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Abstract: Problem statement: Traditional scheduling models which only address the sequence of 
jobs to be processed at the production stage under some criteria are no longer suitable and should be 
extended to cope with the distribution stage after production. In a rapidly changing environment, 
competition among enterprises has a tendency to turn towards competing between supply chain 
systems instead of competing between individual companies. Emphasizing on the coordination and the 
integration among various members of a supply chain has become one of the vital strategies for the 
modern manufacturers to gain competitive advantages. Approach: This research focuses mainly on a 
class of two-stage scheduling problem, in which jobs need to be delivered to customers by vehicles 
after the completion of their respective production. It is assumed that the transportation time of a 
vehicle is constant and jobs to be delivered occupy different physical spaces. Results: The result of 
this research is to show the scheduling problem with the objective of minimizing total completion time 
is intractable and to develop a heuristic by incorporating properties inherited in an the optimal 
schedule. In addition, we take a Decision Support System (DSS) view to construct a Scheduling 
Support System (SSS) for solving the scheduling problem with delivery coordination. 
Conclusion/Recommendations: The scheduling support system with an additional problem 
management subsystem can provide more useful information for users when the management makes a 
strategic decision than traditional scheduling methods can. It can give firms a competitive advantage 
on the global competitive market. 
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INTRODUCTION 

 
 In the current competitive environment for 
manufacturing, the application of supply chain 
management is of increasing interests. In order to be 
competitive, companies tend to put significant emphasis 
on the coordination of activities along different stages 
of a supply chain. These stages comprise of suppliers, 
manufacturers, distributors and customers. In particular, 
the issue of coordinating the stages of production and 
distribution has been widely discussed. 
 In most manufacturing and distribution systems, 
semi-finished jobs are transferred from one processing 
facility to another by transporters such as Automated 
Guided Vehicles (AGVs), robots and conveyors and 
finished jobs are delivered to customers or warehouse 
by vehicles such as trucks. A Flexible Manufacturing 
System (FMS) is an integrated system that has been 
introduced to give more flexibility by overcoming the 
traditional hypotheses such as infinite buffer area 
between machines, infinite number of transporters 

available and the instantaneously delivery of jobs from 
one machine to another. This system is a computer 
controlled production unit, which consists of a single 
numerically controlled machine, a material handling 
device and a storage area for parts. The scheduling 
problem is the most important problem encountered 
when managing a flexible manufacturing system. 
 An important example of decision making that 
affects both a supplier and a manufacturer is the 
delivery process between them. The supplier processes 
jobs and delivers them to the manufacturer. The 
manufacturer may prefer to receive frequent deliveries 
of small batches from the supplier, because this will 
enable the manufacturer to achieve better resource 
utilization. However, the supplier may be reluctant to 
deliver very frequently because of the resulting high 
delivery cost. Importantly, the scheduling decisions 
must be coordinated with the related batching and 
delivery decisions. 
 This research addresses the scheduling problem in 
which jobs are processed on a single machine and then 
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delivered to customers with the objective to minimize 
the total completion time of the jobs. The purpose is to 
demonstrate this class of scheduling problem is 
intractable and propose a heuristic procedure involving 
job sequence and batch composition for the general 
case to derive approximate solutions. In addition, a 
Scheduling Support System (SSS) is constructed to 
provide more useful information for users when they 
make a more strategic decision than traditional 
scheduling methods can. It also can give firms a 
competitive advantage on the global competitive 
market. 
 

METERIALS AND METHODS 
 
 In the literature in recent years, Maggu and Das 

explicitly took the transportation issue into account by 
considering a two-machine flow shop makespan 
problem with unlimited buffer spaces on both machines 
in which a sufficiently large number of transporters are 
to deliver a job when its production on the first machine 
is completed to the other machine immediately with a 
job-dependent transportation time[1]. Maggu et al.[2] 
studied the same problem with the additional constraint 
that some jobs must be scheduled consecutively. Kise 
investigated a variant of the problem with only one 
transporter by which only one job can be carried at a 
time. He demonstrated that this problem is ordinarily 
NP-hard even with job-independent transportation 
times[3]. 
 Another line of research with transportation 
considerations focuses on the transportation of finished 
jobs to customers. These models redefine the job 
completion time as the time when a job arrives at the 
customer. Potts and Hall and Shmoys studied single-
machine scheduling models with unequal job arrival 
times and delivery times. They implicitly assumed that 
a sufficient number of vehicles are available at all times 
to deliver finished jobs to customers immediately. They 
proposed heuristics as well as worst-case analysis for 
their methods[4-5]. Woeginger studied the same problem 
in the parallel-machine environment with equal job 
arrival times and provided a heuristic with a worst-case 
analysis[6]. 
 In  yet  another  line of research, several papers 
by[7-10] investigated the scheduling problems in which 
jobs are delivered to customers in batches. Potts and 
Van Wassenhove advocated that jobs can be batched 
together due to two possible reasons; one is that jobs 
share the same setup on a machine and another occurs 
when a machine can process several jobs 
simultaneously[7]. As to the latter, Ahmadi et al.[11] 
considered a class of two-machine batching and 
scheduling problems in which the batch processor, 

