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Abstract: Problem statement: Over the last few decades, the oil industry haswsha growing
interest in the new risk analysis methodologiesegirat the evaluation of the uncertainties assatiate
with reservoir exploitation. In particular, the @ff is made to take all possible sources of unieits
into account so that not only the strengths bui #ie potential weaknesses of each possible teahnic
and economic exploitation strategy are highlighteplpr oach: The main parameters used to calculate
strategic information, such as the Hydrocarbon i@Qaily In Place (HOIP) and to define proper field
development plans, are porosity, fluid saturatiansl Net To Gross (NTG). These quantities are
typically obtained through the log interpretatiogess, which is an inverse problem where the main
petrophysical characteristics are calculated asattieptable minimum of a cost function. The cost
function describes the discrepancy between measaned simulated logs with the latter being
reproduced on the basis of an assumed formationem@sults. The results of the calculation
process can be affected by several uncertaintiagedeto the physics and calibration of the measguri
tools, the identification of the proper formatiorodel and the quantification of the formation model
coefficients. An effective and robust methodologhlea to provide a reliable evaluation of
petrophysical properties and the assessment adgbeciated uncertainties is presented and discussed
in this study. The log interpretation process wppraached as a linearly constrained optimization
problem, solved by coupling a Lagrange-Newton methwith a primal active set algorithm.
Conclusion: The evaluation of the uncertainties was obtaineddypling the optimization algorithm
with the Monte Carlo approach. The results obtaibgdhe application of the methodology to a real
case, where the interpretation was complicated pga characterization of the reservoir fluids, are
also presented the study.

Key words: Log interpretation, petrophysical properties, uteieties, inversion problem,
Hydrocarbon Originally In Place (HOIP), Net To Gsd®dITG), Lagrange-Newton

INTRODUCTION unknown. However, since each measured property can
be described by a mathematical relationship (fodwar
Even if the evaluation of the uncertainties in themodel) that is based on minerals and fluids fratio
well log interpretation process dates back to spes#s volumes, it is possible to couple these equatioith w
ago (Ventre, 1994; Bowers and Fitz, 2000; Hlal., the observed data and to solve the resulting ievers
2000; Vergaet al., 2001; Rocca, 2009; Verga and problem so as to infer the unknown quantities.
Rocca, 2010), the application of the risk analysis Each piece of information introduced in the
concepts to reservoir characterization is very mece interpretation process, i.e. log measurements, mode
because only modern computer science allowed rapidoefficients, can be affected by an uncertaintyt tha
processing of extremely large amounts of data. needs to be quantified and corrected wheneverlgessi
The calculation of the Hydrocarbon Originally In Wellbore measurements are generally influencedby t
Place (HOIP) is based on the evaluation of the maipresence of a mud invaded zone in the proximitthef
petrophysical parameters, i.e., porosity and watewell. Well drilling operations, in fact, requireatmud
saturation. These quantities cannot be directlyis circulated in the well. The pressure gradieriveen
measured, therefore, need to be estimated throngh #he fluids in the wellbore and in the formation uces
interpretation process consisting of combining logthe mud fluid to invade a reservoir zone around the
measurements and core data when available. Theellbore displacing the fluids originally in place
formation response is observed in the log recoslmg  (groundwater and/or hydrocarbons). Furthermore,
the minerals and fluids contributing to this respmare different types of errors can affect the available
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reservoir information. Errors can be due to inaateir since it is constituted by a set of equations dairtg
calibration of the measuring instruments, incorrectboth linear and non linear log response equations.
choice of the forward model parameters or the msysi During the development of the methodology, several
of the measurement system. Thus, some of théog response equations were analyzed and
uncertainties affecting the input of log interpteta  implemented. Linear equations were implemented for
cannot be eliminated. It follows that the impactltdse the density, neutron, sonic and GR logs. Condugtivi
uncertainties on the final results of the interatien  or resistivity log responses can be calculated by
process has to be evaluated through appropriateelecting the most suitable or preferred model:hkrc
propagation methods which need to account for théndonesia and Nigeria equations are availablethkéie
interpretation models but also for the solutionequations are non-linear, but the Indonesia ane g
algorithms. In  modern log analysis, the log models are more complicated due to the presenteof
interpretation process is treated as an inversblgmo  term expressing the shale content of the formatan.
The solution is obtained by adopting a constrainedhe purpose of this study, only the Indonesia fdanisi
optimization algorithm to automatically minimizecast ~ presented.

