
American Journal of Applied Sciences 6 (5): 913-921, 2009
ISSN 1546-9239
© 2009 Science Publications

Corresponding Author: Choo-Yee Ting, Faculty of Information Technology, Multimedia University, Cyberjaya, Selangor,
Malaysia

913

Log data Approach to Acquisition of Optimal Bayesian Learner Model

Choo-Yee Ting and Somnuk Phon-Amnuaisuk

Faculty of Information Technology, Multimedia University, Cyberjaya, Selangor, Malaysia

Abstract: Log data provide valuable insight into observable behavioural patterns, which could be
inferred to study a learner’s cognitive processes, levels of motivation and levels of knowledge
acquisition. To date, most of the research work has been devoted to study the different methods to
analyze and interpret log data. Little attention, however, has been given to use log data as a tool to
investigate the behaviour of Bayesian learner models. In this light, this article discusses how log data
could be employed to investigate the performance of Bayesian learner models. The log data were
firstly transformed into a set of structured dataset, which conformed to the INQPRO’s learner model.
The transformed dataset were then fed into different versions of INQPRO’s learner model to obtain
their predictive accuracies. From the predictive accuracies, an optimal learner model was identified.
Empirical results indicated that the log data approach provides an efficient way to study the behaviour
of a Bayesian learner model

Key words: Log data, bayesian learner model, scientific inquiry learning environment

INTRODUCTION

 The log data are a chronological record of learners’
interactions with a computer-based learning
environment. Log data, which may take different forms,
can be treated as a crucial instrument to educational
psychologies because from which behavioural data can
be extracted, analyzed and interpreted. By analyzing
log data, insights into valuable information about (1)
cognitive process, motivation level and acquisition
level of domain knowledge a learner pursues.
Consequently, tailored pedagogical support could be
provided, (2) how a particular learning environment
should be further improved to enhance learners’
learning experiences through the graphical user
interfaces.
 Log data can be obtained via three common
methods, namely, eye movement registration, protocol
analysis and computer-registered operations[1]. The eye
movement registration aims at capturing the part of the
visual field the learner is paying attention on whereas
the protocol analysis (also refers to as think-aloud
approach), is a popular method for obtaining detailed
report of real-time cognitive processing. Protocol
analysis involves three steps: transcribing, segmenting
and encoding[2]. The third type of method for obtaining
log data is keeping track of learners’ interactions
performed on computer programs. Interaction captured
may include mouse-click, drag-and-drop, typing and

many more. The advantage of computer-registered
operations approach is that detailed activities performed
by a learner can be captured. However, without a
proper reasoning mechanism behind the captured
information, reliable interpretation can hardly be
acquired.
 Analysis of log data can be performed in two
modes, namely, real-time and post-hoc[1]. In real-time
analysis, the system captures a learner’s behaviour up
to the point in time that the analysis is performed. Such
analysis mode is widely applied to computer-based
learning environments. Most of the real-time analysis of
log data, however, provides learners with a mere ad-
hoc[3] rather than the adaptive support[4]. Conversely,
the post-hoc analysis, aims to provide a comprehensive
yet informative analysis of the learner’s learning
progress towards the end of a particular learning
session. This mode of analysis is important when the
learning environment employs exploratory or discovery
learning approach, in which learners are given the
freedom to explore and navigate from one interface to
another.
 Recent advancement in educational technology has
shifted towards incorporating Artificial Intelligence
(AI) into computer-based learning environments. These
learning environments often maintain a learner model
for each learner, which consistently inferring the
required information from the associated log data. By
integrating AI into the learning environment, log data

