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Abstract: Log data provide valuable insight into observable behavioural patterns, which could be 
inferred to study a learner’s cognitive processes, levels of motivation and levels of knowledge 
acquisition. To date, most of the research work has been devoted to study the different methods to 
analyze and interpret log data. Little attention, however, has been given to use log data as a tool to 
investigate the behaviour of Bayesian learner models. In this light, this article discusses how log data 
could be employed to investigate the performance of Bayesian learner models. The log data were 
firstly transformed into a set of structured dataset, which conformed to the INQPRO’s learner model. 
The transformed dataset were then fed into different versions of INQPRO’s learner model to obtain 
their predictive accuracies. From the predictive accuracies, an optimal learner model was identified. 
Empirical results indicated that the log data approach provides an efficient way to study the behaviour 
of a Bayesian learner model 
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INTRODUCTION 

 
 The log data are a chronological record of learners’ 
interactions with a computer-based learning 
environment. Log data, which may take different forms, 
can be treated as a crucial instrument to educational 
psychologies because from which behavioural data can 
be extracted, analyzed and interpreted. By analyzing 
log data, insights into valuable information about (1) 
cognitive process, motivation level and acquisition 
level of domain knowledge a learner pursues. 
Consequently, tailored pedagogical support could be 
provided, (2) how a particular learning environment 
should be further improved to enhance learners’ 
learning experiences through the graphical user 
interfaces.  
 Log data can be obtained via three common 
methods, namely, eye movement registration, protocol 
analysis and computer-registered operations[1]. The eye 
movement registration aims at capturing the part of the 
visual field the learner is paying attention on whereas 
the protocol analysis (also refers to as think-aloud 
approach), is a popular method for obtaining detailed 
report of real-time cognitive processing. Protocol 
analysis involves three steps: transcribing, segmenting 
and encoding[2]. The third type of method for obtaining 
log data is keeping track of learners’ interactions 
performed on computer programs. Interaction captured 
may include mouse-click, drag-and-drop, typing and 

many more. The advantage of computer-registered 
operations approach is that detailed activities performed 
by a learner can be captured. However, without a 
proper reasoning mechanism behind the captured 
information, reliable interpretation can hardly be 
acquired.  
 Analysis of log data can be performed in two 
modes, namely, real-time and post-hoc[1]. In real-time 
analysis, the system captures a learner’s behaviour up 
to the point in time that the analysis is performed. Such 
analysis mode is widely applied to computer-based 
learning environments. Most of the real-time analysis of 
log data, however, provides learners with a mere ad-
hoc[3] rather than the adaptive support[4]. Conversely, 
the post-hoc analysis, aims to provide a comprehensive 
yet informative analysis of the learner’s learning 
progress towards the end of a particular learning 
session. This mode of analysis is important when the 
learning environment employs exploratory or discovery 
learning approach, in which learners are given the 
freedom to explore and navigate from one interface to 
another. 
 Recent advancement in educational technology has 
shifted towards incorporating Artificial Intelligence 
(AI) into computer-based learning environments. These 
learning environments often maintain a learner model 
for each learner, which consistently inferring the 
required information from the associated log data. By 
integrating AI into the learning environment, log data 
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can be interpreted efficiently and subsequently 
pedagogical support can be tailored to learners. There 
are three types of interventions as a result of inferring 
from log data[1]: (1) supervising. The purpose of 
supervising intervention is to constrain learners within 
predefined set of allowable interactions, (2) monitoring. 
Monitoring intervention provide learners with guidance 
to complete a particular task by minimizing possible 
errors created by learners, (3) examining. Examining 
interaction aims at keeping track of actions performed 
by the learner without any interference at all. Learners 
experience complete freedom of action while 
interacting with the learning environment. 
 Little study, however, has been reported on using 
log data as a basis to study the predictive accuracies of 
learner models for a Bayesian Intelligent Tutoring 
System (ITS). In addition, little information can be 
acquired on the preprocessing and transformation of log 
data when it comes to Bayesian ITSs. Without a proper 
study on a particular Bayesian learner model, at least 
three problems could occur[5]: (1) knowledge 
representation issue, (2) tutorial action selection 
capabilities, (3) real-time inference requirement. Thus, 
the research work presented within this article aimed at 
providing a detailed methodological approach that 
begins with preprocessing of raw log data into dataset 
and subsequently feeding them into different learner 
models to overcome the mentioned challenges.  
 The next section provides an overview of 
INQPRO, which serves as prerequisite to the 
subsequent discussion on the preprocessing and 
transformation of log data. It discusses the interactive 
components in an interface from which log data are 
collected. An INQPRO’s interface and a partial 
structure of its associated Decision Network is 
presented to give reader a sense of how evidence was 
captured and probabilities were propagated before the 
mastery levels of two scientific inquiry skills, namely 
formulate-test-retest hypotheses � and identifying and 
controlling variables �, could be obtained. 
 

