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Abstract: The heavy demand for large volumes of digital data has increased the interest in matrix-like 
representation. Matrices are well organized data structures which are suitable to store uniform data in 
order to simplify data access and manipulation. For several applications, the need is critical to 
efficiently search for a specific pattern in matrix structures. A pattern can be represented as an n-
dimensional matrix which can be searched for within other larger n-dimensional matrices.  This query 
will be referred to as matrix submatching. In this paper, we present and compare two algorithms for 
binary matrix submatching on the basis of time requirement. The first algorithm is a naive brute force 
approach with O(n2m2) time requirement. The second approach is based on chain code transformation 
which reduces the sizes of matrices resulting in less time requirement.  
�

Key words: Matrix submatching, brute-force search, submatrix matching, chain code, transformation 
 

INTRODUCTION 
 
 The importance of matrices comes from their wide 
range of applications in various areas such as image 
processing, geographic information systems, speech 
recognition, document classification, and 
bioengineering[1,6,12]. Operations on matrices are at the 
heart of scientific computing. Efficient algorithms for 
working with matrices are therefore of considerable 
practical interest. Matrix operations such as 
multiplication received much research attention[2,3,5]. In 
1992, Shen and Hu studied a new kind of relationship 
between matrices, namely, approximate submatrix 
matching (ASM). Given two n x m matrices A and B, 
find a k×l submatrix in A and another k×1 submatrix in 
B such that their difference is minimized under a 
certain measure function. They discussed the ASM 
problem under two typical measure functions, namely, 
convolution and Euclidean distance[10]. In 2006, 
Koyuterk and Grama built a software system, called 
PROXIMUS, for error-bounded approximation of high-
dimensional binary attributed datasets based on 
nonorthogonal decomposition of binary matrices. This 
tool can be used for analyzing data arising in a variety 
of domains ranging from commercial to scientific 
applications. Using a combination of innovative 
algorithms, novel data structures, and efficient 
implementation, PROXIMUS demonstrated rather good 
accuracy, performance, and scalability to large datasets. 
The technique was experimented on diverse 

applications in association with rule mining and DNA 
microarray analysis[8].  
 The matrix containment or submatching problem 
received almost no attention in the literature. We 
believe that the matrix submatching problem is quite 
important and deserves attention from researchers due 
to the vast applications that may require such 
functionality. This article chooses to focus on defining 
and solving the exact binary submatching problem and 
will certainly pave the way for future research activities 
leading to non-exact general matrix submatching.  The 
following definition formally presents the MSM 
function which accepts two matrices A and B and 
returns a set of (i, j) locations in matrix A where matrix 
B completely appears in A starting at raw i and column 
j of matrix A. Matrix B may appear zero or more times 
in A. 
 
Definition: Given two matrices A: nXn and B: mXm, 
such that m � n, MSM (A, B) is the set of all 
occurrences of B in A. Formally, for 1 �  i � n and 1 � j 
� m, 
MSM(A, B)= {A(i, j): A(i, j) = B(1, 1), A(i, j+1) = B(1, 
2), …, A (i, j+m-1) = B (1, m), and 
  A (i+1, j) = B (2, 1), A (i+1, j+1) = B (2, 2), 
…, A (i+1, j+m-1) = B (2, m), and 
  A (i+2, j) = B (3, 1), A (i+2, j+1) = B (3, 2), 
…, A (i+2, j+m-1) = B (3, m), and 
… A (i+m-1, j) = B (m, 1), A (i+m-1, j+1) = B (m, 2), 
…, A (i+m-1, j+m-1) = B(m, m)} 
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BRUTE-FORCE METHOD 
 
