
American Journal of Applied Sciences 7 (8): 1093-1099, 2010 
ISSN 1546-9239 
© 2010 Science Publications 

Corresponding Author: Masoud Karbasi, Department of Irrigation Engineering, University of Tehran, Iran 
1093 

 
Experimental Investigation of Cluster Bed-Form Formation 

Over Uniform Sediment 
 

Masoud Karbasi, Mohammad H. Omid and Javad Farhoudi 

Department of Irrigation Engineering, University of Tehran, Iran 
 

Abstract: Problem statement: Cluster microforms are a type of small scale bed-form found in the 
surface layer of some gravel bed rivers. These bed-forms are comprised of discrete, organized 
groupings of particles that sit above the average elevation of the surrounding bed. As part of the 
structural organization of the bed, clusters are believed to impact the local dynamics of the fluvial 
system through the feedback process involving the flow field, entrainable sediment and stable bed 
morphology. Approach: In this study, flow and sediment characteristic measured at a laboratory flume 
and the presence or absence of clusters at each of these tests was recorded. A statistical analysis using 
logistic regression was performed to examine the correlation between the occurrence of clusters and 
various non-dimension combinations of measured variables. Results: It was found that the best 
parameters for predicting the clusters presence are gd2

u/hU2
avg and gd2u/U

2
avg. In two parameters 

analysis it was found that clustering was best predicted by gd2u/U
2
avg and τb/ρU

2
avg. Conclusion: It is 

thought that these parameters work best at predicting the presence of clusters because they are 
descriptive of hydraulic and sedimentary conditions of tested reach. 
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INTRODUCTION 

 
 Geologists and engineers have long recognized 
fundamental differences between mountain channels 
and their lowland counterparts. In contrast to self-
formed flood-plain channels, the gradient and 
morphology of mountain channels are tremendously 
variable and prone to forcing by external influences. 
Montgomery and Buffington (1997) Although 
mountain channels provide important aquatic habitat 
(Frissell, 1993), supply sediment to estuaries and the 
oceans (Milliman and Syvitski, 1992) and transmit land 
use disturbances from headwater areas down through 
drainage networks, they have received relatively little 
study compared to lowland rivers. 
 Improved ability to relate morphology and 
processes in mountain channels would facilitate 
understanding and predicting their response to both 
human and natural disturbance. 
 An important characteristic of gravel-bed Rivers 
is their variable bed topography. Gravel bed Rivers 
contains two scale-classes of bed-forms: (1) macro-
scale or macro-forms, e.g., step-pool and pool-riffle 
sequences (Bowman, 1977) and (2) micro-scale or 
cluster microforms, e.g., cellular structures and pebble 
clusters (Brayshaw, 1984; Reid and Hassan, 1992; 
Church et al., 1998; Lawless and Roberts 2001; 

Papanicolaou et al., 2003). This study concentrates on 
cluster microforms. 
 Probably the Brayshaw et al. (1983) study was the 
first study highlighted the need to improve our 
understanding of the mechanisms starting cluster 
formation and disintegration and to explore their 
influence on the streambed stability. Subsequently, 
different field and laboratory studies have been 
performed and have led to the existence of two theories 
on this topic. 
 The first theory supports the idea that clusters 
provide additional bed stability. Field and laboratory 
observations of Hassan and Reid (1990); Reid and 
Hassan (1992); Church et al. (1998) and Kozlowski and 
Ergenzinger (1999), among others, suggest that clusters 
resist to high flow (i.e., they provide higher form 
resistance) and delay sediment entrainment in rivers by 
entrapping sediment particles along their perimeter and 
within the core of their structure. The laboratory 
experiments of Schuyler and Papanicolaou (2000) 
indicate similar results with the above studies. 
 The second theory is that clusters do not provide 
any additional bed stability. According to Carling and 
Orr (2000), clusters appear to break up at even lower 
bed shear stresses than those required initiating 
sediment motion of a single particle. Similarly, Billi 
(1988) concluded, from field observations in Farma 
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River, Italy, that clusters do not delay sediment 
entrainment in gravel-bed streams. 
 It is believed that the presence of such varied bed 
topography depends largely upon the interlocking of 
individual particles of different size and specific gravity, 
the near-bed flow characteristics, sediment availability, 
longitudinal slope and the prevailing sediment transport 
conditions (Brayshaw et al., 1983; Hassan and Reid, 
1990; Church et al., 1998). An improved understanding 
of the evolutionary processes of such bed forms is, 
therefore, important in gravel-bed Rivers for prediction 
of sediment transport and in-stream habitat evaluation. 
 For a cluster to form, two or more particles must 
group together. A cluster microform typically consists 
of an obstacle (the ‘core’ or ‘anchor’ sediment particle, 
which in most cases has a diameter greater than D84, 
against which a ‘stoss’-side accumulation of imbricated 
particles develops and behind which a ‘wake tail’ 
grows. 
 Storm et al. (2005) identified and classified 
individual clusters as being one of the five following 
shapes: pebble, heap, comet, line, or ring shaped 
clusters. Categories for these five types of cluster are 
determined visually based on the shape and sediment 
composition of each cluster and are used to help 
describe the heterogeneity of observed cluster shapes in 
natural field settings. Strom et al. (2004) used artificial 
glass particles as sediment and determine the conditions 
that cluster form. 
 In the previous researches, natural sediments have 
not been used to observe cluster formation. The main 
goal of this study is recognizing the conditions of flow 
and sediment in which cluster forms over uniform sized 
natural sediments. 
 