(or objective, or error) function. This cost furcti Let xOR" be a model configuration, i.e. the vector
represents the discrepancy between measured lag dajf the fractional volumes of the formation compaisen
and simulated log response. Even if some optinurati (solids and fluids). In the case of fluid comporsent
processes are partially probabilistic in their natgthey  subscripts w and h indicate wateg,\)and hydrocarbon
do not provide an evaluation of the uncertainty(x,), respectively, while subscripts x and u indictite
associated with the obtained results or require todractional volume of fluids in the invaded,(xand x,)
strong assumptions on the uncertainty distributionsand undisturbed (x and x,) zones, respectively. Each
characterizing the input data (Bertolatial., 2009; Sen component of vector x can range from 0-1. The
and Stoffa, 1995). function f(x): R" -~ R™ represents the system of the m

The purpose of this study is to present an algarit  forward model equations which relate the log resgsn
obtained by the integration of a Lagrange-Newtorg the fractional volumes of the formation compasen
optimization method along with a Monte Carlo gach equation represents the response of a singlefo
approach to simultaneously find the solutiontt  {he m considered logs. The forward models of dgnsit

log interpretation process, which is an inversey,clear and sonic logs are represented by linear
constrained problem and assess the uncertaintigguations of the type:

affecting the main petrophysical properties estadat
from log measurements. ns
d fi (x) :zj:lcijxj (=06 )Gy X + G K )F

MATERIALSAND METHODS 0 (Ce X T Ging X )

1)

Problem and model definition: The scientific Where, i= 1,....m refers to the |Ogs (Neutron,sﬂ@m ]
procedure for studying a physical system can bieléldv = 1 . ns refers to the solid components (for instan
into three steps: parameterization of the systemgyartz, sand, clay,...); ds the ith log response in the
forward modeling and inverse modeling. The pyre component ig€[0,1] weighs the influence of the
parameterization of the system consists in ideinfa  inyaded zone on the measurement,=(1 indicates a
minimal set of model parameters whose valuesheasure influenced only by the invaded zone, while
completely characterize the system. Forward modelin= o indicates a measure influenced only by the
consists in determining the physical laws allowingndisturbed zone).

predictions of the values of some observable gtiesii As previously mentioned, the forward model of the
for given values of the model parameters. Inversgonductivity measurements is represented by a non-
modeling is the use of actual measurements to théer |inear equation. The following empirical Indonesia
values of the model parameters (Tarantola, 1987).  Formula (Poupon and Leveaux, 1971) is an example of

In the log interpretation process, the unknowns ofy non-linear equation, where, dndicates the total
the problem are the minerals and fluids fractionalconductivity:

volumes. The forward model is mainly represented by
the log response equations, i.e., the set of empsmti

relating the log response to the fractional voluroés B | [~ Sesy L |G m%z xwu%
the formation components. In most log interpretatio fc'(x)_\/c_‘_ CaXa ™ 2% o (2)
problems, the forward model is a non-linear operato
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Where: 0.5 .
Cgandx = The clay conductivity and the clay s ]
fractional volume, respectively @ Solution
Cyand %, = The water conductivity and the water . Ot
fractional volume, respectively X o
a = The lithology coefficient Feasibility segion
mand mc2 = The cementing exponent and the
correction factor for m
n = The saturation exponent
de = The effective porosity calculated as:
(pe:Xhu+qu (3)

Fig. 1: Example of a constrained problem

If rOR™ represents the vector of the observed log ) ) ] )
values at a single depth point, then the discrepanc  Since all the considered constraints are lindw, t
between the measured and predicted response can P@blem stated by Eq. 5 can be formulated as:
defined by the residual vector e(x) = r-f(x). Itléavs

that the objective function is defined as: Minimize  obj(x)
) Subjectto ¢ (X} b 9)
. 2 1
obj(x) :EHWG(XI\Z = [We(x)] [We(x)] (4) ¢ (x)=0
where the diagonal matrixWOR™™ has been where, G and G are the equality and inequality matrix

introduced to define the weight to be assignedaithe constraints, respectively.

log. Weights are calculated by taking into accotinet The set of equality and inequality constraints

normalization factors and the noise affecting elch  define the feasible solution region of the problein.

measurement. o ] example of graphical representation of problemig9)
The minimum of the objective function often ghowed in Fig. 1. Since the absolute minimum isinot

corresponds to a physically meaningless solutiah Su e teasibility region, the feasible solution l@sone of

as negative values for fractional volumes of foiomat the constraints

components. Therefore,_ the problem has to _be The use of a computationally efficient solution

formulated so as to take into account some comgsrai A i
I : : . . method requires problem (9) to be formulated as:

classified in equality constraints(x) and inequality

constraints €x):