 The conventional algorithmic solution for the 
search problem is to sequentially search for a particular 
pattern until the pattern has either been found or the 
search space exhausted without any match. This 
approach is typically referred to as brute-force search or 
exhaustive search[2,4,9]. Brute-force search is simple to 
implement, and will always find a solution if it exists. 
Brute-force search has the advantage that it requires no 
imagination or cleverness. Fig. 1 describes a brute-force 
algorithm for the matrix submatching problem. The 
algorithm expects two matrices A:nXn and B:mXm 
where m�n as input, while A is the main matrix, B is 
the submatrix. The algorithm goes through the first n-
m+1 rows of the main matrix and for each row it scans 
the first n-m+1 columns in order to find the upper left 
corners of potential matches. For each element of the 
(n-m+1)2 elements in the main matrix, the algorithm 
performs at least one comparison and at most m2 
comparisons with the elements of the submatrix. It is 
obvious that the Brute-force algorithm requires at least 
(n-m+1)2  (i.e. Ω(n2)) and at most m2(n-m+1)2 (i.e. 
O(n2m2)) comparisons.  
 Fig. 3 illustrates a trace for the Brute-Force 
algorithm with respect to the main matrix A: 6×6 and 
B: 2×2, which are presented in Fig. 2. The elements of 
the first five rows and those of the first five columns are 
inspected as potential upper-left corner matches. For 
various iterations, the shaded areas in the main matrix 
represent the elements which are compared with the 
corresponding ones of the submatrix. The total number 
of comparisons required to return MSM(A, B) = {A(1, 
4), A(4, 5)} is 46 comparisons. 
 

CHAIN CODE BASED METHOD 
 
 The matrix submatching or matrix containment 
problem implies searching for a pattern in the form of a 
matrix inside a larger matrix. The brute-force algorithm 
tends to work well for matrices which have no 
assumptions with respect to their contents. This section 
introduces another solution for the matrix submatching 
problem based on chain coding which is a succinct way 
of representing a list of points[6]. Only a starting point is 
represented by its location while the other points are 
represented by successive displacements from point to 
point along a certain path. For several applications of 
matrices such as image processing, a matrix tends to 
have repeating adjacent values representing objects. 
Although, the proposed solution works for general grey 
values of elements in matrices, the algorithm will be 
discussed  with  respect  to  binary  matrices. Using  the  

Algorithm Brute-Force Matrix Submatching : MSM(A, B)
1. //  A: nXn and B: mXm, where m<=n
2. MSM= {};
3. mrow_idx = 1; mcol_idx = 1; matched_elements = 0;
4. while (mrow_idx <= n-m+1) do {
5.          match = UnKnown;
6. matched_elements = 0;
7. srow_idx = 1; scol_idx = 1;
8. candidate_r_idx = mrow_idx; candidate_c_idx = mcol_idx;
9.          while ( (srow_idx <= m) && (match= =UnKnown) &&
10.                       (A (mrow_idx, mcol_idx) = = B (srow_idx, scol_idx)) ) do
11.          {
12. matched_elements = matched_elements + 1;
13.                    if (matched_elements = = size(B))
14.                         match = Found;
15.                    else
16.                    { scol_idx = scol_idx+1;
17. mcol_idx = mcol_idx+1;
18.                          if  (scol_idx > m) {
19. srow_idx = srow_idx +1;
20. scol_idx = 1;
21. mrow_idx = mrow_idx +1;
22. mcol_idx = mcol_idx – m; }
23.
24.                          if  (mcol_idx > n)
25. srow_idx = m+1;
26.                    } // end else.
27.          } // end while.
28. mrow_idx = candidate_r_idx; mcol_idx = candidate_c_idx;
29.          if (match = = Found)
30.               MSM �A(candidate_r_idx, candidate_c_idx);
31. mcol_idx = mcol_idx +1;
32.          if  (mcol_idx > n-m+1)
33.          { mrow_idx = mrow_idx +1;
34. mcol_idx = 1;
35.          } //  end if.
36. } // end while.

Return MSM;  
 
Fig. 1: Algorithm brute-force matrix submatching 
 

Main-Matrix

Sub-Matrix

A: 6X6 B: 2X2
 

 
Fig. 2: Example of main matrix A: 6×6 and submatrix 

B: 2×2 
 
Chain-code based technique, the process of matrix 
submatching goes through two phases; namely, 
transformation and matching. 
 
