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Abstract: Problem statement: Fault reconstruction scheme is different from thajarity of Fault
Detection and Isolation (FDI) methods describedhm literature in the sense that it not only detect
and isolates the fault, bprovides an estimate of the fault. This approacteiy useful for incipient
faults and slow drifts, which are very difficult to deteétlso, this approach is very usefigr Fault
Tolerant Control (FTC) systems in the sense thstead of reconfiguration of the control systeéheg
faulty sensors or actuators can be corrected andithple control method catill be effectively used.
Motivated by these useful features of fault, we anterested in performing observer-based fault
reconstruction scheme for uncertain linear systéxpgroach: In this study we present a scheme to
design robust sliding mode observer for linear eayst where both faults and uncertainties are
considered. The objective is to derive a sufficiemmdition using Linear Matrix Inequalities (LMIS)
for the stability of the observer. The so-callediigglent output error injection is discussed faulfa
reconstructionResults: we get a simple sliding mode observer design feea®n and reconstruction
of faults for uncertain linear systen@onclusion: With the real model of the seventh-order aircvadt
show that the methods provided by present paper awd performances

Key words: Sliding Mode Observer (SMO), Linear Matrix Ineqtials (LMIs), fault reconstruction,
Fault Detection and Isolation (FDI)

INTRODUCTION Another approach different to residual generation
is fault estimation or fault reconstruction whichnc
Fault Detection and Isolation (FDI) has receiveddetermine the size, location and dynamics behasfior
considerable attention during the last three dexadethe fault. However, most fault reconstruction schem
both in research and in application. A fault isided as  are designed about a model, which usually possess
an abnormal condition in a system with componenfncertainties. These uncertainties could corrug th
malfunction or variation in operating condition.ufdn  yeconstruction and could produce a false alarnthig
a dynamics system may occur in all possible locatio contet, the robustness problem in fault recontibiac
such as actuators, sensors and system’s paranBters. ¢ assential.
main function of an FDI scheme is to generate amal Edwardset al. (2000) and Chamsat al. (2010)

when a fault oceurs (Fault Detect|or_1) an_d then toproposed an approach based the equivalent outport er
determine the location of the fault (fault isolafioThere . ."" _ - o
injection where the sliding mode was maintainedneve

;sogégrggr:/ea:et);:; Fglaggﬁroaiggsg.(Pgtgglea:rmlfg%jn the presence of faults which can be reconstducte

Prasannamoorthy and Devarajan 2011.under certain conditions. Later it was extendedrby

Chatchanayuenyong, 2009). The most effective mathoc®"d Edwards (2002) where sensor faults were
for model based FDI are based on observers where tifonsidered. However, uncertainty was not considered
measured plant output is compared to the outpatnof these early papers. A FDI scheme for a class eflfin
observer and the output error are used to fornsidwal ~ Systems with uncertainty was proposed by Tan and
(Patton and Frank, 2000; Chen and Patton, 199%. THEdwards (2003) who focused on minimizing theain
residual is then examined for the likelihood oflfalpy ~ between the uncertainty and the fault reconstractio
using a fixed or adaptive threshold. signal using Linear Matrix Inequalities (LMISs).
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In this study, we develop a robust sliding modehere we denot® =[E D]
observer design method for a class of uncertaigalin
systems which completely eliminate the effect of
uncertainty on state estimation and fault recorsitva.

A LMIs based sufficient condition is presented foe
existence and stability of this observer. The desig
method will applied to reconstruct actuator fauwiténg

Assumption 4: Minimum Phase Condition: All
invariant zeros of the syste,R,C) lie in the left half
plane, that is Eq. 5:

the equivalent output error injection concept. rank{SI —A R} -t K 5)
C 0
Notation:
for all complex number s with nonnegative real part
R": Denotes the n-dimensional real Euclidean  As described in Yan and Edwards (2007), under
space. For a square matrix Assumptions 3-4, there exists a non singular linear
Amin(A): Denotes the minimum eigenvaloé A transformation [x/ x,]'=Tx with x, OR"?and
In: Represents arf'rorder identity matrix o h that th i ¢ 1) i
R,: Represents the set of nonnegative real numbergz R SUC : at the ma.nceSA,E,D,C) rom (1) in
I Denotes the Euclidean norm or its inducedthe new coordinates are given by Eq. 6:
norm
A= |:A1 A2:|, E= |:O(n-p)xr:| , D =|:O(n— p)xq:|
Problem formulation: Consider an uncertain As A E. D, (6)
dynamical system described by Eq. 1: C=[0mp) G