Am. J. Applied Sci., 6 (5): 913-921, 2009

 914

can be interpreted efficiently and subsequently
pedagogical support can be tailored to learners. There
are three types of interventions as a result of inferring
from log data[1]: (1) supervising. The purpose of
supervising intervention is to constrain learners within
predefined set of allowable interactions, (2) monitoring.
Monitoring intervention provide learners with guidance
to complete a particular task by minimizing possible
errors created by learners, (3) examining. Examining
interaction aims at keeping track of actions performed
by the learner without any interference at all. Learners
experience complete freedom of action while
interacting with the learning environment.
 Little study, however, has been reported on using
log data as a basis to study the predictive accuracies of
learner models for a Bayesian Intelligent Tutoring
System (ITS). In addition, little information can be
acquired on the preprocessing and transformation of log
data when it comes to Bayesian ITSs. Without a proper
study on a particular Bayesian learner model, at least
three problems could occur[5]: (1) knowledge
representation issue, (2) tutorial action selection
capabilities, (3) real-time inference requirement. Thus,
the research work presented within this article aimed at
providing a detailed methodological approach that
begins with preprocessing of raw log data into dataset
and subsequently feeding them into different learner
models to overcome the mentioned challenges.
 The next section provides an overview of
INQPRO, which serves as prerequisite to the
subsequent discussion on the preprocessing and
transformation of log data. It discusses the interactive
components in an interface from which log data are
collected. An INQPRO’s interface and a partial
structure of its associated Decision Network is
presented to give reader a sense of how evidence was
captured and probabilities were propagated before the
mastery levels of two scientific inquiry skills, namely
formulate-test-retest hypotheses � and identifying and
controlling variables �, could be obtained.

OVERVIEW OF INQPRO

 Scientific inquiry skills are among the key
emphases in recent science education reform. The
importance of scientific inquiry skills can be noted from
the recently developed computer-based learning
environments such as the KIE[6], SimQuest[7] and SCI-
WISE[8]. To capitalize learning experience, exploratory
learning approach is employed to provide learners with
the freedom to practice on scientific inquiry skills. To
be in line with current needs of current science

education reform, a prototype named INQPRO is
developed in this study. INQPRO consists of seven
interfaces, namely, the Scenario (Sce), Hypothesis
Visualization (Vz), Verification (Vf), Formula
Investigation (Fe), Simulation Experiment (Ex), Data
Comparison (Dc) and Feedback (Fd). By actively
interacting with the interfaces and Intelligent
Pedagogical Agent (hereafter Agent), learners are
ultimately expected to command � and �. Associated
with each interface is a static learner model, represented
by a Decision Network (DN). The specification of
Conditional Probability Tables (CPTs) within the DNs
is elicited by domain experts guided by the author of
this article. � is introduced during the modeling of the
DNs to encode the interrelation between � and �.
 Figure 1a shows one of the interfaces in INQPRO,
namely, Scenario. Upon logging into Scenario, the
Agent (Fig. 1a-�) will firstly introduce the learner with
the various sections contained within the interface and
subsequently with the presentation of a series of
activities to be carried out which include selecting a
scenario (Fig. 1a-�), formulate a hypothesis statement
(Fig. 1a-�), identify variables (Fig. 1a-�), interact
with data and graph (Fig. 1a-�) and formulate variable
relationship statement (Fig. 1a-�). All the interaction
performed such as button click, drag-and-drop, typing,
selecting from list box, answering questions prompted
by Agent and the like are logged without the notice of
learners. Learners can proceed by two means: default
learning path (by clicking the button next) or selective
learning path (by clicking the button Go Back To…).
 The corresponding DN for the Scenario interface is
depicted in Fig. 1b. The DN performs both diagnostic
and predictive reasoning[9] to acquire posterior mastery
levels of � and � in light of receiving evidence, which
constitutes a series of observed learner interactions).
For instance, by performing diagnostic reasoning the
mastery of � (node H) can be inferred from: (1) the
structure of hypothesis statement (node
SA_HypoStruc), (2) the position of variables stated in
the hypothesis statement (node SA_HypoRelation) and
(3) the frequency of explicit help requested by the
learner to the Agent (node SA_AskHypo). Similarly, a
learner’s mastery level for the manipulated variable
(node ManiVar) can be inferred from whether or not the
learner has correctly selected the manipulated variable
(node SA _CBoxMani) from the list down box
(Fig. 1a-�) and the x-axis selected (node
SA_ManiAxis). Besides, the degree to which a learner
is considered to have understood the variables’
relationship (node VarRel) can be inferred from the
evidence that she has studied the graph (node