Transformation phase: “chain code matrix 
transformation” The objective of the transformation 
phase is to convert the main matrix and submatrix into 
two sets of vectors with each vector represents the 
chain code of the elements of the corresponding row in 
the original matrix. The chain code based 
transformation takes advantage of repeating values of 
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Row = 1 

 
 

# of comparisons = 2 
# of occurrences = 0 

MSM(A,B) = { } 

Row = 1 

 
 

# of comparisons = 4 
# of occurrences = 0 

MSM(A,B) = { } 

Row = 1 

 
 

# of comparisons = 6 
# of occurrences = 0 

MSM(A,B) = { } 

Row = 1 

 
 

# of comparisons = 10 
# of occurrences = 1 

MSM(A,B)={A(1, 4) } 
Row = 1 

 

 
 

# of comparisons = 11 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 2 
 

 
 

# of comparisons = 16 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 3 
 

 
 

# of comparisons = 18 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 3 
 

 
 

# of comparisons = 20 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 3 
 

 
 

# of comparisons = 24 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 3 
 

 
 

# of comparisons = 25 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 4 
 

 
 

# of comparisons = 27 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 4 
 

 
 

# of comparisons = 30 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 4 

 
 

# of comparisons = 32 
# of occurrences = 1 
MSM = { A(1, 4) } 

Row = 4 

 
 

# of comparisons = 36 
# of occurrences = 2 

MSM = {A(1, 4), A(4, 5)} 

Row = 5 

 
 

# of comparisons =45 
# of occurrences = 2 

MSM = {A(1, 4), A(4, 5)} 

Row = 5 

 
 

# of comparisons =46 
# of occurrences = 2 

MSM = {A(1, 4), A(4, 5)}  

Fig. 3: Trace for the brute-force algorithm with respect to matrices A and B in Fig. 2 
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//  a ’ ( i, 1) is the number of the first consecutive zero-value elements in A i  starting with a( i, 1). 
    a ’ ( i, 1)  �    0  if  a( i, 1)=1 
    a ’ ( i, 1)  �    r 1 if a( i, 1)= a( i, 2)= …= a( i, r 1 )=0, where r 1 <= n 
   IF  (r 1 == n )  THEN {  k i  =1;   STOP} 

//  a ’ ( i, 2) is the number of the next consecutive one-value elements in A i  starting with a( i, r 1 +1). 
    a ’ ( i, 2)  �    r 2 if a( i, r 1 +1)= a( i, r 1 +2)= …= a( i, r 1 + r 2 )=1, where (r 1 + r 2 )<= n 
   IF  ((r 1 + r 2 )== n )  THEN {  k i  =2;   STOP} 

//  a ’ ( i, 3) is the number of the next consecutive zero-value elements in A i  starting with a( i, r 1 + r2+1). 
    a ’ ( i, 3)  �    r 3 if a( i, r 1 + r2 +1)= a( i, r 1 + r 2 +2)= …= a( i, r 1 + r 2 + r 3 )=1, where (r 1 + r 2 +r 3 ) <=n 
   IF  ((r 1 + r 2 +r 3 )== n )  THEN {  k i  =3;   STOP} 
…, and so on.  

 
Fig. 4: Chain code matrix transformation rules 

 
successive elements within a specific row in order to 
reduce the size of the main and sub matrices. During 
the transformation (i.e. pre-processing) phase of matrix 
A, starting with the first row, each row Ai[a(i, 1), a(i, 
2), a(i, 3), …, a(i, n)] in the nXn matrix is parsed and 
transformed into a vector Ai

’[a’(i, 1), a’(i, 2), a’(i, 3), …, 
a’(i, ki)], where ki � n is the length of the vector Ai

’ 
corresponding to row Ai, i=1, 2, …, n. The contents of 
the vector Ai

’ will be determined as per Fig. 4. 
 It can be seen from the previous description that 
the first element of the vector Ai

’ represents the number 
of consecutive zeros starting with a(i, 1) of row Ai.  
However, if a(i, 1) contains one instead of zero, the first 
element of the Ai

’ vector will be assigned zero. The 
second element of the Ai

’ vector will be assigned the 
number of the next successive ones while the third 
element will receive the number of the next successive 
zeros and so on. All rows of the main matrix and those 
of the submatrix will be transformed in a similar 
fashion. 
 