Minimize  obj(x)

10
Minimize  obj(x) {Subjectto ¢ (xXF I (10)
Subjectto ¢ (x) & (5)

¢ (x)=0 where, C contains all the active constraints. In

particular, equality constraints are always active;
The main equality constraints are: fractionalwhereas, the inequality constraints are activatdy i
volume balance (6) and horizontal continuity ofthey are not respected by the current solution &nd,
porosity (7): some cases, may also be deactivated. The
activation/deactivation process is based on thegiri

DX+ X+ X =1 (6)  active set method (Gilt al., 1981; Luenberger, 2003)
which is a basic algorithm used to solve inequality
Xow F X = X e T X 1 @) constrained optimization problems as in (9). Thénma

idea of the method is that the active set be deteadn

Note that Eq. 7 follows from Eq. 3 by assuming aiteratively by exploring the region of feasibilityh
homogeneous value of porosity along the invesbgati working set of constraints is selected at eactatitem.
depth of the whole log. o Then, the corresponding equality-constrained prable

The main inequality constraints impose that eachs solved (10) and a check on the optimality of the
volume component can only have non-negative véd8)es  so|ution is performed. The main advantage of this

algorithm is that each point generated in the $earc

procedure is feasible. Therefore, if the process is
1511
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terminated before reaching the solution, the teatmiy ~ Where:
point is feasible.

Therefore, the solution to equation (9) isLy= L(Xo Ao) (14)
determined by the exploration of the feasibilitgion
Q, whose boundariesoQ) are defined by the set of g, - C'A
constraints which hold exactly. Sin€ecan change at Ulo {_OCX +tﬂ (15)
0

each step of the exploration, the minimum of the

objective function strictly depends on the choseinoé

binding constraints. In other words, the inequality |, =|:H0 —CT} (16)
LU

constraints are divided in two dynamic subget<} . -C 0
SubsetC, is the matrix of the inactive constraints and

_ and:
subsetC, represents the matrix of the active ones. It
follows that, at each step of the exploration, hetrix ¢ = Jwe(x,) (17)
C changes and is defined &s Fe} .
of Hy =T W23+ Q (18)
Since it is reasonable to assume that the
petrophysical properties at different depth poiate  ; = 0f(x,) (19)

independent, problems of the form of (10) will be
solved at each depth point independently.

PP pendenty Q=X WiH,, @ 05) (20)
Problem solution: The solution of the problem as
shown in (10), depends on the choice of the optsetl It is worth noting that the objective function is
of active constraints, which define the feasibifiéggion  twice continuously differentiable in a neighborhoafd
and on the minimization of the objective function. a feasible solutionxsince the log responses are linear
Then, an Active Set method (Luenberger, 2003)with respect to x. Even if the conductivity model i
coupled with the Lagrange-Newton method (Fletchernon-linear, it is also continuously differentiab®ince
1987) needs to be applied to solve the linearlythe Lagrangian relaxation depends linearly fraynL
constrained minimization problem under the hypdthes can also be supposed twice continuously differbtdia
that the system is well-determined. The optimalin N
solution can thus be theoretically obtained in ratdi

number of steps (Fletcher, 1987). 0g, =0 - H &=-0L,
Let’'s suppose that the set of active constrairgs, TL“ . 21

the working set, is fixed. _JHR,—C8 = —gy+ CA, (21)
Let’'s now introduce the Lagrangian function: Cd, =-Cx,*+b

L(x,A) =obj(x) =AT(Cx - b) (11) Since the optimization algorithm moves only from

one feasible point to another, then there is ng lofs
where, AORPand Ai is the " Lagrange multiplier generality if it is assumed thag,swhich is the result of

(1<i<p). Then the Lagrangiaelaxation of (10) is: a generic iteration, is a feasible solution for tiiginal
problem. Thus Cx= b. Moreover let d B, and\ = Aq
Minimize L(x,\) (12)  + &, then system (21) becomes:
Let's now define a local quadratic model of Lina ry _~17rg 9,
neighborhood B of [xo, A, that is a generic feasible { c o }L\}:{ o} (22)
solution:
1 In order to reduce the computational cost, theter
a. @)=L, +D|—B5+55TH|—05 Q, in the definition of H was neglected in the Gauss-
(13) Newton approach. This approximation makes the
with & :Fx} :{X B XO} second order operator dependent only on the frdstro
5, ] [A-A, derivatives (). As a consequence, the Hessian matrix
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can be decomposed ag HA'A with A = W, real and Associate an uncertainty distribution to the log
non-singular. This implies that Hs symmetric and measures and/or to the model parameters:
positive defineJx[IN, (Ayres, 1962).