{X =Ax +Bu +Ed(x,u,t)+ Df (t) 1) where, A, OR"P*P c OR™? is invertible. The sub-
y =Cx blocks A, As, E, D, when partitioned have the
following structure Eq. 7:
where, xOR",yOR? and uOR™ are the state vector,
output vector and input vector (the outputs of atxits) A, :[O Ay Alz} A, :|:O(P-k)xl A3l:|
( 32

respectively. AOR™ BOR™™EOR™, DOR™® R A o
andCORP"(n> p= q) are all constant matrices with Ok Ot
and C both full rank and(A,C) is detectable. The E,= E, | D, = D,,

signal  d(x,u,t):R"xR™xR" - R’ models  the
uncertainties and disturbances. The functionwhere, A;,0R"™ and A, OR®"*) for some integer
f(t):R" -~ R? denotes the fault (unknown input) that is | >0, E,,0R* and the matrixD,, 1R*is of full rank.

bounded. _ _ _ By construction, the pair (A As) is completely
For the FDI design, the following assumptions arepbservable and the eigenvalues of &e the invariant
made: zeros of the triple (A, R, C) (Edwards and Spurgeon
1998).

Assumption 1. For d(x,u,t), there exists a positive

A sliding mode observer for the system (1) is &q.
constantd,such that Eq. 2:

A (8)

ld(x,u,t) §=Cx

<q @ {R=A>2+Bu—Gl(y—§/)+GnU

Assumption 2: There is a positive constapt such that

i< where XOR" is the estimated of the state XORP is
the actuator fault (t) satisfies Eq. 3: xUR X[

the estimated of the output y. The matrices G
nxp H H
If.0<p 3) G, OR™ are observer gains that are to be designed. In

particular, G has the structure Eq. 9:
Assumption 3: Observer matching condition Eq. 4:

G, :[IL}C;& L=[L, Op ] (9)

rank(C R)= rank(R¥E k (4) b
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VLvlrlljeIF&?".‘p)(“’ = Chosen such that;A L;As;. (1-G,(CG,'C)(A- G C)e= A +0LA3 A Z?L ‘(16)
v = A nonlinear discontinuous injection
term defined by Eqg. 10: Hence the reduced order sliding motion is
) governed by A+ LiAaz;.
nu YD i -y 0
= P, (y= ) (10)  Lemma 2: under assumption 4, there exists a matrix
0 otherwise L OR™ P from structure (9) such that the matrix A

LA;is stable.

where, P,ORP? is a symmetric positive definite matrix
which will be formally defined later. The scalar
function n(y,u,t) must be upper bound on the

magnitude of the uncertainty plus the fault andsas
Eg. 11:

Proof: Using the fact that (4, Aszp) is observable if
follows that there exists a matrix , DR *"®"¥ such

that Ap, + L1,A3; is stable. Partition L from (9) as Eq. 17:

L:[Lll Oolxk :| (17)
ny,u)z|GE [d+|CD [p+n, (11) L Ok

wheren, >0 is a small positive scalar. Then, from the partition in (7), it follows that|EL8:

Subtracting observer Eq. 8 from system Eq. 1

results in the system error dynamics Eq 12: A +LA, {A” A+l A 31} (18)
O A22 + Llﬁ 31

(12) Therefore A, +LA , is stable from the stability of

{e= (A-G C)et+ Ed(x,u,ty Df (t]
All and AQZ + L12A31'

ey:Ce

where e=x-% is the state estimate error and Reduced-order Sliding mode observer design: One
e, = y- ¥ is the output estimation error. way to identify the reduced order sliding motiontas
perform a further change of coordinates according t

Firstly, two lemmas will be introduced to provide ) h
y P the nonsingular matrix Eq. 19:

the stability of sliding motion.
For system (12), consider the sliding surfacelBq.