 Figure 5 displays the chain code transformation for 
main matrix A: 6×6 and submatrix B: 2×2. Obviously, 
the transformation vectors corresponding to the rows of 
a particular matrix may not be of equal sizes. Actually, 
the size of the transformation vector Ai

’ corresponding 
to row Ai of n elements may become as small as one in 
the best case. For example, Ai = [0, 0, 0, …, 0] will be 
transformed into Ai

’ = [n]. However, when Ai = [1, 0, 1, 
…, 0/1], the transformation vector is Ai

’ = [0, 1, 1, 1, 
…, 1] and will have its maximum possible size; i.e. 
n+1. The size reduction of matrices using chain code  

transformation is more substantial when the matrix 
frequently contains continuous streams of identical 
values. This is typical in applications related to image 
processing, voice representation matrices and traffic 
control. 
 

 
 
Fig. 5: Chain code transformation for matrices A and B 

of Fig. 2 
 
 We can notice from Fig. 5 that the transformation 
phase reduces the size of the matrices depending on 
sequential repetition of the values in the matrix. This 
reduction in size will decrease the time of matrix 
searching using our proposed algorithm comparing with 
the brute-force algorithm that works on the original 
matrices. 
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Table 1: Variables utilized in the chain code based search Algorithm 
Variable name Description 
TMM n X n transformed main matrix corresponding to main matrix A. 
TSM m X m transformed sub matrix corresponding to submatrix B. 
Offset_row Indicates the offset of the row in the original main matrix A. 
Offset_col Indicates the offset of the column in the original main matrix A. 
Result A 2-D matrix [row, col], where row is Offset_row and col is  Offset_col. 
Flag Boolean variable, set to “True” if the start point of matrix submatching is found. 
Stop Boolean variable which indicates the end of the matching process; i.e. when the end of TMM is reached. 
Break Boolean variable which indicates the end of the matching process; i.e. when the end of TSM is reached. 
Sub_col Number of columns in the current Sub_row. 
S_col Number of columns in the original submatrix B. 
Main_col Number of columns in the current Main_row. 
M_col Number of columns in the original matrix A. 
i, j Row and column counters in TMM, respectively. 
n, m Row and column counters in TSM, respectively. 

 

 
 

Fig. 6: Flow chart for finding the first point of match in TMM 
 
 
Search phase: “matrix submatching algorithm” The 
task of a submatching algorithm is to find all 
occurrences of a two-dimensional matrix B: m×m in a 
two-dimensional matrix A: n×n. This section introduces 
a matrix submatching algorithm which utilizes the 
chain code transformation vectors of A and B.  Table 1 
states   the   variables used in the search phase while 
Fig. 6 illustrates the first part of the algorithm. 
 The chain code based search algorithm builds on 
the   assumption  that   each  vector  of  the  transformed  
 

 
matrices starts with the count of zeros. Obviously, if the 
first value in the vector is zero, it reflects that the 
corresponding row in the original matrix starts with 
one. Fig. 6 illustrates a flow chart for finding the first 
point of match in TMM. 
 If TMM starts with a number of zeros or ones 
larger than that in TSM, we call the function: Check 
leading zeros or ones as explained in Fig. 7 to search 
for submatrix matching sequentially.  
 If the start point of match is found, the function: 
Return offset in original Main Matrix () as described in 
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Algorithm:  Check leading zeros or  ones() 

1.   if ( TMM  ( i, j) >  TSM  (n, m)) 
2.        if (  TSM (n,1) = = S_col  || [ ( TSM  (n, 1) = = 0 &&  TSM  (n, 2) = =  S_col )]) 
3.               Leading Zeros or ones in the  TMM , start searching sequentially like the brute force 

algorithm. 
4.   continue; 

 
 

Fig. 7: Check leading zeros or ones function 
 

 
Algorithm:  Return offset in original Main Matrix () 
     //  find the exact row and column in the original Main Matrix. 