Am. J. Applied Sci., 6 (5): 913-921, 2009

 915

(a)

H

SA_Hypo
Relation

V

K

SA_Ask
Hypo

SA_Hypo
Struc

SA_CBox
Mani

SA_ManiA
xis

ManiVar

U

AA_HypoVar

SA_Var
Rel

SA_Graph
Enter

VarRel

ResVar

ConsVarAQ_ManiV
ar

(b)

Fig. 1: (a): The Scenario interface, (b): The partial

structure of Scenario DN

SA_GraphEnter) and typed in the correct statement
describing the relationship between variables (node
SA_VarRel).
 Figure 2a shows another instance of INQPRO’s
interface, namely, Hypotheses Visualization. The
uniqueness of this interface is that it helps learners
explicitly visualize their hypotheses through computer
simulations. Depending on the hypothesis generated in
Scenario interface, the computer simulation presented
might not be similar to what the learner has in mind. It
is predicted that the naïve concepts can be made
explicit which subsequently allows the uncovering of
learner’s misconceptions can be maximized. Making
learner’s mental model explicit has been reported to be
a vital precursor to mental model restructuring[10].
There are three mass (m = 50 g, m = 100 g, m = 200 g)
from which a learner can choose from to investigate the
relationships between mass and tempo. Having the
mass chosen (Fig. 2a-�), learners will proceed to the
computer simulation control section (Fig. 2a-�). A
corresponding computer animation will be displayed

(a)

H

V

K

AQ_Mani
Ani

SA_Play
Ani

Simulation

U

AA_HypoVar_vz

Analyze
Graph

SA_Drag
Mass

SA_Vie
wGraph

SA_Compar
eGraph

AQ_Comp
areGraph

(b)

Fig. 2: (a): The Hypothesis interface, (b): The partial

structure of Hypothesis DN

upon clicking the play button. Conversely, once the
stop button is clicked, the graph halted and detail
analysis of the simulation is reported in the Results
section (Fig. 3b-�).
 Figure 2b shwos the partial structure of Hypotheses
Visualization DN. To infer the degree to which a
learner is considered to have mastered the variables
(node Variable_Vz) and hypothesis (node
Hypothesis_Vz) relies on whether or not s/he is able to
analyze the graph (node AnalyzeGraph) and has
understood the purpose of simulation (node
UnderstandAnimation). However, both AnalyzeGraph
and UnderstandingAnimation cannot be observed
directly from the interface. To obtain the posterior
probability values for these two nodes, the network
performs diagnostic reasoning given the instantiation of
evidential nodes (nodes AQ_MassAni, SA_PlayAni,
SA_DragMass, SA_ViewGraph, SA_CompareGraph
and AQ_CompareGraph in Fig. 2b). The next section

Am. J. Applied Sci., 6 (5): 913-921, 2009

 916

will discuss about the formalism and transformation of
log data into dataset which can be fed into different
models of INQPRO’s dynamic learner model.

LOG DATA FORMALISM

 There were three main challenges when employing
log data approach in this study: (i) to identify the
structure of log data for storing information on learners’
interactions, (ii) transformation of log data into dataset
which were learner model compliant and (iii) encoding
time into the dataset for the purpose of DDN
evaluation.
 In this research, log data were stored in Microsoft
Access 2003 database format. To maintain the
uniqueness of the log data, each learner had a database
file in which raw and transformed log data was stored.
There are two aspects discussed in this section. The first
concerning the formulation of log data to capture
interactions from INQPRO whereas the second aspect
focusing on how raw log data (e.g., Table 1) were pre-
processed and transformed into dataset which could be
fed into INQPRO’s dynamic learner models.
 In this study, identifying the appropriate structure
for storing interaction behaviour was not a trivial task
particularly when information within the log data was
meant to study the predictive accuracy of a learner
model. The raw log data (e.g., Table 1) consists of the
following properties:

• Log data is represented as a database relation �

with n tuples, where n � {integer>0}. Each ∈ can
be uniquely identified from the others