T {' } (19)
s={e ‘ e, = Ce= 0} (13)

Hence, the matrices (A, E, D, @pm (6) and G

Lemma 1: If an ideal sliding motion takes place on ¢4 (9) are transformed to be Eq. 20:

in finite time, then the sliding dynamics are givien

the system matrix A+ L1Aaz;. 4 A 0 0

3 efeferlsere o
Proof: Assume that an ideal sliding mode exists then S 2 2 (20)
the error system (12) will become Eq. 14: G {0}

n Ip

0=C(A-G,C)e+ CEd(x,u,ty CDf (tr CQv (14)

whereg, =A, +LA,, 4,=C,A,,D,=C,D,and

In order for a unique equivalent output injectton £, = C,E,Define Eq. 21:

existe det(CG, )z 0, it follows from (14) that Eq. 15:

TLez{el} TG :{g”} (21)
e= (-G, (CG*C)((A- G C)er Ed(x,u,t} Df (t (15) e, Gz

A sliding motion insensitive to the faults and @nd choos&;, so thatg,, = 1,, G,, = 4, + a,where 4,is
uncertainties is governed then by Eq. 16: a stable design matrix. For simplicity in the suhsnt
1034
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analysis, it will be assumed thag, is symmetric (27) along the trajectory of the error system (B}
negative definite. This is not a stringent assuampti €an be calculated as follows Eq. 28:
since 4, is a design parameter.

o o V=g (P,(A +LA ) +(A ,+LA } P e
Partitioning the state estimation error (12) s (LA, ) A, ) PJe,

conformably with (20) yields Eq. 22: +§ (RA+A B)g+ 2 PC AR 2e,PLCE (28)
. +2§RPCDf
&=4€ 22)
& =4 e+ 2,6+E,d(x,u,ty D, { (tyrv Considering inequality (11) and substituting the

given in (10) into (28), we have Eq. 29:

2§RCEd 22 PCDF Zep
To show the stability of sliding motion we analyze P.g,
the dynamic performancef error system (22) using SZHPZ %H (G EHH @+H G QHH fra0e ?T)HPZ%H (29)
Lyapunov method and derive a sufficient conditfon 2
the asymptotically stability of the sliding dynamida < ZHPz &[IGEl d+| GDJp-n (k- ¢ HJ P ¢
Linear Matrix Inequalities techniques.

MATERIALSAND METHODS

Combining Eq. 29 into Eq. 28 yields:
RESULTSAND DISCUSSION .
V<el(R (A +LA)+(A+LA )P e, (30)
Theorem 1. Under Assumptions 1-4, the slidin T
motion of system (22) asspociated with the indigg *eRALTALRIG B PCAS VZHOZPU'
surface (13) is asymptotically stable if there exis
symmetric positive matrices P.OROP*(P),

P,ORPPand a matrixy OR™such that the following

If the condition (11) is satisfied, then Eq. 30 dze
written as Eq. 31 and 32:

LMI condition is satisfied Eq. 23 and 24: . [e ! g
vsi e -2y0|Rg| (31)
P1A1+AIP1+YA3+AT3YT (PZCAQT <O (23) ’
P, CA, P+ AP, Where:
Where:
Q{Pl (A+LAD+HALFLAY P, (PCAY | o))
:
L= Pl'lY (24) R, GCA, PA+ AP,
Proof: Rewriting Eq. 22 in terms of the coordinates in  f Q<0 then v <0. Thus, the observer error
(6) yields Eq. 25 and 26: dynamlt_:s (22) is asyr_nptotlcally stable. Notice tthet
Inequality (32) is not linear because of the pradyt.
e=(A+LA)e, (25) Thi_s problem can be solved by using the changes of
variables Y = BL. Therefore, Inequality (23) can then

e =1 e+ CAgt GEAXuUY COI@u (26 PoOPANd

) _ ~ Remark 1. Note that the problem of finding
Consider the following Lyapunov function symmetric positive matrices;PP, and a matrixy to

candidate Eq. 27: satisfy (23) is a standard LMI feasibility problem
; which can be solved using the standard LMI algaomith
V(el,ey){:l} E Fﬂ{q} (Gahinetet al., 1995).
y 2L 8 (27) . . .
~ . Reachability of the diding motion: In order to ensure
=¢P et B Pe the stability of the observer it is only requiredprove