MATERIALS AND METHODS 
 
Experimental set up: One difficulty in the study of 
cluster microforms in natural streams is the fact that 
bed evolution occurs during high flow events, making it 
difficult to perform real-time flow measurements and 
bed micro topography observations during the 
formation and break up process of clusters. A 
laboratory flume study was conducted here so that 
sediment and flow conditions were precisely controlled 
and recorded at all times. 
 
Table 1: Summary of experimental conditions 

Discharge 6-87 L sec−1 
Slope 0.01 and 0.005 
Depth 0.017-0.11 m 
Average velocity 0.37-1.16 m sec−1 
Sediment size 8.73, 11.1, 15.9 and 20.1 mm 
Froude number 0.52-1.29 

 Experiments were performed in a channel of 
Perspex sides and a smooth bed made of Perspex and of 
rectangular cross-section 0.9 m width and 18 m length. 
The downstream end of the channel was provided by a 
sediment trap with a collecting basket. 
 In order to meet the goals of this study, 
experiments performed in different conditions of 
discharge, channel slope and sediment size. In these 
tests, sediment particles were distributed over the bed 
and then the flow was established over the bed. After 
30 min or reaching equilibrium conditions where we 
did not observe movement over the bed, experiment has 
been stopped and cluster formation has been assessed. 
Table 1 shows summary of experimental conditions and 
sediment sizes that have been used in this study. 
 Totally 47 experiments have been performed in our 
study.  
 
Dimensional analysis: In engineering the application 
of fluid mechanics in designs make much of the use of 
empirical results from a lot of experiments. This data is 
often difficult to present in a readable form. Even from 
graphs it may be difficult to interpret. Dimensional 
analysis provides a strategy for choosing relevant data 
and how it should be presented. This is a useful 
technique in all experimentally based areas of 
engineering. If it is possible to identify the factors 
involved in a physical situation, dimensional analysis 
can form a relationship between them. The resulting 
expressions may not at first sight appear rigorous but 
these qualitative results converted to quantitative forms 
can be used to obtain any unknown factors from 
experimental analysis. 
 In this step we should determine effective variables 
on cluster formation: 
 

avg b s uC f (U , , ,S,h,g, , ,d )= τ µ ρ ρ   (1) 

 
Where: 
g = The acceleration of gravity 
Uavg = Mean stream wise velocity 
τb = Mean bed shear stress over the experimental 

reach 
µ = Dynamic viscosity of water 
du = Diameter of uniform sediment particles that 

were used for cluster formation 
S = Slope of the channel 
h = Water depth 
ρ and ρs = Fluid and sediment densities 
 
 By dimensional analysis using Buckingham theory 
one can find non-dimension groups of variables: 
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b u s
2 2
avg avg u u avg

h gd
C , , , , ,S

U U d d U

 τ µ ρ= ϕ  ρ ρ ρ 
 (2) 

 
 Some of above non-dimension numbers are 
constant and we can ignore them. Finally these four 
non-dimension numbers have been chosen for further 
analysis: 
 

b u
1 2 3 42 2

avg avg u u avg

h gd
, , ,

U U d d U

τ µπ = π = π = π =
ρ ρ

 

 
 Multiplying and dividing combinations of non-
dimension numbers yields dimensionless variables 
that combine several possible descriptive variables 
from Eq. 1 into single predictive parameters. 
 
Statistical analysis: The statistical analysis was 
performed by using SPSS software. 
 