Since C is full rank and His positive definite, it e« Associate an uncertainty distribution to the log
follows that the coefficient matrix in (22) is non- measures and/or to the model parameters
singular (Luenberger, 2003). Thus, the solutionNd, <+ Generate a set S of random configuratiqrs leg
can be obtained in a closed form concluding the measuresl model parameters

following: « Determine V,p and §, distributions by solving the
inverse problem associated for each configuration
X. =X, +d, A =A (23) sOS

) . « Compute mean and confidence ajo[fog of the
Note that the solution of the linear system (22)  reguiting porosity, ¢ and water saturation, wS
requires that the inversion of the Hessian matrgxsH distributions

performed. In general, the inversion is not dinectl

computed and the use of a factorization strategy is  gensitivity analyses showed that a limited number
preferred. In the analyzed problem, taking adva®g  f random samples (approximately 100) is sufficient

the symmetry of i the following unique yeach stable values of the statistical parameters
decomposition can be calculated;s #ILDL where Lis  jo50ciated to each result.

a lower triangular matrix and D is a diagonal matri

Integration of uncertainty estimation: Theoretically,  Application to a real case: The previously described
the Monte Carlo method provides the possibility of methodology was applied to a real case (Vibetral.,
simulating a high number of measurements that,tdue 2007) represented by a deep-water exploration well
economic reasons, cannot be performed in commofntercepting a shaly sand oil bearing formationeTh
practice. In all Monte Carlo simulations, it is Besary  application has to be considered as an example tosed
to draw statistically representative samples frawery  show the potential of the methodology and should no
probability distributions (Spanier and Gelbard, 996 be taken as an exhaustive demonstration of its
The results of the process are computed for eackffectiveness. No laboratory tests were availalole t
sampling so that, after a reasonable number of BBMp characterize the conductivity equations paramefens.
a probability distribution of results can be define interpretation with a commercial software was
Thus, a suitable number of samples needs to betsele performed and the values of model parameters were
in order to obtain stable and reliable results in a@mposed by assuming a petrophysical analogy wih th
reasonable elaboration time. some nearby fields. However, the information avdda

A flexible statistical tool for Monte Carlo was different for each of the nearby fields evesutih
simulation was implemented and integrated with thethe lithology was the same; therefore, there wasisét
interpretation algorithm. The methodology providles  of parameters that could be used as a reference but
possibility of taking several sources of unceriafit rather a range for each parameter. This made eve® m
into account, Statistical distributions and randomnecessary the use of an approach capable of hgndlin
sampling can be associated not only to the inpgt lo uncertainties. The interpretation model is contgiiby
but also to the main model parameters such aswo solid components: sand (Vsand) and clay (Vclay)
conductivity model parameters, fluid density andewva The volume of clay is represented mainly by a nmixtu
resistivity as a function of salinity. of illite and montmorillonite. Mud invasion phenonze

Previous studies (Verga al., 2001) demonstrated were taken into account by splitting the fluidsl @md
that the uncertainties associated to log measursmernwater) in the flushed zone and in the undisturbaukez
can be represented by different kinds of statisticaand considering the invasion factorshowed in Eq. 1.
distributions. The implemented methodology providesThe measured curves available for the interpretatio
the possibility to associate a different statidtica were the density, neutron, GR and sonic logs aluitiy
distribution to each source of uncertainty: normal,a deep resistivity log assumed to be representative
lognormal, uniform and triangular statistical the true resistivity of the formation. The Indoresi

distributions were considered in this study. equation was adopted as conductivity model.
The steps of the algorithm can be summarized Initially, a base case interpretation scenario was
as follows. performed assuming Archie parameters n = 2 an®m =
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application of the Monte Carlo method showed that t
statistical distribution associated to porosity avater
saturation assumes different shapes, often not
symmetrical, at different depths. Therefore, inevrtb
provide a detailed uncertainty characterizatione th
results of the statistical approach were analyzed i
terms of four statistical parameters: median, steshd
deviation and percentiles 10 and 90. Figure 3-5msho
Water Bl Oil [l Quartz [ Clay [l Bound water the results obtained for simulation scenarios an@ 3,
respectively.