OVERVIEW OF INQPRO 
 
 Scientific inquiry skills are among the key 
emphases in recent science education reform. The 
importance of scientific inquiry skills can be noted from 
the recently developed computer-based learning 
environments such as the KIE[6], SimQuest[7] and SCI-
WISE[8]. To capitalize learning experience, exploratory 
learning approach is employed to provide learners with 
the freedom to practice on scientific inquiry skills. To 
be in line with current needs of current science 

education reform, a prototype named INQPRO is 
developed in this study. INQPRO consists of seven 
interfaces, namely, the Scenario (Sce), Hypothesis 
Visualization (Vz), Verification (Vf), Formula 
Investigation (Fe), Simulation Experiment (Ex), Data 
Comparison (Dc) and Feedback (Fd). By actively 
interacting with the interfaces and Intelligent 
Pedagogical Agent (hereafter Agent), learners are 
ultimately expected to command � and �. Associated 
with each interface is a static learner model, represented 
by a Decision Network (DN). The specification of 
Conditional Probability Tables (CPTs) within the DNs 
is elicited by domain experts guided by the author of 
this article. � is introduced during the modeling of the 
DNs to encode the interrelation between � and �.  
 Figure 1a shows one of the interfaces in INQPRO, 
namely, Scenario. Upon logging into Scenario, the 
Agent (Fig. 1a-�) will firstly introduce the learner with 
the various sections contained within the interface and 
subsequently with the presentation of a series of 
activities to be carried out which include selecting a 
scenario (Fig. 1a-�), formulate a hypothesis statement 
(Fig. 1a-�), identify variables (Fig. 1a-�), interact 
with data and graph (Fig. 1a-�) and formulate variable 
relationship statement (Fig. 1a-�). All the interaction 
performed such as button click, drag-and-drop, typing, 
selecting from list box, answering questions prompted 
by Agent and the like are logged without the notice of 
learners. Learners can proceed by two means: default 
learning path (by clicking the button next) or selective 
learning path (by clicking the button Go Back To…).  
 The corresponding DN for the Scenario interface is 
depicted in Fig. 1b. The DN performs both diagnostic 
and predictive reasoning[9] to acquire posterior mastery 
levels of � and � in light of receiving evidence, which 
constitutes a series of observed learner interactions). 
For instance, by performing diagnostic reasoning the 
mastery of � (node H) can be inferred from: (1) the 
structure of hypothesis statement (node 
SA_HypoStruc), (2) the position of variables stated in 
the hypothesis statement (node SA_HypoRelation) and 
(3) the frequency of explicit help requested by the 
learner to the Agent (node SA_AskHypo). Similarly, a 
learner’s mastery level for the manipulated variable 
(node ManiVar) can be inferred from whether or not the 
learner has correctly selected the manipulated variable 
(node SA  _CBoxMani)  from  the   list  down  box 
(Fig. 1a-�) and the x-axis selected (node 
SA_ManiAxis). Besides, the degree to which a learner 
is considered to have understood the variables’ 
relationship (node VarRel) can be inferred from the 
evidence    that    she   has   studied   the   graph    (node 
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Fig. 1: (a): The Scenario interface, (b): The partial 

