT have been utilized. 
 
Wavelet transform: An EEG signal is a wave which is 
an oscillating function of time or space and is periodic. 
In contrast a wavelet is a localized wave which has 

energy concentrated in time as a result it provides a 
versatile mathematical tool to analyze transient, non-
stationary or time-varying phenomena that are not 
statistically predictable. Figure 2 shows the difference 
between both a wave and a wavelet.  
 A set of wavelets are employed to approximate a 
wave or signal. This wavelet expansion of s(t) is the 
representation of the wave or signal in terms of an 
orthogonal collection of real-valued functions generated 
by applying suitable transformations to the original 
given wavelet and defined as: 
 

j,k j,k j,k j,k
j k k

s(t)= a (t) c (t)ψ + ϕ∑∑ ∑  (2) 

 
 These functions are called “daughter” wavelets 
while the original wavelet is dubbed “mother” wavelet 
defined as Eq. 3: 
 

j
j2

j,k (t) 2 (2 t k)ψ = ψ −  (3) 

 

 
 
Fig. 1: EEG contaminated with noise producing spikes 

Vs same without  
 

 
 
Fig. 2: Difference between (a) wave and (b) wavelet 
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 The collection of coefficients aj,k is based on the 
subset of scales “j” and positions “k” called is the 
Discrete Wavelet Transform (DWT) of s(t) and 
represents the “details”. The second term in Eq. 2 is the 
“approximation” based on the scaling function Eq. 4: 
 

jj
2

j,k j

t 2 k
(t) 2 ( )

2

−ϕ = ϕ  (4) 

 
 A signal can be analyzed better with an irregular 
wavelet. These are employed to approximate a signal 
and each element in the wavelet set is constructed from 
the mother wavelet, by shifting (translating or delaying) 
and scaling (dilating or compressing) it. 
 
Denoising using wavelet: Denoising stands for the 
process of removing noise i.e., unwanted information, 
present in an unknown signal. The use of wavelets for 
noise removal was first introduced by Donoho and 
Johnstone (1995). The general procedure involves three 
steps. 
 Decompose-a wavelet is chosen with a level N and 
the signal is decomposed at N using DWT to give 
coefficients at different scales having have different 
magnitudes. 
 Noise Removal-here for each level 1-N noise is 
removed from the detail coefficients using one of two 
processes: 
 
• Wavelet transforms maxima where noise is 

eliminated and maximizes the information of the 
original signal. The process of calculation is 
however unstable and the amount of calculation is 
great 

• Wavelet thresholding proposed by Donoho which 
was used in this research. 

• When threshold is applied coefficients are 
categorized. Noise normally produces coefficients 
with magnitudes smaller than those of the natural 
signal and according to Donoho and Johnstone 
basic wavelet denoising is performed by taking the 
WT of the noise-corrupted s[t] and then zeroing out 
the detail coefficients that fall below a certain 
threshold-noise. The other coefficients that are 
larger are usually caused by the desired signal  

• Kept (hard-thresholding) or  
• Shrunk (soft-thresholding) (Han et al., 2009) 
 
 Reconstruct-denoised signals are reconstructed 
from the wavelet coefficients by an inverse wavelet 
transform which is applied to the thresholded signal to 
yield an estimate for the true signal, as Eq. 5: 

( ) ( )( )( )^
1

tx[t] D s[t] W W s[t]−= = Λ  (5) 

 
where, ∧t is the diagonal thresholding operator that 
zeroes out wavelet coefficients less than the threshold, t. 
 
Independent component analysis: Independent 
Component Analysis (ICA) is an approach for the 
solution of the BSS problem (Comon, 1994). It can be 
represented mathematically according to Hyvarinen et al. 
(2001) as Eq. 6:  
 
X As n= +  (6) 
 
where, X, observed signal, represents a multi channel 
signal mixture of mutually Independent Components 
(ICs) or sources (s), n is the noise and A is the mixing 
matrix. (It can be seen that mathematically it is similar 
to Eq. 1). The problem is to determine A and recover s 
knowing only the measured signal X (equivalent to E(t) 
in Eq. 1). This result in the ultimate goal of ICA, which 
is to find an estimate of the inverse matrix W such that 
Eq. 7:

  
 u WX WAs= =  (7) 
 
where, u is the estimated ICs that are actually estimates 
of s. For this solution to work the assumption is made 
that the components are statistically independent, while 
the mixture is not. This is plausible since biological 
areas are spatially distinct and generate a specific 
activation; they however correlate in their flow of 
information (Hoffman and Falkenstien, 2008).  
 ICA is a viable tool for analyzing the activity of 
EEG signals producing outputs which are as 
independent as possible because: 
  
• The signals recorded are the combination of 

temporal ICs arising from spatially fixed sources  
• The signals tend to be transient (localized in 

time), restricted to certain ranges of temporal 
and spatial frequencies (localized in scale) and 
prominent over certain scalp regions (localized 
in space) (Makeig et al., 1996). 