Logistic regression: In statistics, logistic 
regression (sometimes called the logistic 
model or logit model) is used for prediction of 
the probability of occurrence of an event by fitting data 
to a logistic curve. It is a generalized linear model used 
for binomial regression. Like many forms of regression 
analysis, it makes use of several predictor variables that 
may be either numerical or categorical.  
 Logistic regression relates the probability of 
success, π to the predictor variables in the form of: 
 

( )
Y

Y

e
x

1 e
π =

+
  (3) 

 
Where: 
 

k

i i
i 1

Y x
=

= α + β∑   (4) 

 
is the predictor statistic, the xi represents the predictor 
variables with i 1,2,3,...,k=  The fitted model 
coefficients α and βj are solved for by maximizing the 
likelihood function: 
 

( ) ( ) ( ) ( )j
j

yn 1 y

j j
j 1

x 1 x
−

=

   β = π − π   ∏l   (5) 

 
 The maximum likelihood corresponds to the values 
of βi that maximize the probability of obtaining the 
observed data. The value of π(x) ranges from 0-1 and 
represents the probability that the desired outcome will 
occur. 

 Logistic regression models predicting C as a 
function of the predictor variables were then 
systematically fitted in a stepwise manner starting with 
all bivariate models. The statistical significance of each 
predictor variable was assessed using the difference in 
the residual deviance between the bivariate models and 
the null model, where the residual deviance is defined as: 
 

( )( )RD 2ln B= − l   (6) 

 
 The goal of the statistical model is to determine 
which variable, or combination of variables, are the 
most statistically significant for predicting the 
occurrence of clusters. To do this, the statistical 
significance of each parameter and the overall ability of 
the regression model to accurately predict the 
occurrence of clusters were assessed. 
 
Model selection and assessment of predictive ability: 
Model selection was based on the assessment of a 
combination of four statistical measures: 
 
• Akaike Information Criterion (AIC): The AIC is 

defined as AIC = DR+2(n+1) where n is the 
number of predictor variables used; it is a statistical 
measure that penalizes for the inclusion of extra 
predictor variables and can be used to compare 
models with different numbers of predictor 
variables 

• The ROC curves: The ROC curves are plots of the 
model’s predicted True Positive Fraction (TPF) 
(model sensitivity) versus the model’s predicted 
False Positive Fraction (FPF) (1-specificity) over 
the full range of possible so-called ‘cut-values’, 
i.e., the value of π(x) chosen to describe between 
predicted outcomes of C = 0 and C = 1. A model 
that performs well will show a rapid increase in the 
TPF with a relatively small increase in the FPF. 
Because of the relationship between the ROC curve 
and the model’s predictive power, a simple 
integration of the ROC curve produces a single-
value statistic that is indicative of the overall 
predictive accuracy of the model. This statistic is 
known as the ‘area under the curve,’ or the AUC. 
Classification of a model’s predictive ability 
using AUC values can be based on the following 
scale: 0·5-0·6 = fail; 0·6-0·7 = poor; 0·7-0·8 = fair; 
0·8-0·9 = good; 0·9-1·0 = excellent (Miska and 
Jan, 2005) 

• Cox and Snell R2 and Nagelkerke R2: The Cox and 
Snell R2 can be interpreted like R2 in a multiple 
regression, but cannot reach a maximum value of 
1. The Nagelkerke R2 can reach a maximum of 1 
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• The true classification measure shows us that this 
rule allows us to correctly classify of the subjects 
where the predicted event was observed. For 
example true classification value of 90% shows us 
that this predictive variable can classify the 
clustered or non-clustered condition by accuracy of 
90%. Higher values of this measure show the 
accuracy of the model 

 
RESULTS 

 
One predictive variable: The predictor variables that 
performed best in describing C are listed in Table 1. 
The Wald statistic in the Table 1 and the corresponding 
significance level test the significance of each of the 
covariate and dummy independents in the model. The 
ratio of the logistic coefficient B to its standard error SE, 
squared, equals the Wald statistic. If the Wald statistic is 
significant (i.e., less than 0.05) then the parameter is 
significant in the model. The “Exp(b)” column is SPSS’s 
label for the odds ratio of the row independent with the 
dependent (minority) (Table 2). It is the predicted change 
in odds for a unit increase in the corresponding 
independent variable. Odds ratios less than 1 correspond 
to decreases and odds ratios more than 1.0 correspond to 
increases in odds. Odds ratios close to 1.0 indicate that 
unit changes in that independent variable do not affect 
the dependent variable. 