structure of Scenario DN 
 
SA_GraphEnter) and typed in the correct statement 
describing the relationship between variables (node 
SA_VarRel). 
 Figure 2a shows another instance of INQPRO’s 
interface, namely, Hypotheses Visualization. The 
uniqueness of this interface is that it helps learners 
explicitly visualize their hypotheses through computer 
simulations. Depending on the hypothesis generated in 
Scenario interface, the computer simulation presented 
might not be similar to what the learner has in mind. It 
is predicted that the naïve concepts can be made 
explicit which subsequently allows the uncovering of 
learner’s misconceptions can be maximized. Making 
learner’s mental model explicit has been reported to be 
a vital precursor to mental model restructuring[10]. 
There are three mass (m = 50 g, m = 100 g, m = 200 g) 
from which a learner can choose from to investigate the 
relationships between mass and tempo. Having the 
mass chosen (Fig. 2a-�), learners will proceed to the 
computer simulation control section (Fig. 2a-�). A 
corresponding  computer  animation  will  be  displayed 
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Fig. 2: (a): The Hypothesis interface, (b): The partial 

structure of Hypothesis DN 
 
upon clicking the play button. Conversely, once the 
stop button is clicked, the graph halted and detail 
analysis of the simulation is reported in the Results 
section (Fig. 3b-�).  
 Figure 2b shwos the partial structure of Hypotheses 
Visualization DN. To infer the degree to which a 
learner is considered to have mastered the variables 
(node Variable_Vz) and hypothesis (node 
Hypothesis_Vz) relies on whether or not s/he is able to 
analyze the graph (node AnalyzeGraph) and has 
understood the purpose of simulation (node 
UnderstandAnimation). However, both AnalyzeGraph 
and UnderstandingAnimation cannot be observed 
directly from the interface. To obtain the posterior 
probability values for these two nodes, the network 
performs diagnostic reasoning given the instantiation of 
evidential nodes (nodes AQ_MassAni, SA_PlayAni, 
SA_DragMass, SA_ViewGraph, SA_CompareGraph 
and AQ_CompareGraph in Fig. 2b). The next section 
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will discuss about the formalism and transformation of 
log data into dataset which can be fed into different 
models of INQPRO’s dynamic learner model. 
 

LOG DATA FORMALISM 
 
 There were three main challenges when employing 
log data approach in this study: (i) to identify the 
structure of log data for storing information on learners’ 
interactions, (ii) transformation of log data into dataset 
which were learner model compliant and (iii) encoding 
time into the dataset for the purpose of DDN 
evaluation.  
 In this research, log data were stored in Microsoft 
Access 2003 database format. To maintain the 
uniqueness of the log data, each learner had a database 
file in which raw and transformed log data was stored. 
There are two aspects discussed in this section. The first 
concerning the formulation of log data to capture 
interactions from INQPRO whereas the second aspect 
focusing on how raw log data (e.g., Table 1) were pre-
processed and transformed into dataset which could be 
fed into INQPRO’s dynamic learner models. 
 In this study, identifying the appropriate structure 
for storing interaction behaviour was not a trivial task 
particularly when information within the log data was 
meant to study the predictive accuracy of a learner 
model. The raw log data (e.g., Table 1) consists of the 
following properties: 
 
• Log data is represented as a database relation � 

with n tuples, where n � {integer>0}. Each ∈ can 
be uniquely identified from the others 

• Each tuple � of � takes the form {d�, d�, d�, d	, d�, 
d
}, where d� and d� denote the name of the learner 
and interfaces, respectively. There are six 
interfaces in INQPRO and thus d� � {Sce, Vz, Vf, 
Fe, Ex, Dc}. d� denotes the interface components 
the learner interacts with. Examples of interface 
components can be the graph section, hypothesis 
section, or variable selection section. d	 represents 
the d� that an operation can performed on. The 
operations in all the interfaces have included drag-
and-drop, double click and mouse hovering. d� 
denotes the specific value selected by learners after 
performing d	 on d�. For instance in Table 1, 
d��takes the value mass = 50 g when the 50 g mass 
is selected and clicked. Lastly, d
 denotes the time 
d	 is performed 

 
Table 1: An excerpt of log data, � 

Name (d�) Interface (d�) Interface component (d�) … 
Ting Sce Hypothesis … 
Ting Sce Combobox … 
Ting Sce Agent … 