1.   counter = 0; 
2.   if ( Flag  = = false) 
3.           next = j;  // to calculate the next position from which we will continue searching. 

4.   if (j > 1) 
5.   {     for (d = 1 : j - 1) 
6.                 counter = counter +  TMM  ( i, d); }  // find the summation of previous values . 
7.   else 
8.          counter = 0; 

9.   offset_row =  i; 
10.   offset _col =  TMM  ( i, j) –  TSM  (n, m) + counter + 1;  // we add 1 because the matrix’s 

index starts from 1. 

11.   Return  offset_row,  offset_col;  
 

Fig. 8: Return offset in original main matrix function 
 
Fig. 8 is invoked to find the row and column offsets in 
the original main matrix. Then, Flag is set to True. 
 After finding the first point of match, we continue 
searching for potential other points of match as per Fig. 
9. Search is terminated when one of the following two 
cases occurs: 
 
• If the last element of TSM Matrix has been 

reached, then a sub-matrix match has been found 
• If the value of TMM < the corresponding in TSM, 

then Flag is set to FALSE 
 
 If the end of the current row in TSM has been 
reached, the function: Get the new values( i, j, n, m) 
will be called in order to update the values of counters i, 
j, n, and m. Fig. 10 shows how the function works. 
 To update the value of counter j, function Return 
offset in TMM () as demonstrated in Fig. 11 will be 
invoked. This function will return the exact column in 
the next row in TMM to start search. 
 After finding the value of j (i.e., lines 1-5) of Fig. 
11 which indicates the column in the next row in TMM, 
we continue searching while maintaining that m (i.e., 
column counter in TSM) is pointing to a valid position. 
If the row starts with 1, then the first column will 
contain 0. In this case, we increment m to point to the 
next location (i.e., line 6). Then, we compare the 
location to which j is pointing with the corresponding  

 
 
 
Fig. 9: Flow chart for finding subsequent points of 

match after detecting the first one 
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A lgorithm : get the ne w  value s ( i , j, n , m )
    // check if w e  reach  the  end  o f the current ro w  in  the T S M .

1 . if (m   > S ub_co l
2 . {    m  =  1 ;
3 .      if (n+1  > Sub_ro w ) {
4 . n  =  1 ;    b reak  =  true; // to  b reak fro m  the  w h ile . R eturn ;}

5 .      e lse{  n  =  n  +  1 ;
6 .                if ( i +  1  < = M ain_ ro w )
7 . i = i +  1 ;
8 . e lse  {   stop  =  true ;   b reak  =  true; // to  b reak from  the  w hile . R eturn ;}
9 .              }  // end  else.

10 .              [ i, j] = R eturn  offse t in  T M M  ()
11 .  }  // end  if.

12 .  e lse  {    m  =  m  +  1 ;  j =  j +  1 ; }
13 . R eturn i, j , n , m ;  

 
Fig. 10: Get the new values of i, j, n, m function 

 
 

A lgorithm:  Return  offset in  TM M  () 
    //  return the exact column  in  the next row in TM M to start searching from. 

1.   w = 0;    sum = 0; 
2.   wh ile (sum  <   offset_col) { 
3.             w = w + 1; 
4.             sum = sum  +   TM M   ( i, w); } 
5.   j =  w; 

6.   if ( TSM  (n, m ) = = 0) m  =  m  + 1; 

7.   if (m od (j, 2) ~ = 0 && m od (m , 2) =  = 0)  {flag = false; break = true;  Return ; } // j pointing 
to a  one location , while the search m ust start from a zero location . 

8.   if (m od (j, 2) =  = 0 && m od (m , 2) ~  = 0)   {flag = false; break = true;   Return ; } // j 
poin ting to a zero location , wh ile the search must start from a one location . 