 The single best discriminator between clustered 
and nonclustered sites is 2 2

u avggd U h . The values of 

model are AIC = 28.494, AUC =  0.969   Nagelkerke 
R2 = 0.771 and true classification = 91.5%. The second 
good predictive variable is 2

u avggd U . The values: AIC = 

28.526, AUC = 0.955 Nagelkerke R Square = 0.770 and 
true classification = 85.1%. 
 An interesting note is that the inclusion of slope in 
the predictive models had the effect of making the 
predictions worse. 
 The predictive relations for the occurrence of 
clusters using 2 2

u avggd U h  and 2
u avggd U  are: 

 

( )
( )2 24.42 0.254 gd U hu avg

2 24.42 0.254 gd U hu avg

2 2
u avg

e
gd U h

1 e
 
 
 

−

−
π =

+
  (7) 

 

( )
( )26.118 23.183 gd Uu avg

26.118 23.183 gd Uu avg

2
u avg

e
gd U

1 e
 
 
 

− +

− +
π =

+
  (8) 

 
 Using the AUC classification scale, these two 
models are classified as excellent in predictive 
accuracy. Figure 1 shows plots of logistic regression 
results and corresponding ROC curves for our best 
predictive variables. 

 
Table 2: Results from the statistical analysis for one predictive relationship 
 Model      Cox and Nagelkerke  True 
Predictor variables B SE Wald Sig. Snell R2 R2 Exp(B) classification AIC AUC 
τb/ρU2

avg Variable 988.562 298.542 10.965 0.001 0.393 0.524 0.000 85.1 45.532 0.898 
 Constant -6.954 2.079 11.161 0.001   0.001    
µ/ρ Uavg du Variable 14073.870 06637.472 4.496 0.034 0.117 0.156 0.000 59.6 63.116 0.691 
 Constant -1.515 0.804 3.550 0.060   0.219    
h/du Variable -1.125 0.331 11.571 0.001 0.391 0.522 0.324 78.7 45.682 0.885 
 Constant 4.768 1.394 11.699 0.001   117.662    

2
u avggd U  Variable 23.183 7.689 9.091 0.003 0.577 0.770 1.17E+10 85.1 28.526 0.955 

 Constant -6.118 1.934 10.003 0.002   0.002    
τb/ρSUavg Variable 1.722 0.666 6.681 0.010 0.193 0.258 5.599 61.7 58.878 0.795 
 Constant -1.606 0.702 5.597 0.018   0.190    
µ/ρSU2

avg du Variable 75.850 37.473 4.097 0.043 0.111 0.149 8.74E+32 66.0 63.408 0.716 
 Constant -1.119 0.659 2.887 0.089   0.326    
h/Sdu Variable -0.002 0.001 3.961 0.047 0.101 0.135 0.998 57.4 63.953 0.685 
 Constant 1.128 0.570 3.914 0.048   3.089    

2
u avggd SU  Variable 0.060 0.020 8.849 0.003 0.392 0.523 1.061 70.2 45.576 0.896 

 Constant -2.318 0.770 9.058 0.003   0.098    
2 2
u avggd U h  Variable -0.254 0.076 11.069 0.000 0.577 .771 0.775 91.5 28.494 0.969 

 Constant 4.428 1.305 11.500 0.001   83.839    
τbdu/Uavgµ Variable 0.009 0.010 0.727 0.394 0.016 0.021 1.009 48.9 68.226 0.555 
 Constant -0.504 0.795 0.402 0.526   0.604    
τbh/ρU2

avg du Variable -26.263 22.165 1.404 0.236 0.039 0.052 0.000 55.3 67.090 0.618 
 Constant 0.930 0.725 1.648 0.199   2.535    

4
u avgbd g Uτ ρ  Variable 1942.235 628.657 9.549 0.002 0.548 0.732 0.000 87.2 31.362 0.953 

 Constant -3.814 1.131 11.361 0.001   0.022    
2

avg uh U dµ ρ  Variable -1290.700 900.255 2.056 0.152 0.050 0.067 0.000 61.7 66.536 0.635 

 Constant 0.786 0.537 2.143 0.143   2.194    
3
avgg Uµ ρ  Variable 118038.944 35054.153 11.339 0.001 0.540 0.721 0.000 91.5 32.457 0.945 

 Constant -3.670 1.046 12.301 0.000   0.025    
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 (a) (b) 
 

   
 (c) (d) 
 

Fig. 1: Plots of logistic regression results and corresponding ROC curves 
 
Table 3: Results from the statistical analysis for two predictive relationship 
 Model      Cox and Nagelkerke  True 
Predictor variables B SE Wald Sig. Snell R2  R2 Exp (B) classification AIC AUC 