which can process a batch of jobs simultaneously, plays 
an important role. 
 Lee and Chen investigated machine scheduling 
models that impose constraints on both transportation 
capacity and transportation times. They categorized this 
class of scheduling problems based on the type of 
transportation situations into two different types. The 
first type is intermediate transportation in a flow shop 
where jobs are transported from one machine to another 
for further processing. The second type is the delivery 
of finished jobs to customers. Jobs are delivered in 
batches by one or more vehicles with finite or infinite 
capacity. They assumed that sizes of all jobs are of 
consistence[12]. Chang and Lee[13] extended their work 
to the situation in which each job requires different 
physical spaces for delivery, whereas Li et al.[14] 
considered a problem involving job deliveries to 
multiple customers at different locations. 
 

RESULTS 
 
 The results can be categorized into two aspects: 
 
• Flow shop scheduling with delivery system  
• Scheduling support system. 
 
Flowshop scheduling with delivery system: We first 
describe the scheduling problems we are aim to tackle. 
Then, we give the proof of NP-hardness for the 
problems and examine the problems to find optimality 
properties. Based on it, several heuristics are proposed 
to solve the problems efficiently. 
 
Strong NP-hardness: We will show that the scheduling 
problem we studied is strongly NP-hard by reduction 
from the BIN PACKING problem, which is known to 
be NP-hard in the strong sense by[15]. 
 
Theorem 1: The scheduling problem 

2 max F D,k 1 v 1,c z C→ = = =  is NP-hard in the strong 

sense. 
 Theorem 1 provides the proof of NP-hardness for 
our scheduling problem. As a result, proposing a 
heuristic procedure for this intractable problem to 
derive approximate solutions is justifiable. We present 
some optimality properties that will be useful 
throughout our study. Hence, only solutions that satisfy 
all the optimality properties are considered further. 
 
Optimality properties: 
Theorem 2: There exists an optimal schedule for the 
problem 2 maxF D,k 1 v 1,c z C→ = = =  that satisfies the 

following properties: 
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• Jobs are processed on the first machine without 
idle time 

• Jobs are processed on both machines with the same 
sequence 

• Jobs assigned to one batch are processed 
consecutively on either machine 

• Jobs assigned to one batch are scheduled by 
Johnson’s rule 

 
 The related proofs will be indicated in further 
discussion.  
 
Scheduling support system: Scheduling Support 
System (SSS) is one of Decision Support System (DSS) 
for handling the scheduling problems. One of the 
differences between SSS and DSS is on their model 
bases. Model base of scheduling support system is 
composed of one to several scheduling algorithms. Kuo 
and Hwang established the prototype of the real-time 
scheduling support system. They pointed out that the 
success of production system is base on the efficiency 
of production scheduling and the control of shop 
floor[16]. The results showed the production system is 
more flexible through the friendlier interface. 
 
Problem management system: We thought that 
traditional DSS emphasizes on the management of 
solutions and neglects the essentiality of the decision 
process, i.e., problem management and DSS needs the 
use of a problems management system to provide more 
efficient support for the future. The steps of problems 
management is as shown in Table 1.  
 Ecker, Gupta and Schmidt applied it in scheduling 
problems as in Fig. 1. In the Ecker’s system, there are 
three mainly modules to describe the system, that is, 
problem analysis module, schedule construction module 
and evaluation module[17]. Problem analysis module 
includes hard constraints and soft constraints. Hard 
constraints are the constrains that must be satisfied 
during the process of solving the scheduling problems, 
such as precedence relations, routing conditions, 
resource availability, ready times and setup times. Soft 
constraints are the desired conditions, such as job 
sequences, resource utilization and objective 
minimization. 
 The schedule construction comprises of four 
phases. The first phase is the initial schedule generation 
by using algorithms where hard constraints are 
considered. The second phase is called basic schedule. 
The third one is conflict detection. In this phase, the 
priority of  properties  and  initial  schedule is analyzed. 