 This study did not follow the unstructured logging 
approach discussed in[1]. In[1], log data consisted of 
have multiple lines consisting symbols like @ and : 
which editing and filtering processes complicated. 
Thus, employing database rather than a text file 
approach is considered to be a better solution as 
Structured Query Language (SQL) provides efficient 
way of querying required information. The time in a log 
data represent the actual time (in the format 
HH:MM:SS) d	 is performed. Unlike most of the 
studies (e.g.,[1]) where time represents the total time a 
particular operation takes to complete. This is to reduce 
the incurred computational cost needed to compute the 
time duration for a particular operation. 
 The raw log data � depicted in Table 1, however, 
cannot be directly applicable to a DN or a DDN. Thus, 
transforming � into both DN and DDN compliant must 
be performed. The transformation process has resulted 
in the following properties: 
 
• ��can be transformed into six relations because 

INQPRO has six interfaces. Each relation ��, 
where � ∈ {Sce, Vz, Vf, Fe, Ex, Dc}, corresponds 
to a DN and an INQPRO’s interface 

• Each tuple �� of �� takes the form {d1, …, dn} 
having d1 denotes the first observable node 
whereas dn represents the last observable node of 
the corresponding DN. The total number of 
attributes, n, depends on the number of observable 
nodes in that particular DN. The original log 
data, ���, is transformed into �Sce (Table 2) and �Vz 
(Table 3). As shown in Table 2, �Sce has four 
attributes, namely, SA_CBoxMani, SA_ManiAxis, 
SA_HypoRelation and AQ_ManiVar. Each field in 
a relation resemble the corresponding observable 
node in the DN and can take one of the node’s 
states as its value. For instance in Table 2, 
SA_AskHypo, SA_CBoxMani and AQ_ManiVar 
have two states, namely, Yes and No, whereas 
SA_HypoRelation has mastery, partial-mastery and  

 
Table 2: An excerpt of transformed Scenario relation, �sce 

SA_CBox Mani SA_ManiAxis SA_Hypo Relation … 
no no partial … 
yes yes mastery … 

 
Table 3: An excerpt of transformed Hypothesis Visualization relation, 
�Vz 

SA_DragMass SA_Play Ani AQ_ManiAni … 
yes yes non-mastery … 
-  mastery … 
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Fig. 3: An excerpt of rules 
 
 non-mastery as its states. Conversely, if no 

evidence can be captured for at a particular 
interface section (e.g., Hypothesis Formulation 
Section), the corresponding nodes will be assigned 
a- and will not be  instantiated. As depicted in 
Table 3, SA_viewGraph is assigned a-indicating 
that the learner did not view the graph 

• Given a relation ��, the nth tuple of a relation �� � 
corresponds to the nth visit to that particular 
interface �. Referring to Table 1, the learner has 
exhibited the learning path: Sce → Vz → Sce → 
Vz. Visiting the Scenario (Sce) interface twice has 
resulted in two tuples for �Sce. Similarly, the 
relation �Vz has two records because the 
Hypothesis Visualization (Vz) was visited twice 

 
 Log data often contains multiple entries for a 
particular interface component. As shown in Table 1, 
the learner Ting attempted to generate the suitable 
hypothesis statement for two times, with the first at 
15:22:00 while the subsequently one at 15:22:55. 
Because of multiple entries, instantiation of the 
variables can be a challenge.  
 To tackle the problem, a set of rules is consulted 
before instantiation of variables. Figure 3 shows an 
excerpt of rules for instantiate of the node 
SA_HypoRelation. Based on the rules and log data 
(Table 1), SA_HypoRelation shall be instantiated to 
partial-mastery. 
 

MATERIALS AND METHODS 
 
Inqpro’s dynamic learner models: In this research, 
discussion on how transformed dataset presented in the 
previous section could be employed to study the 
behaviour exhibited by a learner model. To begin with, 
this article firstly discusses the different versions of 
INQPRO’s learner model and subsequently followed by 
the method employed to feed dataset into the learner 
models. 