π1, π2 VAR00001 925.945 322.604 8.238 0.004 0.395 0.527 0.000 83.0 47.360 0.900 
 VAR00002 3321.683 8083.056 0.169 0.681   0.000    
 Constant -6.902 2.407 11.369 0.001   0.001    
π1, π3 VAR00001 1361.794 478.304 8.106 0.004 0.592 0.790 0.000 97.9 28.856 0.965 
 VAR00003 -1.221 0.407 8.985 0.003   0.295    
 Constant -4.537 2.629 2.977 0.084   0.011    
π1, π4 VAR00001 -102.654 357.738 0.082 0.774 0.587 0.771 0.000 85.1 30.442 0.956 
 VAR00004 24.376 8.819 7.640 0.006   3.85E+10    
 Constant -5.704 2.407 5.615 0.018   0.003    
π2, π3 VAR00002 36839.711 14275.274 6.660 0.010 0.523 0.699 0.000 85.1 36.156 0.935 
 VAR00003 -1.594 0.508 9.864 0.002   0.203    
 Constant 2.870 1.737 2.728 0.099   17.634    
π2, π4 VAR00002 13256.050 10458.786 1.606 0.205 0.593 0.792 0 89.4 28.709 0.964 
 VAR00004 22.367 7.812 8.199 0.004   5.18E+09    
 Constant -7.438 2.372 9.838 0.002   0.001    
π3, π4 VAR00004 22.773 9.275 6.028 0.014 0.610 0.815 7.76E+09 89.4 26.679 0.964 
 VAR00003 -0.685 0.446 2.351 0.125   0.504    
 Constant -3.009 2.742 1.204 0.272   0.049    
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Two predictive variables: The two predictor 
variables that performed best in describing C are listed 
in Table 3. The best combinations of parameters that 
describe the clustering are π1, π3. The values of model 
are AIC = 28.857, AUC = 0.965 Nagelkerke R2 = 0.790 
and true classification = 97.9%. The predictive relation 
for the occurrence of clusters using π1, π3 is: 
 

( )
( )

( )

1 3

1 3

4.537 1361.794 0.221

1 3 4.537 1361.794 0.221

e
,

1 e

− + π − π

− + π − ππ π π =
+

 (9) 

 
DISCUSSION 

 
 The analyses were mentioned above have shown 
that, there is a statistical connection between the 
presence or absence of cluster microtopography and 
particular values of 2 2

u avggd U h  and 2
u avggd U . There are 

two key variable at this two parameter, du and avgU . 

These two variables present sedimentary and hydraulic 
characteristics of tested reach. Due to constant channel 
geometry (except slope), there is no geometry variable 
in our non-dimension parameters. It has been shown in 
the results section that slope can not statistically 
describe the cluster formation. It is believed that, there 
is a statistical connection between channel geometry 
and clustering phenomena. It needs additional study on 
other laboratory flumes with different widths.  
 

CONCLUSION 
 
 This study has focused on the identification of a 
parameter for the presence or absence of clusters in 
mountain streams. A laboratory study was conducted to 
record the presence and absence of clusters under 
different conditions of flow and sediment 
characteristics.  
 A dimensional analysis was performed to find 
meaningful dimensionless groups of variables that 
might be related to cluster formation and the statistical 
connection between the observance of clusters and the 
flow and sediment characteristics predictor variables 
was checked using logistic regression. 
 The results of this study are summarized as 
follows: 
 
• Cluster microforms can form over uniform sized 

sediment particles. This confirms Storm et al. 
(2005) and Papanicolaou (2004) findings 

• Clusters started to form once sediments began to 
move 

• Individual variables that were found to be most 
descriptive in predicting clustered topography were 

2 2
u avggd U h  and 2

u avggd U  

• The development of a logistic regression model for 
the prediction using 2 2

u avggd U h  and 2
u avggd U  

showed that these two predictive parameters 
perform excellent in discriminating between 
predicting clustered and non-clustered tests. These 
logistic regression models have AUC values that 
ranged from 0.969-0.955 

• 2 2
u avggd U hand 2

u avggd U are good predictive 

variables because they present sedimentary and 
hydraulic characteristics of tested reach 

• Two parameter analyses showed that 2
u avggd U  and 

b avgUτ ρ parameters can predict the cluster 

formation 
• Parameters in two predictive variables also 

represent sedimentary and hydraulic characteristics 
of tested reach 
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