• Each tuple � of � takes the form {d�, d�, d�, d	, d�,
d
}, where d� and d� denote the name of the learner
and interfaces, respectively. There are six
interfaces in INQPRO and thus d� � {Sce, Vz, Vf,
Fe, Ex, Dc}. d� denotes the interface components
the learner interacts with. Examples of interface
components can be the graph section, hypothesis
section, or variable selection section. d	 represents
the d� that an operation can performed on. The
operations in all the interfaces have included drag-
and-drop, double click and mouse hovering. d�
denotes the specific value selected by learners after
performing d	 on d�. For instance in Table 1,
d��takes the value mass = 50 g when the 50 g mass
is selected and clicked. Lastly, d
 denotes the time
d	 is performed

Table 1: An excerpt of log data, �

Name (d�) Interface (d�) Interface component (d�) …
Ting Sce Hypothesis …
Ting Sce Combobox …
Ting Sce Agent …

 This study did not follow the unstructured logging
approach discussed in[1]. In[1], log data consisted of
have multiple lines consisting symbols like @ and :
which editing and filtering processes complicated.
Thus, employing database rather than a text file
approach is considered to be a better solution as
Structured Query Language (SQL) provides efficient
way of querying required information. The time in a log
data represent the actual time (in the format
HH:MM:SS) d	 is performed. Unlike most of the
studies (e.g.,[1]) where time represents the total time a
particular operation takes to complete. This is to reduce
the incurred computational cost needed to compute the
time duration for a particular operation.
 The raw log data � depicted in Table 1, however,
cannot be directly applicable to a DN or a DDN. Thus,
transforming � into both DN and DDN compliant must
be performed. The transformation process has resulted
in the following properties:

• ��can be transformed into six relations because

INQPRO has six interfaces. Each relation ��,
where � ∈ {Sce, Vz, Vf, Fe, Ex, Dc}, corresponds
to a DN and an INQPRO’s interface

• Each tuple �� of �� takes the form {d1, …, dn}
having d1 denotes the first observable node
whereas dn represents the last observable node of
the corresponding DN. The total number of
attributes, n, depends on the number of observable
nodes in that particular DN. The original log
data, ���, is transformed into �Sce (Table 2) and �Vz
(Table 3). As shown in Table 2, �Sce has four
attributes, namely, SA_CBoxMani, SA_ManiAxis,
SA_HypoRelation and AQ_ManiVar. Each field in
a relation resemble the corresponding observable
node in the DN and can take one of the node’s
states as its value. For instance in Table 2,
SA_AskHypo, SA_CBoxMani and AQ_ManiVar
have two states, namely, Yes and No, whereas
SA_HypoRelation has mastery, partial-mastery and

Table 2: An excerpt of transformed Scenario relation, �sce

SA_CBox Mani SA_ManiAxis SA_Hypo Relation …
no no partial …
yes yes mastery …

Table 3: An excerpt of transformed Hypothesis Visualization relation,
�Vz

SA_DragMass SA_Play Ani AQ_ManiAni …
yes yes non-mastery …
- mastery …

Am. J. Applied Sci., 6 (5): 913-921, 2009

 917

Fig. 3: An excerpt of rules

 non-mastery as its states. Conversely, if no

evidence can be captured for at a particular
interface section (e.g., Hypothesis Formulation
Section), the corresponding nodes will be assigned
a- and will not be instantiated. As depicted in
Table 3, SA_viewGraph is assigned a-indicating
that the learner did not view the graph

• Given a relation ��, the nth tuple of a relation �� �
corresponds to the nth visit to that particular
interface �. Referring to Table 1, the learner has
exhibited the learning path: Sce → Vz → Sce →
Vz. Visiting the Scenario (Sce) interface twice has
resulted in two tuples for �Sce. Similarly, the
relation �Vz has two records because the
Hypothesis Visualization (Vz) was visited twice

 Log data often contains multiple entries for a
particular interface component. As shown in Table 1,
the learner Ting attempted to generate the suitable
hypothesis statement for two times, with the first at
15:22:00 while the subsequently one at 15:22:55.
Because of multiple entries, instantiation of the
variables can be a challenge.
 To tackle the problem, a set of rules is consulted
before instantiation of variables. Figure 3 shows an
excerpt of rules for instantiate of the node
SA_HypoRelation. Based on the rules and log data
(Table 1), SA_HypoRelation shall be instantiated to
partial-mastery.