 In this research, the INQPRO’s dynamic learner 
model, which takes the form of a Dynamic Decision 
Network (DDN)[11], was employed to assess the two 
temporally variable scientific inquiry skills. Employing 
a DDN is crucial in this research work for three 
reasons. First, modeling the evolving scientific inquiry 
skills is difficult. Often, the level of mastery of a 
scientific inquiry skill at time t depends on its 
immediate past. Second, freedom in navigating from 
one interface to another introduces complexity in 
predetermining a DDN.  
 A predetermined DDN can easily become 
computationally intractable as it exhibits 5n state spaces 
(combination of different navigation paths) with n ∈ 
{Integer > 0}. Third, employing a static Decision 
Network will resort to reinterpretation of new evidence 
over previous evidence[11]. In order to overcome this 
drawback, a DDN is employed instead of a static 
Decision network. This research work has employed 
three different DDN models, 
1, 
2 and 
3, in search 
of the optimal one. In this subsection, each model will 
be briefly discussed. Detailed discussion about the 
models, however, can be found in the author’s other 
work[12,13]. 
� 
1 (Fig. 4) resemble the commonly employed 
DDN model in the existing probabilistic ITS (e.g.,[5]). 
The main characteristic of this model is that it 
aggregates static DNs by introducing arcs (the dotted 
arcs, Fig. 4) among the dynamic nodes between 
different time-slices. The dynamic nodes are nodes H, 
V and K (Fig. 4) which evolve across time. The DDN is 
generated based on the information contained in log 
data presented in Table 1.  
 Each time-slice represent the INQPRO’s interface 
navigated by the learner. Because there are four 
interfaces navigated by the learner Ting, a DDN with 
four time-slices was generated. By querying the 
posterior probabilities of �, � and � at time t3, the final 
mastery levels of the evolving scientific inquiry skills 
can be acquired.  
 Figure 5 shows the DDN model 
2. Different 
from 
1, 
2 has extra nodes, namely, KS , S�  and S� . 
These nodes are static nodes, which are introduced to 
capture the levels of mastery of �, � and � which are 
initially unknown and their gradual changes. The 
gradual changes can be captured through the arc that 
stretches from a static node to its corresponding 
dynamic node (e.g., KS →�gui

n ). It captures the idea that 
the belief  of dynamic node is conditioned upon its 
static node. 
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Fig. 4: INQPRO’s learner model 
1 
 

 
 
Fig. 5: INQPRO’s learner model 
2 
 

 
 
Fig. 6: INQPRO’s learner model 
� 
 
Figure 6 shows the third DDN model, 
3, employed in 
this research work. Similar to 
2, 
3 has three static 
nodes. However, the only difference is that the causal 
dependencies between these nodes resemble those 
between the dynamic nodes in each time-slice: V → H, 
V → S and H → S. Rather than having the dynamic 
node (node K) conditioned upon the static node K( )S , 
the posterior probability of KS  can be retrieved once 
the probability of S�  and S�  are known. 

FEEDING DATASET INTO 
LEARNER MODELS 

 
 Research has shown that there have been three 
approaches to evaluate a learner model. The first 
approach is through simulated learners[14]. The 
challenge of this approach is that the generated 
simulated learners might not be able to represent the 
real human learners because it is impossible to consider 
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all personalz traits. The second approach is via human 
learners[5,15]. Such approach has been widely accepted 
and implemented. The approach, however, requires 
substantial amount of participants each learner model to 
be evaluated. Not only the number of participants must 
be sufficient, but the participants must represent three 
different categories of learners, namely, weak, 
moderate and advance. Because of the constraints, a fair 
comparison of all learner models can hardly be made. 
The third approach is evaluation of learner models 
through log data, which is implemented and discussed 
in this research work. Because log data employed for 
different versions of learner model has been 
standardized for all the evaluations, a fair comparison 
between the learner models can be made. 
 Figure 7 provides a high-level procedure of how 
the transformed log data (e.g., Table 1) can be used to 
evaluate different versions of INQPRO’s learner model, 
which take different versions of a DDN. The algorithm 
takes a log data as input and returns the final mastery 
levels of scientific inquiry skills. As depicted in Fig. 7, 
the process begins with feeding L (e.g., Table 1) into 
the  algorithm   DDNNodesInstantiation()   (Line   1, 
Fig. 7). Given L, the function RetrieveGUIs() (Line 10, 
Fig. 7) extracts a sequence of interfaces navigated by a 
learner and stores them into an array ��DDN. A DDN is 
then generated based on �DDN via the function 
GenerateDDN() (Line  11,  Fig.  7). Before instantiation  
 

