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Abstract: Problem statement: The performance and efficiency of multitasking operating systems 
mainly depends on the used CPU scheduling algorithm where the CPU is one of the primary computer 
resources and as round robin scheduling algorithm is considered most widely used scheduling 
algorithms in this research a new proposed variant of this algorithm presented, discussed in detail, 
tested and verified. Approach: The new proposed algorithm called Self-Adjustment-Round-Robin 
(SARR) based on a new approach called dynamic-time-quantum; the idea of this approach is to make 
the time quantum repeatedly adjusted according to the burst time of the now-running processes. 
Results: Based on the experiments and calculations that I have made the new modified algorithm 
radically solves the fixed time quantum problem which is considered a challenge for round robin 
algorithm. Conclusion: The use of dynamic scheduling algorithm increased the performance and 
stability of the operating system and support building of an self-adaptation operating system, which 
means that the system is who will adapt itself to the requirements of the user and not vice versa. 
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INTRODUCTION 

 
 Modern operating systems become more complex, 
they have evolved from a single task to a multitasking 
environment in which processes run in a concurrent 
manner[1]. CPU scheduling is an essential operating 
system task; therefore its scheduling is central to 
operating system design. When there is more than one 
process in the ready queue waiting its turn to be 
assigned to the CPU, the operating system must decide 
through the scheduler the order of execution[2,3].  
 Allocating CPU to a process requires careful 
attention to assure fairness and avoid process starvation 
for CPU. Scheduling decision try to minimize the 
following: Turnaround time, response time and average 
waiting time for processes and the number of context 
switches[4]. There exist a different Scheduling 
algorithms, each of them has advantages and 
disadvantages and as follows: First-Come-First-Served 
(FCFS) has the advantage of simplicity in which 
processes are dispatched according to their arrival time 
on the ready queue. Being a non preemptive discipline, 
once a process has a CPU, it runs to completion. It has 
the disadvantages that the average time is often quite 
long and it is not suitable in real time applications. This 
is mainly because one process with long execution time 
may hinder many short processes to complete before 

deadline[5,6]. On the other hand priority scheduling 
allocates processes to the CPU on the basis of an 
externally assigned priority and run the highest-priority 
first. The key to the performance of priority scheduling 
is in choosing priorities for the processes. The main 
problem of it is starvation and the solution to this 
problem is aging. Shortest-Job-First (SJF) scheduling is 
provably optimal, providing the shortest average 
waiting time. The obvious problem with this algorithm 
is that it is require precise knowledge of how long a job 
or process will run and this information is not usually 
available and unpredictable[7,8]. The Round Robin (RR) 
algorithm which is the main concern of this research is 
one of the oldest, simplest and fairest and most widely 
used scheduling algorithms, designed especially for 
time-sharing systems. A small unit of time, called time 
slices or quantum is defined. All runnable processes are 
kept in a circular queue. The CPU scheduler goes 
around this queue, allocating the CPU to each process 
for a time interval of one quantum. New processes are 
added to the tail of the queue. The CPU scheduler picks 
the first process from the queue, sets a timer to interrupt 
after one quantum and dispatches the process[9]. If the 
process is still running at the end of the quantum, the 
CPU is preempted and the process is added to the tail of 
the queue. If the process finishes before the end of the 
quantum, the process itself releases the CPU 
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voluntarily. In either case, the CPU scheduler assigns 
the CPU to the next process in the ready queue. The 
performance of the RR algorithm depends heavily on 
the size of the time quantum. At one extreme, if the 
time quantum is extremely large, cause poor response 
time and approximates FCFS. If the time quantum is 
extremely small this causes too many context switches 
and lowers the CPU efficiency. RR algorithm gives 
better responsiveness but worse average turnaround 
time and waiting time[4,10-12]. In this research I present a 
solution to the time quantum problem by make the 
operating systems adjusting the time quantum 
according to the burst time of the existed set of 
processes in the ready queue. 
 