 
Reasons for translation invariant: Although ICA is 
popular and for the most part does not result in much 
data loss; its performance depends on the size of the 
data set i.e., the number of signals. The larger the set, 
the  higher  the  probability  that  the effective number 
of  sources will overcome the number of channels 
(fixed over   time), resulting  in   an over complete ICA.  
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Fig. 3: Block diagram of the TI wavelet transform 
 
This algorithm might not be able to separate noise 
from the signals. Another problem with ICA 
algorithms has to do with the signals in frequency 
domain. Although noise has different distinguishing 
features, once they overlap the EEG signals ICA 
cannot filter them without discarding the true signals 
as well. This results in data loss. 
 Since wavelet analysis uses bases that are localized 
in time as well as frequency it can represent non-
stationary signals such as EEG more effectively. So, it’s 
more compact and easier to implement. WT utilizes the 
distinguishing features of the noise however. Once 
wavelet coefficients are created, noise can be identified. 
Decomposition is done at different Levels (L); DWT 
produces different scale effects (Fig. 3). Alfaouri and 
Daqrouq (2008) proved that as scales increase the WT 
of EEG and noise present different inclination. Noise 
concentrates on scale 21, decreasing significantly when 
the scale increases, while EEG concentrates on the 22-
25 scales. Elimination of the smaller scales denoises the 
EEG signals. WT therefore removes any overlapping of 
noise and EEG signals that ICA cannot filter out. 
 Denoising is applied only on the detail 
coefficients of the wavelet transform and it has been 
shown that this algorithm offers the advantages of 
smoothness and adaptation. Although simple and easy 
to use, research has shown that each thesholding 
method exhibits problems: 
 
• Hard thresholding leads to the oscillation of the 

reconstructed signal  
• Soft thresholding reduces the amplitude of the 

signal waveform (Han et al., 2009) 
 
 This method may also result in a blur of the signal 
energy over several transform details of smaller 
amplitude which may be masked in the noise. This 
results in the detail been subsequently truncated when it 
falls below the threshold. These truncations can result in 
overshooting and undershooting around discontinuities 
similar to the Gibbs phenomena in the reconstructed 
denoised signal (Coifman and Donoho, 1995).  
 Coifman and Donoho proposed a solution by 
designing a cycle spinning denoising algorithm which: 

• Shifts the signal by collection of shifts, within 
range of cycle spinning 

• Denoise each shifted signal using a threshold (hard 
or soft) 

• Inverse-shift the denoised signal to get a signal in 
the same phase as the noisy signal 

• Averaging the estimates 
 
 The Gibbs artifacts of different shifts partially 
cancel each other and the final estimate exhibits 
significantly weaker artifacts (Coifman and Donoho, 
1995). This method they called a Translation-Invariant 
(TI) denoising scheme (Fig. 3). 
 
Noise signals denoise signals: Experimental results in 
(Alfaouri and Daqrouq, 2008) confirm that single TI 
wavelet denoising performs better than the traditional 
single wavelet denoising. Research has also shown that 
TI produces smaller approximation error when 
approximating a smooth function as well as mitigating 
Gibbs artifacts when approximating a discontinuities 
function. 
 

METERIALS AND METHODS 
 
 Here we investigate TI denoising methodology to 
determine its performance. Data utilized in the 
performance tests were real, comprised of 
Electroencephalographic (EEG) signals from both 
human and animals collected from the following site: 
http://sccn.ucsd.edu/~arno/fam2data/publicly_available
_EEG_data.html. These data were of different sources 
such as: 
 
• Data set acquired is a collection of 32-channel data 

from one male subject who performed a visual task 
• Human data based on five disabled and four 

healthy subjects. The disabled subjects (1-5) were 
all wheelchair-bound but had varying 
communication and limb muscle control abilities. 
The four healthy subjects (6-9) were all male PhD 
students, age 30 who had no known neurological 
deficits. Signals were recorded at 2048 Hz 
sampling rate from 32 electrodes placed at the 
standard positions of the 10-20 international 
system 