Table 1: Problem management process 
Steps of problems management Cognitive activity 
Problem finding Identify environmental factors 
Problem representation Identify the type of problems 
Information surveillance Search environmental information 
Solution generation Generate several solutions 
Solution evaluation Evaluate several solutions 

 
 Analysis 

Hard constraints 

Soft constraints 

Evaluation 

Predictive schedule 

Construction 

Basic schedule 

Conflict detection 

Provisional final 
schedule 

 
 
Fig. 1: Problem Management Subsystem 
 
In the fourth phase, according to the desired objective 
and soft constraints, a final schedule is generated and 
then evaluated. The problem management subsystem is 
constructed based on Ecker’s research. By such 
procedures, scheduling support system will provide 
better support than just managing solutions. 
 
System framework: The schema of the scheduling 
support system we constructed for the scheduling 
problem with transportation consideration is based on 
the schema of decision support system. Our scheduling 
support system includes four modules: database 
management system, model base management, problem 
management system and user interface in Fig. 2. These 
four sub-systems are established according to the 
Ecker’s model. The database management system is 
responsible for retrieving internal stored data or 
external information, such as processing data of jobs, 
vehicle information and other properties. The model 
based management system consists of efficient 
algorithms for the problem we studied. Problem 
management system is responsible for analyzing the 
desired scheduling problem and choosing a 
proportionate algorithm. 



Am. J. Applied Sci., 6 (4): 601-607, 2009 
 

 604 

Stored data 

Scheduling support system 
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Problem management 
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Efficient 
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Fig. 2: Schema of the Scheduling Support System 
 

DISCUSSION 
 
Flowshop scheduling with delivery system: 
Problem discussion: The scheduling problem that we 
are interested in is commonly arising from a flexible 
manufacturing environment. Specifically, we consider a 
two-machine flowshop problem with type-2 
transportation, which is described formally as follows. 
There is a set of n independent jobs, N = {J1, J2, …, Jn}, 
to be processed without preemption at a manufacturing 
system consisting of two machines, each of which is a 
discrete processor, namely, a machine can only process 
at most one job at a time. These two machines, ordered 
as M1 and M2, are continuously available from time 
zero onwards. Every job comprises of two operations 
associated with respective processing times on both 
machines. Before the first operation has been completed 
on M1, the second one cannot be started for processing 
on M2. It is assumed that all the jobs are simultaneously 
available at the beginning. Moreover, each job is 
associated with a job size, sj, which represents the 
physical space job Jj occupies when being loaded in the 
vehicle. 
 After processing in the manufacturing system, the 
finished jobs are delivered in batches to the respective 
customers by a vehicle. There is only one vehicle 
available initially with a capacity of z at the 
manufacturing facility. The capacity of the vehicle is 
measured by the total physical space that the vehicle 

provides for one delivery. Furthermore, since we only 
consider the case of one customer area where all 
customers are located with proximity to each other, the 
transportation time, denoted by T, is assumed to be 
constant for each trip. The transportation time is made 
up of two parts: one is the time from the manufacturing 
facility to the customer, denoted by t1 and the other, 
denoted by t2, is that from the customer to the 
manufacturing facility, where t1 and t2 are independent 
of the jobs being transported. 
 The problem we are mainly concerned is to 
determine the job processing sequence in the 
manufacturing system together with the delivery 
schedule such that the time required for processing and 
delivering all of the jobs is minimized. 
 Following the three-field notation schema,| |α β γ , 
introduced by Graham et al. [18]  and the additional 
notation of Lee and Chen[12], our problem of 
minimizing the makespan is denoted 
by 2 max F D,k 1 v 1,c z C→ = = = . In the α field, the 

notation “ 2F D,k 1→ = ” represents the problem in 

which jobs are first processed on a two-machine 
flowshop environment and then delivered to one 
customer area. In the β field, v denotes the number of 
identical vehicles at the manufacturing facility and c is 
the capacity of vehicles. Here, the notation “v 1,c z= = ” 
means that only one vehicle with a capacity of z is 
considered in our problem. In the γ field, a regular 
measure of performance Cmax is used in order to reduce 
the turnaround time. For convenience of analysis, the 
makespan of a schedule σ, denoted as Cmax (σ), is 
defined in this study as the time when the vehicle 
finishes delivering the last batch to the customer area 
and returns to the manufacturing facility. Unless 
ambiguity would result, we simplify Cmax (σ) to Cmax. 
 