that the error system (22) can be driven to thairgli
where, PROR™P™P and P,ORP are symmetric surfaces in finite time by choosing an appropriate
positive definite matrices. Then, the time deriwatof ~ 9ain n(y,u.t) in (12).
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Theorem 2: Under Assumptions 1-4, the error systemand shows how additional LMI constraints che
(22) is driven to the sliding surface and remains on it augmented to tune th&diding mode performance. One
if the gain n(y,u,t) in (12) is chosen to satisfy Eq. 33: approach is to achieyeole placement ofz, = A, +LA

in regions of the complex plane.
n(y,u,)z|GA;[k +|C,E] d,+| C,Dfp+n, (33) - - ,
Definition 1. Chilali and Gahinet (1996 subset D of
the complex planeC is called an LMI region if there
exist a symmetric matrix ROR™and a matrix
SOR™"such that Eq. 40:

where,n, is a positive scalar,,dand p are the upper
bounds of d and,frespectively.

Proof: Consider the following Lyapunov function
candidate Eq. 34: D :{ZD(C \ fo(z)=R+2zS+ 28 < }) (40)

V(e,)=€¢ R ¢ (34) The matrix A is called D-stable if all its polés In
A sub region of the complex left-half plane. As an

The derivative along the trajectory is given by 8  e€xample, the poles may be required to lie in the
following sectors:
V=e/(RA +a[P)g+ 26 PCAe JePCE
v )8+ 25 P (35)  « Disk of radius r and center (q, 0)

*26RGDE- 2% «  Conic sector centred at (0, 0) with inner argjle

[ ; , _ .+ Vertical strip -h<x<-h, <0
Using the fact that as, is stable design matrix, it

follows that Eq. 36: Chilali and Gahinet (1996) have proven that these
sectors are an LMI region described by the follayin
P4, +4;P,< 0 (36) inequalities:
By applying (2), (3) and (33), we obtain Eq. 37: -1P, P4, - qP
ap-qg  -m |0 (41)
. 1 1 1
VSZHPZ%H (GAll QJM‘ “ EJ‘H b ? ¢ qw R {(ﬂfpl +Ra,)si® @ R- R4, )Ccﬂ< (42)
P, .
-2 (y,u,t)(eﬂ;:j @7 |(Pa-aR)cos @l p+ B, )sh
2
SZHF%%MQ%HH @""HQEJ‘ Q"'H QQJP‘H (y,u,t) Pa +aP+2hR< 0 43)
~(RA4,+24R)-2hR< (

From Theorem 1, the errok(§ is asymptotically
stable. Thus, there exist an instantabhd a positive

scalar k such That Eq. 38: Therefore, the dynamics of the sliding motion are

designed by solved the LMIs (23) and (41)-(43).
le (t) < x.Ot=t, (38) _

Robust actuator fault reconstruction: From the
Theorems 1 and 2, it follows that a slidimption takes

Therefore from the definition af(y, u, t) in (33), it place in finite time and during the sliding motigq. 44:

follows that[Ot>t;:

. t)=0 and ‘g (tF | 44
V<-2n,|Pelo t2 ¢ ) &, (=0 and ¢ (tr (44)
S =2\ A i (B NV Consequently, the error dynamics fgiresliding

. o o mode is given by Eq. 45:
Integrating the last deferential inequality, ildovs
that an ideal sliding motion is achieved and maiic .
after some finite time (Utkin, 1992). Co Ve = At B U DA (1) (45)

Design of the dliding motion system matrix: This  where,u., denotes the equivalent output error injection
section considers the sliding motion desigroblem and represents the average behavior of the
1036
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discontinuous functionu(t) defined by (10), which is
necessary to maintain an ideal sliding motion

Applying the structural properties o, Bnd B in
(7), yields Eq. 46:

[Oppry 1 JC0

2 Yeq

ILJAe,
d(x, u,t) (46)
f.(t) }

[ka«r )