MATERIALS AND METHODS

Inqpro’s dynamic learner models: In this research,
discussion on how transformed dataset presented in the
previous section could be employed to study the
behaviour exhibited by a learner model. To begin with,
this article firstly discusses the different versions of
INQPRO’s learner model and subsequently followed by
the method employed to feed dataset into the learner
models.

 In this research, the INQPRO’s dynamic learner
model, which takes the form of a Dynamic Decision
Network (DDN)[11], was employed to assess the two
temporally variable scientific inquiry skills. Employing
a DDN is crucial in this research work for three
reasons. First, modeling the evolving scientific inquiry
skills is difficult. Often, the level of mastery of a
scientific inquiry skill at time t depends on its
immediate past. Second, freedom in navigating from
one interface to another introduces complexity in
predetermining a DDN.
 A predetermined DDN can easily become
computationally intractable as it exhibits 5n state spaces
(combination of different navigation paths) with n ∈
{Integer > 0}. Third, employing a static Decision
Network will resort to reinterpretation of new evidence
over previous evidence[11]. In order to overcome this
drawback, a DDN is employed instead of a static
Decision network. This research work has employed
three different DDN models,
1,
2 and
3, in search
of the optimal one. In this subsection, each model will
be briefly discussed. Detailed discussion about the
models, however, can be found in the author’s other
work[12,13].
�
1 (Fig. 4) resemble the commonly employed
DDN model in the existing probabilistic ITS (e.g.,[5]).
The main characteristic of this model is that it
aggregates static DNs by introducing arcs (the dotted
arcs, Fig. 4) among the dynamic nodes between
different time-slices. The dynamic nodes are nodes H,
V and K (Fig. 4) which evolve across time. The DDN is
generated based on the information contained in log
data presented in Table 1.
 Each time-slice represent the INQPRO’s interface
navigated by the learner. Because there are four
interfaces navigated by the learner Ting, a DDN with
four time-slices was generated. By querying the
posterior probabilities of �, � and � at time t3, the final
mastery levels of the evolving scientific inquiry skills
can be acquired.
 Figure 5 shows the DDN model
2. Different
from
1,
2 has extra nodes, namely, KS , S� and S� .
These nodes are static nodes, which are introduced to
capture the levels of mastery of �, � and � which are
initially unknown and their gradual changes. The
gradual changes can be captured through the arc that
stretches from a static node to its corresponding
dynamic node (e.g., KS →�gui

n). It captures the idea that
the belief of dynamic node is conditioned upon its
static node.

Am. J. Applied Sci., 6 (5): 913-921, 2009

 918

Fig. 4: INQPRO’s learner model
1

Fig. 5: INQPRO’s learner model
2

Fig. 6: INQPRO’s learner model
�

Figure 6 shows the third DDN model,
3, employed in
this research work. Similar to
2,
3 has three static
nodes. However, the only difference is that the causal
dependencies between these nodes resemble those
between the dynamic nodes in each time-slice: V → H,
V → S and H → S. Rather than having the dynamic
node (node K) conditioned upon the static node K()S ,
the posterior probability of KS can be retrieved once
the probability of S� and S� are known.

FEEDING DATASET INTO
LEARNER MODELS

 Research has shown that there have been three
approaches to evaluate a learner model. The first
approach is through simulated learners[14]. The
challenge of this approach is that the generated
simulated learners might not be able to represent the
real human learners because it is impossible to consider