9.   [w, x] =   Return  offset in  original Main M atrix (); 

10.    if (~ (x >=  offset_col && x <=   offset_col +  ( TSM   (n, m ) - 1) )  ) 
11.      {flag = false; break = true;  Return ; } 

 
 

Fig. 11: Return offset in TMM function 
 

A lg o r ith m : E n s u re  p o s i t io n (  )

 / / e n s u re  th a t th e  s e a rc h in g  p ro c e s s  w il l s ta r t  f ro m  a  lo c a t io n  r e p re se n t in g  0 .

1 . i f  ( m o d  ( (  n e x t +  1 ) ,  2 )  ~  =  0 )
2 .       j  =  n e x t +  1 ;
3 . e ls e
4 .    {  j  =  n e x t +  2 ; }
5 . m  =  1 ;   n  =  1 ; i  = o ff s e t_ ro w  ;
6 . R e tu r n i,  j ,  n ,  m ;

 
 

Fig. 12: Ensure position function 
 
one in TSM. If the two are not pointing to the same 
location, we set Flag to false. If they are pointing to the 
same location, the function Return offset in original 
Main Matrix () will be called to check that the value of j 
remains in the correct boundaries of search (i.e., lines 7-

11). Then, we check if the flag is true to register the 
offset_row and offset_col in result matrix as the first 
occurrence. Fig. 12 displays the function which 
validates location correctness. The whole search 
process will stop once we reach the end of TMM.  
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 Fig. 13 shows a trace using the chain code based 
algorithm for the main and sub matrices shown in Fig. 
5. While the brute-force algorithm requires 46 
comparisons to complete the search of the indicated 
matrices, the chain-code based algorithms requires only 
17  comparisons  to  find  all occurrences. This is due to 

 the reduction in size caused by the transformation 
phase by almost 50%.  A comprehensive experimental 
comparison between the two algorithms in terms of the 
required number of comparisons to find all occurrences 
is discussed in the following section. 

 
No. of comparisons: 1 

 

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 1 

offset_col =(4 - 1)+ 0+1 = 4 
i = 1, j = 1, n = 1, m = 1, 

  

No. of comparisons:2 
 

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 1 
offset_col = 4 

i = 1, j = 2, n = 1, m = 2, 

   

No. of comparisons:3 
 

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 1 
offset_col =  4 

i = 2, j = 2, n = 2, m = 2. 

   
Match found 

No. of comparisons: 4 
 

 
 

TMM (i, j) < TSM (n, m) 
offset_row = 0 
offset_col = 0 

i = 2, j = 1, n = 1, m = 1, 

   

No. of comparisons: 5 
 

 
 

TMM (i, j) < TSM (n, m) 
offset_row = 0 
offset_col = 0 

i = 3, j = 1, n = 1, m = 1, 

   

No. of comparisons:6 
 

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 3 

offset_col = (2 - 1)+ 2+1 = 4 
i = 3, j = 3, n = 1, m = 1, 

 

No. of comparisons:7 
 

  
 

TMM (i, j) >= TSM (n, m) 
offset_row = 3 
offset_col =  4 

i = 3, j = 4, n = 1, m = 2. 

 
 

No. of comparisons:8 
 

  
 

TMM (i, j) >= TSM (n, m) 
offset_row = 0 
offset_col =  0 

i = 4, j = 2, n = 2, m = 2. 

 
In TMM start searching from j 
= 2, incorrect lower boundary. 

No. of comparisons:9 
 

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 4 

offset_col = (2 - 1)+0+1 = 2 
i = 4, j = 1, n = 1, m = 1, 

   

No. of comparisons:10 
 

  
 

TMM (i, j) >= TSM (n, m) 
offset_row = 4 
offset_col =  2 

i = 4, j = 2, n = 1, m = 2 

     

No. of comparisons:11 
  

 
 

TMM (i, j) >= TSM (n, m) 
offset_row =0 
offset_col =  0 

i = 5, j = 1, n = 2, m = 2. 