• Data set is a collection of 32-channel data from 14 
subjects (7 males, 7 females) who performed a go-
nogo categorization task and a go-no recognition 
task on natural photographs presented very briefly 
(20 ms). Each subject responded to a total of 2500 
trials. The data is CZ referenced and is sampled at 
1000 Hz 
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• Five data sets containing quasi-stationary, noise-
free EEG signals both in normal and epileptic 
subjects. Each data set contains 100 single channel 
EEG segments of 23.6 sec duration 

 
 Experiments were conducted using the above 
mentioned signals, in Matrix Laboratory (MATLAB) 
7.8.0 (R2009) on a laptop with AMD Athlon 64×2 
Dual-core Processor 1.80 GHz. To denoise we utilized 
the Coifman and Donoho’s method divided into the 
following steps: 
  
• Signal collection: This algorithm is designed to 

denoise both natural and artificially noised EEG 
signals. They should therefore be mathematically 
defined based on Eq. 1. 

• Apply Translation Invariant Forward Wavelet 
Transform (TI_FWT) to signal 
• The number of time shifts is determined; in so 

doing signals are forcibly shifted so that their 
features change positions removing the 
undesirable oscillations which result in 
pseudo-Gibbs phenomena. The circulant shift 
by h is defined as:  

 
 ( ) ( )hS f (n) f (n h)mod N= +  (8) 

 
 Where: 
  f(n) = The signal 
  S  = Time shift operator 
  N  = The number of signals 

 
 The time-shift operator S is unitary and 

therefore invertible i.e., (Sh)
-1 = S-h 

 
• The signals are decomposed into 5 levels of DWT 

using the Symmlet family, separating noise and 
true signals. Symmlets are orthogonal and its 
regularity increases with the increase in the number 
of moments (Donoho and Johnstone, 1995). After 
experiments the number of vanishing moments 
chosen is 8 (Sym 8) 

• Choose and apply threshold value: Denoise using 
the soft-thresholding method discarding all 
coefficients below the threshold value using 
VisuShrink based on the universal threshold 
defined by Donoho and Johnstone (1995) given as 
Eq. 9: 

 

 
2T 2 log N= σ  (9) 

 
Where: 
N = The number of samples 
σ

2 = The noise power 
 
• Reconstruction of denoised EEG signal using 

inverse translation invariant forward wavelet 
transform 

• Revert signals to their original time shift and 
average the results obtained to produce the 
denoised EEG signals. The proposed algorithm 
based on time shifts can be expressed as Avg [Shift 
– Denoise -Unshift] i.e., using Eq. 8 it is defined as 
Eq. 10 and 11: 

 
 ( )h H h havg S TS (f )∈ −  (10) 

 
 Where: 
 H = The range of shifts 
 T  = The wavelet shrinkage denoising 

operator 
 H = The circular shift and the maximum of 
 H = The length of the signal N from Eq. 8  

 
 Once the signals were tested using TI_FWT, we 
tested the same signals using two successful ICA 
algorithms-FastICA and, Radical. Both algorithms were 
downloaded from the web sites of the respective 
authors. In the case of FastICA, a symmetric orthogonal 
view based on the tanh gradient function was utilized. 
 

RESULTS 
 
 Consider the contaminated EEG signal to be 
denoised in Fig. 4. This was denoised used FastICA and 
Radical ICA algorithms along with TI_FWT. The 
results can be seen in Fig. 5. This shows that the result 
using TI_FWT is better in comparison: 
 
• TI_FWT denoised 
• FastICA denoised 
• Radical denoised 
 
 To determine the effectiveness of all three methods 
the Mean Square Error (MSE), the Signal to Noise 
Ratio (SNR) and the Percentage Root Mean Square 
Difference (PRD), defined below, was calculated.  

 

 ( )

M N
2

m 1 n 1

N
2

n 0
10 N

2

n 0

2N

n 0
N

2

n 0

1
MSE [I(n,m) I'(n,m)]

MN

s (n)
SNR(dB) log

x (n)

s(n) x(n)
PRD 100%

s (n)

symbols based on eq (1)

= =

=

=

=

=

= −

=

−
= ×

∑∑

∑

∑

∑

∑

 

 (11) 
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Fig. 4: EEG signal contaminated with EOG 
 

 

 

 
 
Fig. 5: Denoised EEG signal (a) TI_FWT denoised (b) 

FastICA denoised (c) Radical denoised 
 

 
 
Fig. 6: SNR comparison of EEG signals 

 
 
Fig. 7: MSE comparison of EEG signals 
 

 
 