Am. J. Applied Sci., 6 (5): 913-921, 2009

 919

all personalz traits. The second approach is via human
learners[5,15]. Such approach has been widely accepted
and implemented. The approach, however, requires
substantial amount of participants each learner model to
be evaluated. Not only the number of participants must
be sufficient, but the participants must represent three
different categories of learners, namely, weak,
moderate and advance. Because of the constraints, a fair
comparison of all learner models can hardly be made.
The third approach is evaluation of learner models
through log data, which is implemented and discussed
in this research work. Because log data employed for
different versions of learner model has been
standardized for all the evaluations, a fair comparison
between the learner models can be made.
 Figure 7 provides a high-level procedure of how
the transformed log data (e.g., Table 1) can be used to
evaluate different versions of INQPRO’s learner model,
which take different versions of a DDN. The algorithm
takes a log data as input and returns the final mastery
levels of scientific inquiry skills. As depicted in Fig. 7,
the process begins with feeding L (e.g., Table 1) into
the algorithm DDNNodesInstantiation() (Line 1,
Fig. 7). Given L, the function RetrieveGUIs() (Line 10,
Fig. 7) extracts a sequence of interfaces navigated by a
learner and stores them into an array ��DDN. A DDN is
then generated based on �DDN via the function
GenerateDDN() (Line 11, Fig. 7). Before instantiation

1. Algorithm DDNNodesInstantiation (L)
2. Input:L = Log data
3.
4. DDN = DDN generated based on L
5. �DDN ← Array of interfaces { �1,…,��n} recorded in L

6. � = An instance of interface in �DDN

7. �� ∈ {�Sce, �Vz, �Vf, �Fe, �Ex, �Dc}

8. i� = Number of visits for a particular interface �
9.
10. �DDN ← RetrieveGUIs (L)

11. GenerateDDN (�DDN)

12. Σi� = 0
13.
14. For each � in �DDN

15. i� = i� + 1

16. RetrieveRelation?(��)

17. RetrieveRow (i�)

18. SetNodeEvidence (DDN, �)
19. Next
20. UpdateNetwork ()
21. Output: Posterior probabilities of node H, V, and K

Fig. 7: Algorithm for instantiation of nodes in a DDN

of nodes can be done, the each i� is initialized to zero.
For each interface � in the array �DDN, the
corresponding i�� �is added with 1. For instance, when the
interface Scenario is firstly visited by the learner, iSce
will take the value 1, iSce will be set to 2 when the
similar interface is revisited for the second time. In
addition, the value of i� determines which row of the
corresponding relation �� is to be retrieved. The next
process is to retrieve the corresponding relation ��.
That is, when is � is assigned the value Scenario, the
relation �Sce will be retrieved. Given the value of i� and
the relation ��, the corresponding row is retrieved via
the function RetrieveRow() (Line 17, Fig. 7). Lastly,
the function SetNodeEvidence() (Line 18, Fig. 7)
instantiates the nodes of the DDN by using the values
from the retrieved row. Once the nodes are instantiated,
the DDN can be updated via the function
UpdateNetwork() (Line 20, Fig. 7). Updating the DDN
allows the posterior probabilities of nodes V, H and K
to be revealed.

RESULTS AND DISCUSSION

 To demonstrate the importance of log data
approach to determine optimal INQPRO’s learner
model, a two phase empirical study was conducted.
Learners participated in both phases of evaluation
involved in a series of activities, which had included a
session that lasted at most 90 min involving a pretest, a
session to INQPRO and a posttest. The results of pretest
and posttest were calculated and the learners’
interactions with INQPRO were logged. To illustrate
the application of log data to finding of optimal learner
model, let �30 denotes the first set of log data collected
from 30 learners whereas �46 represents the second set
of log data collected from 46 learners. There was no
similar learner who participated in both phases of
evaluation. The matching accuracies of �, � and �
were computed by comparing the classifications elicited
by the DDN models with the results obtained from the
pretest and posttest. During the first evaluation phase,

1 was employed in the INQPRO learning
environment.
 Table 4 shows the matching accuracies elicited by

1. The low accuracy for � at the pretest was largely
due to the misclassification of learners into partial-
mastery level while in actual fact these learners were
graded as non-mastery by the pretest. Such difference
was largely because learners did learn about variables
while they were attempting the pretest.