    
 
In TMM start searching from j = 
1, which indicate a location which  
contains summation of 
consecutive zero. 

No. ofcomparisons:12 
  

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 4 

offset_col =(1 - 1)+4+1 = 5 
i = 4, j = 3, n = 1, m = 1. 
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No. of comparisons:13 
 

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 4 
offset_col = 5 

i = 4, j = 4, n = 1, m = 2, 
 

   

No. of comparisons:14 
  

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 4 
offset_col =  5 

i = 5, j = 2, n = 2, m = 2 
 

  
Match found 

No. of comparisons:15 
 

  
 

TMM (i, j) >= TSM (n, m) 
offset_row =5 

offset_col = (4-1)+0+1= 4 
i = 5, j = 1, n = 1, m = 1. 

 

 

No. of comparisons:16 
  

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 5 
offset_col = 4 

i = 5, j = 2, n = 1, m = 2. 
 

 
No. of comparisons:17 

  

 
 

TMM (i, j) >= TSM (n, m) 
offset_row = 5 
offset_col = 4 

i = 6, j = 3, n = 2, m = 2. 
 

    
In TMM start searching from j = 
3, which indicate a location 
contains summation of 
consecutive zero. 

   

 
Fig. 13: Trace for the chain-code based matrix submatch algorithm for matrices A and B in Fig. 5. 

 
RXPERIMENTAL RESULTS 

 
 The brute-force and chain-code based algorithms 
are considered sequential search mechanisms for the 
matrix submatching problem. In order to 
experimentally compare the performance of both 
algorithms, we randomly generated a database for main 
matrices with sizes 50×50, 75×75, 100×100 and 
200×200 and another one for submatrices with sizes 
10×10, 15×15, 25×25, 30×30, 35×35, 40×40 and 45×45 
using Matlab. The databases contain 1000 occurrences 
of each indicated size and the average numbers of 
comparisons required by both algorithms to find the 

occurrences of submatricies in the corresponding main 
matrices were computed. The outcome of the 
experiments is summarized in Fig. 14.  Our experiments 
clearly show that the chain code based algorithm 
requires half the number of comparisons required by the 
brute-force approach. This is basically attributed to the 
compression in size due to the preprocessing phase of 
the chain-code approach. For several applications, it is 
typical that a database of matrices exists and a query is 
posed against the database to retrieve all matrices which 
contain an incoming sub matrix[7, 11]. In such cases, the 
preprocessing phase for the main matrices needs to be 
done only once. 
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Fig. 14: No of Comparisons required by the brute-force and chain-code based Algorithms 
 
Table 2: Average percentage of square matrix size (NXN) reduction 

due to preprocessing phase 
 Percentage of  Percentage of  
Matrix N= size reduction Matrix N= size reduction 
2 0 500 49.8 
5 30 1,000 49.9 
10 40 5000 50.0 
15 43.3 10000 50.0 
20 45.0 25000 50.0 
25 46.0 50000 50.0 
50 48.0 100000 50.0 
75 48.7 500000 50.0 
100 49.0 1000000 50.0 

 
 Table 2 demonstrates the average percentage of 
size reduction for randomly generated square binary 
matrices with various sizes. The maximum average 
percentage of size reduction is 50%.  

 
CONCLUSION 

  This article brings focus to the matrix submatching 
operation as an essential problem to be solved for many 
applications including watermarking, geographic 
information systems and pattern recognition. Most of 
these applications start with a database of matrices and 
require the retrieval of those matrices which contain an 
incoming matrix. The chain code based approach 

presented in this paper consists of two phases; namely, 
transformation and matching. The transformation phase 
reduces the sizes of all relevant matrices by nearly half 
of their original sizes bringing about clear saving in the 
number of comparisons when compared with the brute 
force approach. Although, this paper demonstrated 
superiority of the chain-code approach for binary 
square matrices, the results hold true for general 
matrices.  
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