The uncertainties associated to the input logs
(scenario 1) have an impact on both porosity angmwa
saturation (Fig. 3). The uncertainty associated to
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Fig. 2: Base case scenario interpretation

Table 1: Simulation scenarios for uncertainty estion

fcena”os Inlész_ggm parameters po_rosity is quite constant and ranges from 1_—2 gibyo

2 m, n units for all the porosity values. If expressederms of

3 Input Log, m, n percentages, these values correspond to an umdgrtai
varying from approximately 2-15% of the calculated

Table 2: Instrumental errors porosity value. On average, the uncertainty astatia

Log GR Neutron Resistivity Sonic  Density to water saturation is 3% of the deterministic eadund,

Instrumental 5% % 10% % 0-%5 as expected, progressively reduces when water

grtl;ﬁlirstical Normal Normal Log normal Normal © Ncorr)nal saturation approaches umty'. . .

distribution The uncertainties associated with the conductivity

equation parameters m and n, (scenario 2) have a
Table 3: Uncertainty associated to conductivityatigun parameters negligible impact on porosity and a relatively sgo

Parameter Standard deviation Statistical distrputi  impact on water saturation (Fig. 4). The uncertaint
m 10% Uniform associated to porosity has an average value oft&du
n 10% Uniform porosity units and therefore, it is in accord witle

results obtained from the sensitivity analyses iotesly
The interpretation obtained for the base casaliscussed. The uncertainty associated to water
scenario, expressed in terms of formation componergaturation and expressed in terms of percentagkeof
fractional volumes and reconstructed logs versusalculated water saturation, approximately rangesf

measured logs, is shown in Fig. 2. 50% for low water saturation to 10% for high water
The evaluation of the uncertainty associated tcsaturation.
porosity and water saturation was performed adgptin In scenario 3, the impact of the uncertainty

the Monte Carlo method coupled with the inversionassociated to both input log and conductivity eiqmat
methodology while assuming the three simulationparameters on porosity and water saturation was
scenarios summarized in Table 1. evaluated (Fig. 5). The uncertainty associated to

The uncertainties associated to GR, Neutron, Soniporosity is quite constant and ranges from 1-2 gityo
and Density log measurements were represented hynits, which show no significant differences with
normal statistical distributions where the measuredespect to the results obtained for scenario 1. The
value represents the mean value and the standatohcertainty associated to water saturation andessed
deviation is equal to the instrumental error. Basad in terms of percentage of the calculated water
previous studies (Verget al., 2001), the uncertainty saturation, approximately ranges from 48% for low
associated to the resistivity log was representeda b water saturation to 10% for high water saturation,
lognormal statistical distribution. The instrumdrgeror ~ which show no significant differences with respewt
associated to each log type is given in Table 2 Ththe results obtained for scenario 2. Thereforethm
uncertainty associated to the conductivity equatiorconsidered case, the combination of two sources of
parameters was represented by a uniform statisticalncertainty, i.e., m, n and input logs did notaudiced
distribution having a standard deviation of 10%tled  any additional uncertainty in the water saturation
mean values (Table 3). estimation with respect to scenario 2.
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CONCLUSION

The goal of Formation Evaluation is to provide the
information necessary for reserves evaluation &ng t
for defining the most suitable technical and ecoigom
strategies for reservoir exploitation. Any sourcké o
errors affecting the results obtained from the log
interpretation process should be identified andsibhg
removed to ensure that reliable petrophysical
parameters are obtained, especially during the
exploration and appraisal phases of a reservoir.

The present study describes the details of the
mathematical background behind the developed
methodology of coupling the robust constrained
optimization process and the Monte Carlo approach.

When the probabilistic approach is adopted, not
only the uncertainty associated to the rock
petrophysical characteristics are quantified, et ¢he
most critical sources of uncertainty affecting ity
and water saturation can be identified for a given
formation. Therefore, a consistent reduction of the
uncertainty associated with the reservoir petrojgiays
parameters can be expected upon acquisition offgpec
additional information.

The Monte Carlo method is fully integrated into
the solution algorithm to provide the uncertainty
affecting porosity and water saturation based am th
uncertainty associated to any input variable, log
measurements and model parameters. The developed
approach was applied to an offshore exploration oil
well where a poor characterization of the shalydsan
formation complicated the interpretation.

Results showed that the uncertainty on porosity

4: Scenario 2-Median, percentiles 10 and 90 fo\yas mainly due to errors potentially affecting log

measurements and not particularly critical. Ondtieer
hand, the uncertainty on water saturation ranges
approximately from 10-50%. This is mainly due te th
uncertainty affecting the parameters in the water
saturation model. It is quite evident that the darg
uncertainty of water saturation could make the
difference on the economic reliability of a subsagju
development project. Therefore, laboratory analyees
determine the model parameters and a new, more
reliable interpretation would be recommended before
any decision is taken on the field.
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