Am. J. Applied Sci., 6 (5): 913-921, 2009

 920

Table 4: Accuracies given by
1 using �30

#(%) matched classification
--
 Pretest (n = 30) Posttest (n = 30)

� 24(80.0) 25(83.3)

� 10(33.3) 20(66.7)

� 4(13.3) 22(73.3)

Table 5: Matching accuracies given by
2 and
3 using �30

(%) matched classification
--

2
3
 ------------------------------ -------------------------------
 Pretest Posttest Pretest Posttest

� 22(73.3) 4(13.3) 22(73.3) 25(83.3)

� 17(56.7) 20(66.7) 20(66.7) 20(66.7)

� 15(50.0) 22(73.3) 15(50.0) 22(73.3)

Fig. 8: The mastery level of � as modeled by
1,
2

and
3

 The similar set of log data was given to six domain
experts to further investigate the behaviour. Despite the
promising results demonstrated at the posttest section in
Table 1, the experts rejected
1. The experts argued
that the mastery levels of the skills should not differ
greatly from one interface to another (Fig. 8). Thus a
low overall average (58.53%) was given by experts to

1

[11].
 Table 5 displays the matching accuracies of
2
and
3 using the similar set of log data. Although an
increment of 36.7% can be observed for � at the pretest
when
2 was employed, � dropped to 13.3%. When
the probabilities of � are plotted on graph, only a small
amount of changes can be observed (
2, Fig. 8). Such
phenomenon is due to the fact that probabilities cannot
propagate from the children nodes of KS - KS itself.

Table 6: Comparison of matching accuracies given by
1,
2 and
using �46

Percentage of matched classification (n = 46)
--

1
2
3
 ---------------------- ----------------------- ----------------------
 Pre test Posttest Pre test Post test Pre test Posttest
� 21.7 52.2 21.8 15.2 93.5 78.9
� 73.9 73.9 41.3 71.8 97.8 76.1
� 13.1 67.4 36.9 67.4 52.2 67.4

That is, KS is d-separated from the parent nodes of K.
As shown in Table 5,
3 performed better than
2.
The matching accuracy for � with respect to the
posttest has increased from 13.3% (
2)-83.3% (
3).
With the results obtained from the first phase of
evaluation, it was concluded that
3 has somehow
depicted the expected modeling behaviour with the
accuracies elicited by domain experts, pretest and
posttest.
 The second phase of evaluation was conducted to
further investigate the performance of
3.
3 �was
integrated into INQPRO in the second phase of
evaluation. Results given by
1,
2 and
3 are
shown in Table 6. The results for
1 and
2 were
obtained by feeding them with the pre-processed log
data �46.
3, as hypothesized, has again outperformed

1 and
2.
 In conclusion, although there can only be a DDN
model to be integrated into INQPRO at one evaluation
phase, employing log data approach allows different
models to be evaluated with the assumption that
learner’s interaction patterns unchanged over a period
of time. From the results obtained from the evaluation
phases, it is concluded that
3 is the optimal learner
model for INQPRO.

CONCLUSION

 Researchers in the field of cognitive psychology
often rely on log data analysis to study human
properties and behaviours. Log data have also been
employed by researchers to study the effectiveness of
software, so that the functionalities contained with it
can be tailored to wide range of users. Log data
analysis, however, has not been widely employed to
evaluate the appropriateness of a Bayesian learner
model employed within a learning environment. As an
attempt to contribute to field of user modeling
particular towards the Bayesian Intelligent Tutoring
Systems, this article presented a detailed discussion on
how log data could be firstly pre-processed,
transformed and fed into the proposed DDN models,
before the obtain the optimal learner model was

Am. J. Applied Sci., 6 (5): 913-921, 2009

 921

obtained. A detailed discussion on instantiation of
nodes of a DDN is presented via an algorithm. It begins
with feeding the algorithm with raw log data, to
extracting related information from the transformed log
data and finally with instantiation of the DDN. In this
study, the log data gathered from the first phase of
empirical evaluation was firstly pre-processed and
subsequently transformed to fit DDN. Similar set of the
transformed log data were then fed into
2 and
3.
The empirical results suggested
3 as the most suitable
learner model. This study continued with
3 in the
second phase of evaluation. When the transformed log
data obtained from second phase of evaluation were fed
into
1 and
2, as hypothesized,
3 has again
outperformed the other DDN models.