1. Algorithm DDNNodesInstantiation (L)
2. Input:L = Log data
3.
4. DDN = DDN generated based on L
5. �DDN ← Array of interfaces { �1,…,��n} recorded in L

6. � = An instance of interface in �DDN

7. �� ∈ {�Sce, �Vz, �Vf, �Fe, �Ex, �Dc}

8. i� = Number of visits for a particular interface �
9.
10. �DDN ← RetrieveGUIs (L)

11. GenerateDDN ( �DDN)

12. Σi� = 0
13.
14. For each �  in �DDN

15. i� = i� + 1

16. RetrieveRelation?(��)

17. RetrieveRow ( i�)

18. SetNodeEvidence (DDN, �)
19. Next
20. UpdateNetwork ()
21. Output: Posterior probabilities of node H, V, and K  

 
Fig. 7: Algorithm for instantiation of nodes in a DDN 

of nodes can be done, the each i� is initialized to zero. 
For each interface � in the array �DDN, the 
corresponding i�� �is added with 1. For instance, when the 
interface Scenario is firstly visited by the learner, iSce 
will take the value 1, iSce will be set to 2 when the 
similar interface is revisited for the second time. In 
addition, the value of i� determines which row of the 
corresponding relation �� is to be retrieved. The next 
process is to retrieve the corresponding relation ��. 
That is, when is � is assigned the value Scenario, the 
relation �Sce will be retrieved. Given the value of i� and 
the relation ��, the corresponding row is retrieved via 
the function RetrieveRow() (Line 17, Fig. 7). Lastly, 
the function SetNodeEvidence() (Line 18, Fig. 7) 
instantiates the nodes of the DDN by using the values 
from the retrieved row. Once the nodes are instantiated, 
the DDN can be updated via the function 
UpdateNetwork() (Line 20, Fig. 7). Updating the DDN 
allows the posterior probabilities of nodes V, H and K 
to be revealed. 
 

RESULTS AND DISCUSSION 
 
 To demonstrate the importance of log data 
approach to determine optimal INQPRO’s learner 
model, a two phase empirical study was conducted. 
Learners participated in both phases of evaluation 
involved in a series of activities, which had included a 
session that lasted at most 90 min involving a pretest, a 
session to INQPRO and a posttest. The results of pretest 
and posttest were calculated and the learners’ 
interactions with INQPRO were logged. To illustrate 
the application of log data to finding of optimal learner 
model, let �30 denotes the first set of log data collected 
from 30 learners whereas �46 represents the second set 
of log data collected from 46 learners. There was no 
similar learner who participated in both phases of 
evaluation. The matching accuracies of �, � and � 
were computed by comparing the classifications elicited 
by the DDN models with the results obtained from the 
pretest and posttest. During the first evaluation phase, 

1 was employed in the INQPRO learning 
environment.  
 Table 4 shows the matching accuracies elicited by 

1. The low accuracy for � at the pretest was largely 
due to the misclassification of learners into partial-
mastery level while in actual fact these learners were 
graded as non-mastery by the pretest. Such difference 
was largely because learners did learn about variables 
while they were attempting the pretest.  
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Table 4: Accuracies given by 
1 using �30 

#(%) matched classification 
------------------------------------------------------------------------------------ 
 Pretest (n = 30) Posttest (n = 30) 

� 24(80.0) 25(83.3) 

� 10(33.3) 20(66.7) 

� 4(13.3) 22(73.3) 

 
Table 5: Matching accuracies given by 
2 and 
3 using �30 

# (%) matched classification 
------------------------------------------------------------------------------------ 
 
2  
3 
 ------------------------------ ------------------------------- 
 Pretest  Posttest  Pretest  Posttest  

� 22(73.3) 4(13.3) 22(73.3) 25(83.3) 