Fig. 8: PRD Comparison of EEG signals 
 
 SNR refers to how much signal and noise is present 
regarding just about anything and everything i.e., the 
ratio compares the level of a desired signal to the level 
of background noise. For performance, the greater the 
ratio, evidenced by a larger number, the less noise and 
the more easily it can be filtered out. Biosignals such as 
EEG commonly has below 0dB SNR therefore the 
highest SNR would be 0dB Fig. 6 shows the SNR for 
the three algorithms. 
 The MSE measures the average of the square of the 
“error” which is the amount by which the estimator 
differs from the quantity to be estimated. The difference 
occurs because of randomness or because the estimator 
doesn’t account for information that could produce a 
more accurate estimate. For a perfect fit, I(x, y) = I’(x, 
y) and MSE = 0; so, the MSE index ranges from 0 to 
infinity, with 0 corresponding to the ideal. Figure 7 
shows the results of MSE calculations. 
 PRD measures the square difference average 
between the original and reconstructed signals i.e., it 
measures the level of the distortion between the original 
signal and the reconstructed signal. The method 
determines the deformation percent in the denoised 
signal. PRD results are shown in Fig. 8. 
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DISCUSSION 
 
 Examination of Fig. 6 shows the TI_FWT has SNR 
nearer to 0 which means that performance deteriorates 
with FastICA and Radical i.e., it ranges from low to 
moderate to high noise conditions. To have the highest 
SNR clearly demonstrating that TI_FWT has filtered 
out more noise than the other algorithms and therefore 
produces cleaner signals as its result. 
 The smaller the MSE the closer the estimator is to 
the actual data. A small mean squared error means that 
the randomness reflects the data more accurately than a 
larger mean squared error. Figure 7 shows that TI_FWT 
has the smallest MSE showing that it has produced the 
signal which is nearest to the pure signal. 
 Since the variability of the signal around its 
baseline is what should be preserved and not the 
baseline itself, the performance measure used to reveal 
the accuracy of the algorithm was the variance of the 
error with   respect to the   variance   of   the    signal. 
From Fig. 8 FastICA and Radical both have higher 
values indicating that in these cases, the performances 
are weaker due to the presence of noise. 
 Research have found that Wavelet Transform is the 
best suited for denoising as far as performance goes 
because of its properties like sparsity, multiresolution 
and multiscale nature. Non-orthogonal wavelets such as 
UDWT and Multiwavelets improve the performance at 
the expense of a large overhead in their computation 
(Motwani et al., 2004). 
 

CONCLUSION 
 
 In recent years researchers have used both ICA 
algorithms and WT to denoise EEG signals. In this 
study we draw attention to Coifman and Donoho’s 
Translation invariant Wavelet Transform and its 
application to denoising EEG signals. We also 
compared its performance against two known ICA 
algorithms-FastICA and Radical. It was seen that 
TI_FWT outperformed both algorithms having the 
smallest MSE and PRD indicating a cleaner signal. This 
was confirmed as it also has the highest SNR. We 
conclude therefore that the translation invariant method 
of wavelet is an efficient technique for improving the 
quality of EEG signals.  
 

REFERENCES 
 
Akin, M., 2002. C1nals. J. Med. Syst., 26: 241-247. 

DOI: 10.1023/A:1015075101937 PMID: 12018610 

Alfaouri, M. and K. Daqrouq, 2008. ECG signal 
denoising by wavelet transform thresholding. Am 
J. Applied Sci., 5: 276-281. 
DOI:10.3844/ajassp.2008.276.281 

Alfaouri, M., K. Daqrouq, I.N. Abu-Isbeih, E.F. Khalaf 
and A.R. Al-Qawasmi et al., 2009. Quality 
evaluation of reconstructed biological signals. Am. 
J. Applied Sci., 6: 187-193. 
DOI:10.3844/ajassp.2009.187.193 

Bhatti, M.I., A. Pervaiz and M.H. Baig, 2001. EEG 
signal decomposition and improved spectral 
analysis using wavelet transform. Proceedings of 
the 23rd Annual International Conference of the 
IEEE Engineering in Medicine and Biology 
Society, Oct. 25-28, IEEE Xplore Press, Karachi, 
pp: 1862-1864. DOI: 
10.1109/IEMBS.2001.1020587  

Celka, P., K.N. Le and T.R.H. Cutmore, 2008. Noise 
reduction in rhythmic and multitrial biosignals with 
applications to event-related potentials. IEEE 
Trans. Biomed. Eng., 55: 1809-1821. DOI: 
10.1109/TBME.2008.919851 

Chien, J.T., H.L. Hsieh and S. Furui, 2008. A new 
mutual information measure for independent 
component analysis. Proceeding of the IEEE 
International Conference on Acoustics, Speech and 
Signal Processing, Mar. 31-Apr. 4, IEEE Xplore 
Press, Las Vegas, NV., pp: 1817-1820. DOI: 
10.1109/ICASSP.2008.4517985  

Coifman, R.R. and D.L. Donoho, 1995. Translation-
invariant de-noising. Yale University and Stanford 
University.  