15 4

Suppose the case that the geometric condition (t) =H lw[

Then
T

using the
have

Im(E)n Im(D)={d  holds. by

nonsingular transformation
0 0
IM(TE) n Im(TD)={0} = Im({E })n Im({D }):{o}

follows that Im(E,,) n Im(D,,)={@ then there exists a
nonsingular matrixW OR** such that Eq. 47:

W[E,, DZZJ:P—(‘; Fﬂ
2

we

(47)

where, H, OR® " and H,OR%*Yis nonsingular. This

Uege From (10), the equivalent output error injection
signaluegcan be approximated by Eg. 51:

R8

8| +o

0, =n(Y,u,t) (51)

where,o is a small positive scalar. Define a would-be
actuator fault reconstruction:

k< (p- k) Ik:|C_21UU (52)
Then from (50) and (52) Eqg. 53:
O =F0) =HY JO 4y 1,JCHV V) (53)

- Hz— Y2|:Q<><(p—k) lk] A3e1

arbitrarily small by choice ofo then fa(t) defined by
(52) is a reconstruction for the actuator fay(l) f

An illustrative example: The method proposed in this

condition guarantees that the fault can be Con’iplete paper will now be demonstrated with an examp|e

decoupled from uncertainty.
Multiplying both sides of (46) by yields Eq. 48:

which is a seventh-order model of an aircraft (éaua
Edwards, 2007). The states are:

W[ka(p_k) Ik]C?Ueq: W[Ow(rr o IJA@1 ) bank angle (rad)
H, 07[d(xu,t) (48) r yaw rate (rad / s)
+ p rollrate (rad / s)
0 H,| f,) o
X=|0 sideslipangle (rad)
X, | washoutfilter state.
Let W, denote the last g rows of W. It follows 5, | rudder deflection (rad
from (48) that Eq. 49: | 8, |ailerondeflection (rad
W[ Oy 1JCT0e= WL 0oy 1A S, (49) The inputs are:
+ HT()
u_[ém}rudder command (rac
and since His non singular, yields Eq. 50: 8,, Jaileroncommand (rad
f(t) =HZ;W [0 ke (b K) 'JC_le o (50) The outputs are:
- H'W[ Oy L] Ag

r, | rollacceleration (rad /%
p. |yaw acceleration (rad s
¢ bankangle(rad)

X, washoutfilter state

Now, it is required to recover the equivalent otitp =
error injectionue Two practical approaches can be used.
The first approach is to pass the output of thecipn
termueq through a low-pass filter. The second approach
is to use a boundary layer to smooth out the In the notation of (1), the matrices A, B anct&h
discontinuous)., Here the approach given in (Edwards be obtained from (Tan and Edwards, 2001), whereas
and Spurgeon, 1998) will be employed to prodbee t the matrices D and& are:
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0 0 0 0 O
0 0 0 0 O

20

0

OTE=[110010qT
2g

|

It can be easily verified that the Assumptions@ 4
are satisfied. Hence, the method proposed in #pep
can be used. Performing the co-ordinate transfoomat
T to obtain the canonical form described in (6)-(7)
yields the following matrices:

—2.0722‘ —-3.6559 - 3.90

A, A
1 ={ 011 A12}= 0 -0.3828 0.249
2 0 -0.2039 0.132
0 0 0.7466

20.0205 0.3060 - 7.636(
14.8655 - 4.9725 - 7.634(
-4.8825 1.4349 0.657

A. = O(p—k)xl A31 -
? A32

0
0
-16.1024
2.7488

0
25.665
10.171
-4.742

[ -0.0000 -0.4099
0.0000 -0.9049
-0.7071 0.0811
0.7071 0.0811

0.9059
-0.3891
0.1182
0.1182

It can be verified that the system (A, E, D, C} ha
an invariant zero at -2.0722hd the pair (4, Az is
completely observable.