� 17(56.7) 20(66.7) 20(66.7) 20(66.7) 

� 15(50.0) 22(73.3) 15(50.0) 22(73.3) 

 

 
 
Fig. 8: The mastery level of � as modeled by 
1, 
2 

and 
3 
 
 The similar set of log data was given to six domain 
experts to further investigate the behaviour. Despite the 
promising results demonstrated at the posttest section in 
Table 1, the experts rejected 
1. The experts argued 
that the mastery levels of the skills should not differ 
greatly from one interface to another (Fig. 8). Thus a 
low overall average (58.53%) was given by experts to 

1

[11]. 
 Table 5 displays the matching accuracies of 
2 
and 
3 using the similar set of log data. Although an 
increment of 36.7% can be observed for � at the pretest 
when 
2 was employed, � dropped to 13.3%. When 
the probabilities of � are plotted on graph, only a small 
amount of changes can be observed (
2, Fig. 8). Such 
phenomenon is due to the fact that probabilities cannot 
propagate  from  the  children  nodes  of  KS - KS   itself. 

Table 6: Comparison of matching accuracies given by 
1, 
2 and 
using �46 

Percentage of matched classification (n = 46) 
------------------------------------------------------------------------------------ 
 
1  
2  
3 
 ---------------------- ----------------------- ---------------------- 
 Pre test  Posttest  Pre test  Post test  Pre test  Posttest  
� 21.7 52.2 21.8 15.2 93.5 78.9 
� 73.9 73.9 41.3 71.8 97.8 76.1 
� 13.1 67.4 36.9 67.4 52.2 67.4 

 
That is, KS  is d-separated from the parent nodes of K. 
As shown in Table 5, 
3 performed better than 
2. 
The matching accuracy for � with respect to the 
posttest has increased from 13.3% (
2)-83.3% (
3). 
With the results obtained from the first phase of 
evaluation, it was concluded that 
3 has somehow 
depicted the expected modeling behaviour with the 
accuracies elicited by domain experts, pretest and 
posttest.  
 The second phase of evaluation was conducted to 
further investigate the performance of 
3. 
3 �was 
integrated into INQPRO in the second phase of 
evaluation. Results given by 
1, 
2 and 
3 are 
shown in Table 6. The results for 
1 and 
2 were 
obtained by feeding them with the pre-processed log 
data �46. 
3, as hypothesized, has again outperformed 

1 and 
2.  
 In conclusion, although there can only be a DDN 
model to be integrated into INQPRO at one evaluation 
phase, employing log data approach allows different 
models to be evaluated with the assumption that 
learner’s interaction patterns unchanged over a period 
of time. From the results obtained from the evaluation 
phases, it is concluded that 
3 is the optimal learner 
model for INQPRO. 
 

CONCLUSION 
 
 Researchers in the field of cognitive psychology 
often rely on log data analysis to study human 
properties and behaviours. Log data have also been 
employed by researchers to study the effectiveness of 
software, so that the functionalities contained with it 
can be tailored to wide range of users. Log data 
analysis, however, has not been widely employed to 
evaluate the appropriateness of a Bayesian learner 
model employed within a learning environment. As an 
attempt to contribute to field of user modeling 
particular towards the Bayesian Intelligent Tutoring 
Systems, this article presented a detailed discussion on 
how log data could be firstly pre-processed, 
transformed and fed into the proposed DDN models, 
before the obtain the optimal learner model was 
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obtained. A detailed discussion on instantiation of 
nodes of a DDN is presented via an algorithm. It begins 
with feeding the algorithm with raw log data, to 
extracting related information from the transformed log 
data and finally with instantiation of the DDN. In this 
study, the log data gathered from the first phase of 
empirical evaluation was firstly pre-processed and 
subsequently transformed to fit DDN. Similar set of the 
transformed log data were then fed into 
2 and 
3. 
The empirical results suggested 
3 as the most suitable 
learner model. This study continued with 
3 in the 
second phase of evaluation. When the transformed log 
data obtained from second phase of evaluation were fed 
into 
1 and 
2, as hypothesized, 
3 has again 
outperformed the other DDN models. 
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