Strong NP-hardness: There is a proof of theorem 1 to 
the result of Strong NP-Hardness. 
 
Theorem 2: The scheduling problem 

2 max F D,k 1 v 1,c z C→ = = = is NP-hard in the strong 

sense. 
 
Proof: Consider a special case of 

2 max F D,k 1 v 1,c z C→ = = =  in which, for every job, the 

processing times of both operations are zero. Hence all 
of the jobs are ready for delivering to the customer at 
the beginning. In such a case, because of the constant 
transportation time, minimization of the number of 
delivery batches will achieve the optimality and thus 
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the problem can be regarded as a bin packing problem, 
which is a well-known strongly NP-hard problem. 
Therefore, our problem is also NP-hard in the strong 
sense.  

 
Optimality properties: 
Theorem 3: There exists an optimal schedule for the 
problem 2 maxF D,k 1 v 1,c z C→ = = = . 

 
Proof: 
• If there exists idle time before processing of all 

operations is finished on the first machine, the 
subsequent operations can be moved earlier 
without increasing the makespan 

• Suppose that there exists an optimal schedule in 
which some, at least two, jobs, say Ji and Jj, have 
shifts in their processing orders when traveling 
through the machines. If, in the schedule, Ji is 
processed earlier than Jj on the first machine 
(machine 1) and the opposite is occurred on the 
second machine (machine 2), then interchanging 
the positions of these two jobs on machine 1 and 
keeping the processing sequence on machine 2 will 
achieve the desired condition with no effect on the 
objective value. It is clear that, for job Jj, its 
position on machine 1 is moved forward. The start 
of processing its second operation on machine 2 
will not be affected. For job Ji, though its position 
on machine 1 is shifted backwards, the completion 
time of its first operation is still no latter than the 
start time of the second operation of Jj and thus is 
undoubtedly prior to the start time of its second 
operation on machine 2. Consequently, by 
repeating the above procedure, a schedule with 
jobs requiring a sequence change between 
machines can always be modified by changing the 
sequence of jobs on machine 1 in accordance with 
that on machine 2 without increasing the 
makespan. In other words, an optimal schedule of 
our problem is always a permutation schedule 

• Based on the property (ii), without loss of 
generality, it is sufficient only to consider the 
situations in which jobs maintain a specific 
permutation traversing the entire system. Suppose 
an optimal schedule S satisfying property (ii), in 
which there exists a batch, say Bk, whose jobs are 
not processed consecutively on the machines due to 
some “interrupted” jobs (not necessary adjacent to 
each other). All we have to do is to move all those 
interrupted jobs forwards, while keeping their 
sequence, until the last job of it is processed just 
before the first job of Bk so as to result in the 

consecutive processing of jobs in Bk. It can be seen 
that the completion time of the last job in Bk on 
machine 2 would not be postponed, that is, the 
ready time of batch Bk is unchanged. Note that the 
vehicle leaves the manufacturing system with some 
batch only after the jobs in that batch are all 
finished. Hence, by repeating the procedure, a new 
schedule with processing consecutiveness of jobs 
in one batch can be constructed and the makespan 
of it is no other than that of S and that is to say, an 
optimal schedule always satisfies the property 

• It is known that Johnson’s rule, also known as an 
SPT(I)-LPT(II) schedule. It is a classical algorithm 
which can achieve the optimality for the2 max F || C  

problem. It is easy to see that, based on property 
(iii), to sequence the jobs which are arranged to the 
first batch can be considered as a2 max F || C  problem 

and thus the jobs should be scheduled by Johnson’s 
rule. Note that Johnson’s rule is based on the 
assumption that both machines are available at the 
beginning of the time horizons; however, as to the 
job sequencing within some other batch, say Bk, 
there is a possibility that machine 2 is not available 
while machine 1 starts to process the first job. 
Fortunately, it is of little significance for the use of 
Johnson’s rule. It can be verified by only 
introducing an insubstantial job, J0, with zero 
processing time on machine 1 and τ on machine 2, 
where τ is the right time that is the period of 
unavailable time of machine 2 (which is resulted 
from the processing of the preceding batch). Since 
the processing time of J0 on machine 1 is zero, it is 
classified into Set I, which contains all the jobs 
with 1j 2 j p p<  and is definitely processed as the first 

job according to SPT order of p1j. Therefore, the 
sequence of jobs assigned to Bk determined by 
Johnson’s rule remains the same. 