MATERIALS AND METHODS 
 
 The idea of this study was built on the basis of a 
questionnaire I have prepared and distributed in march 
2009, by the e-mail to a sample of one thousand of 
computer users from my country Jordan and from other 
countries to understand and identify the user behavior 
and preferences in order to improve the performance of 
the operating system, the sample included university 
professors, students, administrators, accountants and 
economists, from various levels, experiences and ages. 
 The results showed that users from the same group 
have the same behavior and the vast majority of users 
using a specific set of programs almost exclusively 
programs that are related to user’s work, audio-video 
players, web browsers and text editors. Table 1 
summarizes the most important questions that the 
questionnaire is structured around and the results that I 
obtained. 
 The main conclusion for me was that each user 
prefers to use a specific set of programs (which vary 
from one user to another) and do not tend to use other 
than it, except in rare cases. 
 This result led me to think about how to use such 
information to enhance and improve the performance of 
the operating system. I found that I can use this 
information to improve the CPU scheduling that based 
on round robin scheduling algorithm. This can be done 
by analyzing the process to identify its burst time, the 
analysis carried out only once when the process executed 
for the first time, without the need to be replicated, 
except in rare cases such as the program had been 
changed, modified, or updated since the last analysis. 
 The analysis will determine the burst time of the 
process and accordingly the operating system can adapt 
itself by readjusting the value of the time-slice or time 
quantum Q to commensurate with the set of the 
programs in the ready queue. 

Table 1: Summary of main questionnaire parts 
Questions No (%) Yes (%) 
Do you use specific programs always? 7 93 
Do you frequently install new programs? 92 8 
Can other people use your computer? 81 19 
Do other people who use your computer 4 96 
use the same programs that you use? 
Do you use programs that are related to  27 73 
your work?  

  
 Description of the proposed method: When 
operating system installed for the first time, it begins 
with a default time quantum value, which is subject to 
change after a period of time through which the 
operating system can identify the burst time for a subset 
of the programs used by the user. So, I assume that the 
system will not immediately take advantage of this 
method because it needs a short period of time to learn 
user behavior through the analysis of the burst time of 
the new processes. The determined time quantum 
represents real and optimal value because it based on 
real burst time unlike the other methods, which depend 
on fixed or possible time quantum value, determined by 
a variety methodologies such as guessing, fuzzy 
logic…[13,14].  
 Repeatedly, when a new process loaded to be 
executed the operating system tests the status of the 
specified program which can be either 1 or 0. 
 When the status equals to 0 this means that the 
process is either being executed for the first time or it 
has been modified or updated since the last analysis. In 
this case the operating system assign a counter to find 
the burst time of the process and continues executing 
the processes in the ready queue on the current round 
including the new arrival process using the current time 
quantum Q, otherwise and when status is equal to 1, 
then the operating system recalculates the time quantum 
Q depending on the remaining burst time of all ready 
processes including the new arrival process. 
 I have found through experience that the optimal 
time quantum can be presented by the median[15,16] for 
the set of processes in the ready queue, if the median 
less, than 25 then its value must be modified to 25 to 
avoid the overhead of the context switch. Formula 1 
represents the value of time quantum Q consequences 
for the medianxɶ : 
 

(N 1)/2    

N/2 1 N/2

Y    if N is odd  

Q x 1
(Y ) (Y )    if N is even 

2

+

+


= ≡ 
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

ɶ  (1) 

 
where, Y is the number located in the middle of a 
group of numbers arranged in ascending order. 
Because  the  value  of  Q  should  not be  less  than 25, 
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Fig. 1: The rate of decrease in the number of processes 

in each round 
 
we can rewrite formula (1) in more specific form to fit 
with the allowed range:  
 

x,   if x 25 
Q  

25, if x 25 

≥
=  <

ɶ ɶ

ɶ
 (2) 

 
  This means that 50% of the processes will be 
terminated through the first round and as time quantum 
calculated repeatedly for each round then 50% of the 
remaining processes will be terminated during the 
second round, with the same manner for the third 
round, fourth round, which is mean that the maximum 
number of rounds will be less than or equal to 6 
whatever the number of process or their burst time. 
Figure 1 shows the significant decrease of the number 
of processes in each round. 
 The significant decrease of the number of 
processes, inevitably will lead to significant reduction 
in the number of context switch, which may pose high 
overhead on the operating system in many cases. The 
number of context switch can be represented 
mathematically as follow: 
 

[ ]
r

T r
1

Q k )  1 = −∑  (3) 