Comon, P., 1994. Independent Component Analysis, a 
new concept? Signal Proc., 36: 287-314. DOI: 
10.1016/0165-1684(94)90029-9  

Croft, R.J. and R.J. Barry, 2000. Removal of ocular 
artifact from the EEG: A review. Clin. 
Neurophysiol., 30: 5-19. DOI: 10.1016/S0987-
7053(00)00055-1 

Der, R. and U. Steinmetz, 1997. Wavelet analysis of 
EEG signals as a tool for the investigation of the 
time architecture of cognitive processes. The 
Pennsylvania State University.  

Donoho, D.L. and I.M. Johnstone, 1995. Adapting to 
unknown smoothness via wavelet shrinkage. J. 
Am. Stat. Assoc., 90: 1200-1224.   

Ghael, S.P., A.M. Sayeed and R.G. Baraniuk, 1997. 
Improved wavelet denoising via empirical wiener 
filtering. Proc. SPIE, 3169: 389-399. DOI: 
10.1117/12.292799 

Han, J.Y., S.K. Lee and H.B. Park, 2009. Denosing 
ECG using Translation Invariant Multiwavelet. 
World Acad. Sci. Eng. Technol., 40: 140-144.  



Am. J. Applied Sci., 8 (11): 1122-1130, 2011 
 

1130 

Hoffman, S. and M. Falkenstien, 2008. The correction 
of eye blink artefacts in the EEG: A comparison of 
two prominent methods. PLoS One, 3: e3004-
e3004. PMID: 18714341 

Hyvarinen, A., J. Karhunen and E. Ojai, 2001. 
Independent Component Analysis. 1st Edn., John 
Wiley and Sons, New York, ISBN: 047140540X, 
pp: 481. 

Inuso, G., F. La Foresta, N. Mammone and F.C. 
Morabito, 2007. Wavelet-ICA methodology for 
efficient artifact removal from 
Electroencephalographic recordings. Proceedings 
of the International Joint Conference on Neural 
Networks, Aug. 12-17, IEEE Xplore Press, 
Orlando, FL., pp: 1524-1529. DOI: 
10.1109/IJCNN.2007.4371184 

Klados, M.A., C. Papadelis, C.D. Lithari and P.D. 
Bamidis, 2009. The removal of ocular artifacts 
from EEG signals: A comparison of performances 
for different methods. Proceedings of the 4th 
European Conference of the International 
Federation for Medical and Biological Engineering 
(IFMBE’09), Springer, USA., pp: 1259-1263. DOI: 
10.1007/978-3-540-89208-3_300 

Makeig, S., A.J. Bell, T.P. Jung and T.J. Sejnowski, 
1996. Independent Component Analysis of 
Electroencephalographic Data. In: Proceedings of 
the 1995 conference, Touretzky, D.S., (Ed.). MIT 
Press, San Mateo, ISBN: 0262201070, pp: 145-
151. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mastriani, M. and A.E. Giraldez, 2006. Kalman’s 
Shrinkage for Wavelet-Based Despeckling of SAR 
World Acad. Sci. Eng. Technol., 16: 278-284.   

Motwani, M.C., M.C. Gadiya, R.C., Motwani and F.C. 
Harris, Jr., 2004. Survey of image denoising 
techniques. The Pennsylvania State University.  

Nenadic, Z. and J.W. Burdick, 2005. Spike detection 
using the continuous wavelet transform. IEEE 
Trans. Biomed. Eng., 52: 74-87. DOI: 
10.1109/TBME.2004.839800 

Kumar, P.S., R. Arumuganathan, K. Sivakumar and C. 
Vimal, 2008a. A wavelet based statistical method 
for de-noising of ocular Artifacts in EEG Signals. 
Int. J. Comput. Sci. Netw. Security, 8: 87-92.  

Kumar, P.S., R. Arumuganathan, K. Sivakumar and C. 
Vimal, 2008b. Removal of ocular artifacts in the 
EEG through wavelet transform without using an 
EOG reference channel. Int. J. Open Problems 
Comput. Sci. Math., 1: 188-200.  

Unser, M. and A. Aldroubi, 1996. A review of wavelets 
in biomedical applications. Proc. IEEE, 84: 626-
638. DOI: 10.1109/5.488704 