 
Scheduling support system: 
Model base management system: In the model based 
management system, we propose some efficient 
heuristics. First of all, we review the FFD algorithm 
and the SPT(I)-LPT(II) schedule, which are both useful 
for establishing the heuristics. 
 
First fit decreasing algorithm: Let batches are 
indexed as B1, B2,…, with each initial capacity of z. 
Sort the jobs in non-increasing order of their size (sj). 
Place the first job, whose size is the largest, in B1. If the 
jth largest job is considered, then place it to the lowest 
indexed batch whose current content does not exceed z-
sj, or generate another batch and put the job in. 
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The SPT(I)-LPT(II) schedule: Partition the jobs into 
two sets, with Set I containing all the jobs with 

1j 2 j p p<  and Set II all the jobs with 1j 2 j p p< . The jobs 

with 1j 2 j p p<  may be put in either set. The jobs in Set I 

go first and they go in increasing order of p1j (SPT); the 
jobs in Set II follow in decreasing order of p2j (LPT). 
Ties may be broken arbitrarily. 
According to the optimality properties mentioned in 
Sec 3.4, we provide several efficient heuristics for the 
scheduling we studies as follows. 
 
Heuristic procedure H1: 
Step 1: Assign jobs into batches by using the FFD 

algorithm. Set the total number of resulting 
batches as b 

Step 2: Sequence the jobs within each batch as an 
SPT(I)-LPT(II) schedule 

Step 3: Sequence the batches in SPT order of Pj where 
batches are indexed according to their order 

Step 4: Starting with B1, assign jobs in Bk to the 
machines, for k 1,2, ,b= L . Dispatch each 
completed but undelivered batch whenever the 
vehicle becomes available. If multiple batches 
have been completed when the vehicle becomes 
available, dispatch the batch with the smallest 
index 

 
Heuristic procedure H2: 
Step 1: Assign jobs into batches by using the FFD 

algorithm. Set the total number of resulting 
batches be b 

Step 2: Sequence the jobs within each batch as an 
SPT(I)-LPT(II) schedule 

Step 3: Sequence the batches with PjφT in SPT order, 
then those with Pj>T followed by the inequality 

k l l kmin( , ) min( , )ρ φ ≤ ρ φ  

Step 4: Starting with B1, assign jobs in Bk to the 
machines, for k 1,2, ,b= L . Dispatch each 
completed but undelivered batch whenever the 
vehicle becomes available. If multiple batches 
have been completed when the vehicle becomes 
available, dispatch the batch with the smallest 
index 

 
Heuristic procedure H3: 
Step 1: Sequence the jobs as an SPT(I)-LPT(II) 

schedule 
Step 2: Assign jobs into batches by using the algorithm 

similar to the FFD algorithm except that the sort 
of the jobs has been determined in Step 1. Set 
the total number of resulting batches be b. Index 
the batches according to their order 

Step 3: Starting with B1, assign jobs in Bk to the 
machines, for k 1,2, ,b= L . Dispatch each 
completed but undelivered batch whenever the 
vehicle becomes available. If multiple batches 
have been completed when the vehicle becomes 
available, dispatch the batch with the smallest 
index 

 
CONCLUSION 

 
 This study investigates the flow shop scheduling 
models that explicitly consider constraints on 
transportation and job sizes. The finished jobs are 
transferred from the processing facility and delivered to 
one and only one customer or warehouse by a vehicle 
with capacity z. The considered objective function is 
the makespan. 
 New complexity result is derived and several 
efficient heuristic are proposed for the problem. In 
addition, from the DSS view, we establish the prototype 
of SSS which provides more useful information for 
users when he makes a strategic decision to solving this 
class of coordinated scheduling problems. Moreover, 
problem management subsystem is introduced in the 
system to improve traditional DSS. In the future 
research, it is interesting to extend the existing model to 
develop solutions for problems with other objective 
functions. 
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