Observer design: Suppose that wish to assign the
eigenvalues of thesliding mode represented by the
system matrix 4, to lie in the intersection of the

following regions:

A circle of centre (0,0) and radius 5
A vertical upper bound atx-2

inner angled = 40

2.7787 5.9150 -0.780
P, =]5.9150 12.8312 0.374¢
-0.7805 0.3745 27.618:

[1.8125 0.5929 0.2844 -0.084
0.5929 0.1963 -0.0274 -0.123
0.2844 -0.0274 14.3476 -0.087
|-0.0840 -0.1233 -0.0877 13.54

P, =

[-100.942
48.9719
|-7.0770

The poles of matrixa, are located at2.2,-2.4, -

2.6 and -2.8, respectively. Consequently, the
associated gain matrices from the observer
representation in (8) are:

-0.01
-0.07f
-0.05¢

0.03!

[-0.0000 -0.0000
0.0010 -0.0000
0.0000 0.0010
-0.0000 0.0000
-0.0000 -0.0000
0.0236 -0.0007

| 0.0091 0.0199

0.0216
0.0724
0.0493
-0.0368
0.0139 -0.01¢
0.7566 -0.744
-1.2369 1.22;

G, =10x

0.0000 1.0000 0.000(
-0.0000 27.8482 -26.84¢
-0.0000 18.9579 -18.95
0.0000 -17.0234 17.0Z
0.0000 -0.0000 1.00Q(
(0379 -43.4828 43.269
-0.8814 55.2180 -55.06(

[ 0.0000
-0.0000
-0.0000

0.0000
-0.0000
-1.3269
-0.3993

G, =

Robust state estimation: In the simulations that
follow, the scalar functiom(y, u, t) from (10) was
chosen to be 200 and was chosen to be T0
Furthermore, the system was assumed to have &l init
condition: of x(0) = {0.01-0.2 0.3 0.1 00.6 0.3] and
the observer was assumed to have zero initial Gondi

A disturbance d = 3sin(0.5t) is applied to the eyst

A conic sector symmetric about the real axis, withffom t = 0. Both actuators were assumed to be yfault

The fault on the first actuator is a ramp signailegal at
t = 15sand settles at t = 2@d the fault on the second
actuator starts at t = 10s, settles at t =drid switches

~ When we refer to synthesis procedure and tht t = 20s. Figure 1 show the trajectories of syste
imposing of the constraints (23) and (41)-(43), Westates x as well as the estimates x provided by the

deduce that the Matlab’s LMI toolbox in (Gahirest
al., 1995) returns the values of,® and L:

scheme in this paper. It shows that the estimates
converge very quickly to the actual states.
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Actual
Estimate

state Xn

f=4
S 5
T
£
F 0
§ -5 H H
"0 10 20 3¢ 0 10 20 30
Time (sec) Time (sec)

Fig. 1: The system states and the observers estimat

First actuator fault First actuator fault reconstruction

0 10 20 30 0 10 20 30

Second actuator fault Second actuator fault reconstruction

0 10 20 30 0 10 20 30
Time (sec) Time (sec)

Fig. 2: Actuator fault and its reconstruction fdret
noise free simulation

First actuator fault reconstruction

First actuator fault

3
ol
1
0

o] 10 20 30 0 10 20 30

Second actuator fault

0 10 20 30 0 10 20 30
Time (sec) Time (sec)

Fig. 3: Actuator fault and its reconstruction witbise

Robust actuator faults reconstruction: A suitable
choice of the decoupling matrix is:

0
W=|0
1 0 25.665

01
-16.1024 10.171

1 0|andH=

00

Then, for any fault(t) , the signalfa(t) obtained

from (52) is a reconstruction of the fault. Figuze
shows the faults that are applied to the actuatars
well as their reconstructions. It is clear that tiding
mode observer faithfully reconstructing faults
simultaneously occurring in both actuators desttite
effect of the uncertainty and initial condition tife
system.

Figure 3 considers the case when the sensor
signals were subject to white noise of standard
deviation of 164. It shows satisfactory actuator fault
reconstruction in the presence of noise.

CONCLUSION

This study has proposed a method for robust
actuator and sensor faults reconstruction in uagert
linear systems using sliding mode observer. Contpare
to existing works, the observer in this study efiaies
completely the effect of uncertainty on the state
estimation and fault reconstruction. This method is
initially formulated to solve the problem of actoat
faults reconstruction. It is extended to the cdsgeasor
faults by the introduction of an appropriate filtdihe
simulation for a real model of the seventh-ordecrait
shows that the method provided by present paper has
good performances.
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