 
Where 
QT = The total number of context switch 
r  = The total number of rounds, r = 1, 2…6 
kr  = The total number of processes in each round 
 
 In other variants of round robin scheduling 
algorithm the context switch occurs even if there is only 
a single process in the ready queue, where the operating 
system assigns the process a specific time quantum Q, 
when time quantum expires the process interrupted and 
again  assigned  the  same  time  quantum Q, regardless, 

 
 
Fig. 2: Pseudocode of self-adjustment-round-robin 

(SARR) algorithm 
 

 
 
Fig. 3: Flowchart of Self-Adjustment-Round-Robin 

(SARR) algorithm 
 
whether the process alone in the ready queue or not, 
which means that, there will be additional unnecessary 
context switches, while this problem does not occur at 
all in the new proposed algorithm; because in this case 
the time quantum will equal to the remaining burst time 
of the process. 
 Figure 2 represents the pseudocode of the proposed 
algorithm and Fig. 3 shows its flowchart. 
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RESULTS 
 
 The proposed algorithm was designed to meet all 
scheduling criteria such as max CPU utilization, max 
throughput, min turnaround time, min waiting time and 
min response time. 
 To evaluate the proposed method with regard to the 
above criteria[17-21], for the purpose of simplicity I will 
take a group of four processes in four different cases 
with random burst time and what should be mentioned 
here that the number of processes does not change the 
result because the algorithm works effectively even if it 
used with a very large number of processes. 
 In each case I will compare the result of the 
proposed method with the classic approach used in 
round robin scheduling algorithm and as classical 
approach uses fixed time quantum Q, so I assume a 
constant time quantum Q equal to 20 in all cases, in 
order to compare the two algorithms fairly.  
 
Case 1: Assume four processes arrived at time = 0, 
with burst time (P1 = 20, P2 = 40, P3 = 60, P4 = 80) as 
shown in Table 2. part (a) in Table 2 shows the output 
using classical approach, while part (b) in Table 2 
shows the output using new proposed method. Figure 4 
shows Gantt chart for part (a) and Fig. 5 shows Gantt 
chart for part (b). 
 
Table 2: Comparison between fixed and dynamic time quantum in 

round robin algorithm (case 1) 
Process Arrival time Burst time  
Part (a), with static Q = 20 
P1 0 20 
P2 0 40 
P3 0 60 
P4 0 80 
Time quantum  20 
Turn-around time  120 
Waiting time  70 
Context switch  9 
Part (b), with dynamic Q  
P1 0 20 
P2 0 40 
P3 0 60 
P4 0 80 
Time quantum  50, 25, 25 
Turn-around time  65 
Waiting time  62.5 
Context switch  6 

 

 
 
Fig. 4: Gantt chart for part (a) in Table 2 (case 1) 

Case 2: Assume four processes arrived at time = 0, 
with burst time (P1 = 10, P2 = 14, P3 = 70, P4 = 120) as 
shown in Table 3. Part (a) in Table 3 shows the output 
using classical approach, while part (b) in Table 3 
shows the output using new proposed method. Figure 6 
shows Gantt chart for part (a) and Fig. 7 shows Gantt 
chart for part (b). 
 
Case 3: Assume four processes arrived at different 
time, respectively 0, 4, 8, 16, with burst time (P1 = 18, 
P2 = 70, P3 = 74, P4 = 80) as shown in Table 4. Part (a) 
in Table 4 shows the output using classical approach, 
while part (b) in Table 4 shows the output using new 
proposed method. Figure 8 shows Gantt chart for part 
(a) and Fig. 9 shows Gantt chart for part (b). 
 
Table 3: Comparison between fixed and dynamic time quantum in 

round robin algorithm (case 2) 
Process Arrival time Burst time 
Part (a), with static Q = 20 
P1 0 10 
P2 0 14 
P3 0 70 
P4 0 120 
Time quantum  20 
Turn-around time  100.5 
Waiting time  47 
Context switch  11 
Part (b), with dynamic Q  
P1 0 10 
P2 0 14 
P3 0 70 
P4 0 120 
Time quantum  42, 53, 25 
Turn-around time  71 
Waiting time  42.5 
Context switch  6 

 

 
 
Fig. 5: Gantt chart for part (b) in Table 2 (case 1) 
 