REFERENCES

1. Hulshof, C.D., 2004. Log File Analysis. In:

Encyclopedia of Social Measurement,
Kempf-Leonard, K. (Ed.). Elsevier, pp: 577-583.
URL: http://www.elsevier.com/wps/find/
bookdescription.cws_home/702429/description.

2. Ericsson, K.A and H.A. Simon, 1993. Protocol
Analysis: Verbal Reports as Data. MIT Press,
Cambridge, MA. URL: http://www.jstor.org/
pss/3151491.

3. Reid, D., J. Reid, J. Zhang and Q. Chen, 2003.
Supporting scientific discovery learning in a
simulation learning environment. J. Comput.
Assist. Learn., 19: 9-20. DOI: 10.1046/j.0266-
4909.2003.00002.x.

4. de Jong, T., 2006. Computer simulations:
Technological advances in inquiry learning.
Science, 312: 532-533. DOI: 10.1126/science.
1127750.

5. Murray, C., K. VanLehn and J. Mostow, 2004.
Looking ahead to select tutorial actions: A
decision-theoretic approach. Int. J. Artificial Intell.
Educ., 14: 235-278. URL: http://iospress.
metapress.com/content/rld5ak9x82rpa9xn/.

6. Linn, M.C., 2004. Designing the knowledge
integration environment. Int. J. Sci. Educ.,
22: 781-796. URL: http://www.ingentaconnect.
com/content/routledg/tsed/2000/00000022/000000
08/art00002.

7. Veermans, K. and W.R. Van Joolingen, 2004.
Combining heuristics and formal methods in a tool
for supporting simulation-based discovery learning.
In: Proceeding of Intelligent Tutoring Systems,
217-226. DOI: 10.1007/b100137.

8. Reiser, B.J., I. Tabak, W.A. Sandoval, B. Smith,
F. Steinmuller and T.J. Leone, 2001. BGuILE:
Stategic and Conceptual Scaffolds for Scientific
Inquiry in Biology Classrooms. In: Cognition and
Instruction: Twenty Five Years of Progress,
Carver, S.M. and D. Klahr (Eds.). Mahvah,
Erlbaum, NJ. URL: http://www.
developmentalpsychologyarena.zcom/books/Cogni
tion-and-Instruction-isbn9780805838244.

9. Pearl, J., 1988. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible
Inference, San Mateo, CA: Morgan Kaufmann.
URL: http://portal.acm.org/citation.cfm?id=52121.

10. Chi, M.T. and R.D. Roscoe, 2002. The Processes
and Challenges of Conceptual Change. In:
Reconsidering Conceptual Change: Issues in
Theory and Practice, Limon, M. and L. Mason
(Eds.). Netherlands: Kluwer. DOI: 10.1007/0-306-
47637-1_1.

11. Schafer, R. and T. Weyrath, 1997. Assessing
Temporally Variable User Properties with
Dynamic Bayesian Networks. (eds A. Jameson, C.
Paris and C. Tasso) Proceedings of the User
modeling. DOI: 10.1.1.48.3325.

12. Ting, C.Y. and M. Reza Beik Zadeh. A decision-
theoretic approach to scientific inquiry exploratory
learning environment. Lecture Notes Comput. Sci.,
4503: 85-94. DOI: 10.1007/11774303.

13. Ting, C.Y. and S. Phon-Amnuaisuk. Modeling and
intervening across time in scientific inquiry
exploratory learning environment. J. Educ.
Technol. Soc., (In-Press).

14. Eva Millán and J.L. Pérez-de-la-Cruz, 2004. A
bayesian diagnostic algorithm for student modeling
and its evaluation. J. User Modeling User-Adapted
Interaction, 12: 281-330. DOI:
10.1023/A:1015027822614.

15. Bunt, A. and C. Conati, 2003. Probabilistic student
modelling to improve exploratory behaviour. J.
User Modeling U ser-Adapted Interaction,
13: 269-309. DOI: 10.1023/A:1024733008280.