 
 
Fig. 6: Gantt chart for part (a) in Table 3 
 

 
 
Fig. 7: Gantt chart for part (b) in Table 3 
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Fig. 8: Gantt chart for part (a) in Table 4 
 
Table 4: Comparison between fixed and dynamic time quantum in 

round robin algorithm (case 3) 
Process Arrival time Burst time  
Part (a), with static Q = 20 
P1 0 18 
P2 4 22 
P3 8 70 
P4 16 74 
Time quantum  20 
Turn-around time  106 
Waiting time  60 
Context switch  10 
Part (b), with dynamic Q   
P1 0 18 
P2 4 22 
P3 8 70 
P4 16 74 
Time quantum  25, 70, 25 
Turn-around time  46 
Waiting time  35 
Context switch  4 

 
Table 5: Comparison between fixed and dynamic time quantum in 

round robin algorithm (case 4) 
Process Arrival time Burst time 
Part (a), with static Q = 20 
P1 0 10 
P2 6 14 
P3 13 70 
P4 21 120 
Time quantum  20 
Turn-around time  90.5 
Waiting time  37 
Context switch  11 
Part (b), with dynamic Q   
P1 0 10 
P2 6 14 
P3 13 70 
P4 21 120 
Time quantum  25, 46, 49, 25 
Turn-around time   46 
Waiting time  30.5 
Context switch   4 

 
Case 4: Assume four processes arrived at different 
time, respectively 0, 6, 13, 21, with burst time (P1 = 10, 
P2 = 14, P3 = 70, P4 = 120) as shown in Table 5. Part (a) 
in Table 4 shows the output using classical approach, 
while part (b) in Table 5 shows the output using new 
proposed method. Figure 10 shows Gantt chart for par t 
(a) and Fig. 11 shows Gantt chart for part (b). 
 From the above comparisons, it is clear that the 
dynamic time quantum approach is superior to the fixed 
time   quantum   approach   in   round  robin  algorithm, 

 
 
Fig. 9: Gantt chart for part (b) in Table 4 
 

 
 
Fig. 10: Gantt chart for part (a) in Table 5 
 

 
 
Fig. 11: Gantt chart for part (b) in Table 5 
 

 
 
Fig. 12: Difference in context switch between dynamic 

and fixed time quantum 
 

 
 
Fig. 13: Difference in turnaround time between 

dynamic and fixed time quantum 
 
where the dynamic time quantum significantly reduces 
the context switch, turnaround time and the waiting 
time. Respectively, Fig. 12-14 represent the difference 
in context switch, waiting time and turnaround time 
between the proposed algorithm with dynamic time 
quantum and the other algorithms based on fixed time 
quantum. 
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Fig. 14: Difference in waiting time between dynamic 

and fixed time quantum  
 

DISCUSSION 
 
 A lot of attempts were developed to find a solution 
for the high turnaround time, high waiting time and the 
overhead of extra context switches in round robin 
algorithm, regardless of the different methodologies 
used in these attempts; however all of them rely based 
on the fixed-time-quantum  
 The proposed algorithm called Self-Adjustment-
Round-Robin (SARR) based on dynamic-time-quantum 
was designed to solve all critical previously mentioned 
problems in a practical, simple and applicable manner. 
 The above comparisons show that the proposed 
algorithm provides much better results twice or three 
times and in some cases perhaps more than other 
approaches based on fixed time quantum in all 
scheduling criteria. 
 Laboratory test of this algorithm showed through a 
simulation program which is prepared for this purpose 
that this algorithm works in a stable manner regardless 
of the number of the now running processes, taking into 
consideration the terminated and the new arrival 
processes. 
 It is recommended to use the dynamic-time-
quantum concept; because it will give the operating 
system the ability to adapt to the user behavior and not 
vice versa, which may lead us to rethink building an 
intelligent, learnable and adaptable operating system. 
 

CONCLUSION 
 
 Time quantum is the bottleneck facing round robin 
algorithm and was more frequently asked question: 
What is the optimal time quantum to be used in round 
robin algorithm? 
 This research provides definitive answer to this 
question by using dynamic time quantum instead of fixed 
time quantum, where the operating system itself finds the 
optimal time quantum without user intervention. 
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