
American Journal of Applied Sciences 6 (10): 1831-1837, 2009
ISSN 1546-9239
© 2009 Science Publications

1831

Self-Adjustment Time Quantum in Round Robin Algorithm Depending on

Burst Time of the Now Running Processes

Rami J. Matarneh
Department of Management Information Systems,

 Faculty of Administrative and Financial Sciences, Al-Isra Private University,
P.O. 11622, Amman, Jordan

Abstract: Problem statement: The performance and efficiency of multitasking operating systems
mainly depends on the used CPU scheduling algorithm where the CPU is one of the primary computer
resources and as round robin scheduling algorithm is considered most widely used scheduling
algorithms in this research a new proposed variant of this algorithm presented, discussed in detail,
tested and verified. Approach: The new proposed algorithm called Self-Adjustment-Round-Robin
(SARR) based on a new approach called dynamic-time-quantum; the idea of this approach is to make
the time quantum repeatedly adjusted according to the burst time of the now-running processes.
Results: Based on the experiments and calculations that I have made the new modified algorithm
radically solves the fixed time quantum problem which is considered a challenge for round robin
algorithm. Conclusion: The use of dynamic scheduling algorithm increased the performance and
stability of the operating system and support building of an self-adaptation operating system, which
means that the system is who will adapt itself to the requirements of the user and not vice versa.

Key words: Round robin, self-adjustment-round-robin, dynamic-time-quantum, CPU scheduling

INTRODUCTION

 Modern operating systems become more complex,
they have evolved from a single task to a multitasking
environment in which processes run in a concurrent
manner[1]. CPU scheduling is an essential operating
system task; therefore its scheduling is central to
operating system design. When there is more than one
process in the ready queue waiting its turn to be
assigned to the CPU, the operating system must decide
through the scheduler the order of execution[2,3].
 Allocating CPU to a process requires careful
attention to assure fairness and avoid process starvation
for CPU. Scheduling decision try to minimize the
following: Turnaround time, response time and average
waiting time for processes and the number of context
switches[4]. There exist a different Scheduling
algorithms, each of them has advantages and
disadvantages and as follows: First-Come-First-Served
(FCFS) has the advantage of simplicity in which
processes are dispatched according to their arrival time
on the ready queue. Being a non preemptive discipline,
once a process has a CPU, it runs to completion. It has
the disadvantages that the average time is often quite
long and it is not suitable in real time applications. This
is mainly because one process with long execution time
may hinder many short processes to complete before

deadline[5,6]. On the other hand priority scheduling
allocates processes to the CPU on the basis of an
externally assigned priority and run the highest-priority
first. The key to the performance of priority scheduling
is in choosing priorities for the processes. The main
problem of it is starvation and the solution to this
problem is aging. Shortest-Job-First (SJF) scheduling is
provably optimal, providing the shortest average
waiting time. The obvious problem with this algorithm
is that it is require precise knowledge of how long a job
or process will run and this information is not usually
available and unpredictable[7,8]. The Round Robin (RR)
algorithm which is the main concern of this research is
one of the oldest, simplest and fairest and most widely
used scheduling algorithms, designed especially for
time-sharing systems. A small unit of time, called time
slices or quantum is defined. All runnable processes are
kept in a circular queue. The CPU scheduler goes
around this queue, allocating the CPU to each process
for a time interval of one quantum. New processes are
added to the tail of the queue. The CPU scheduler picks
the first process from the queue, sets a timer to interrupt
after one quantum and dispatches the process[9]. If the
process is still running at the end of the quantum, the
CPU is preempted and the process is added to the tail of
the queue. If the process finishes before the end of the
quantum, the process itself releases the CPU

Am. J. Applied Sci., 6 (10): 1831-1837, 2009

1832

voluntarily. In either case, the CPU scheduler assigns
the CPU to the next process in the ready queue. The
performance of the RR algorithm depends heavily on
the size of the time quantum. At one extreme, if the
time quantum is extremely large, cause poor response
time and approximates FCFS. If the time quantum is
extremely small this causes too many context switches
and lowers the CPU efficiency. RR algorithm gives
better responsiveness but worse average turnaround
time and waiting time[4,10-12]. In this research I present a
solution to the time quantum problem by make the
operating systems adjusting the time quantum
according to the burst time of the existed set of
processes in the ready queue.

MATERIALS AND METHODS

 The idea of this study was built on the basis of a
questionnaire I have prepared and distributed in march
2009, by the e-mail to a sample of one thousand of
computer users from my country Jordan and from other
countries to understand and identify the user behavior
and preferences in order to improve the performance of
the operating system, the sample included university
professors, students, administrators, accountants and
economists, from various levels, experiences and ages.
 The results showed that users from the same group
have the same behavior and the vast majority of users
using a specific set of programs almost exclusively
programs that are related to user’s work, audio-video
players, web browsers and text editors. Table 1
summarizes the most important questions that the
questionnaire is structured around and the results that I
obtained.
 The main conclusion for me was that each user
prefers to use a specific set of programs (which vary
from one user to another) and do not tend to use other
than it, except in rare cases.
 This result led me to think about how to use such
information to enhance and improve the performance of
the operating system. I found that I can use this
information to improve the CPU scheduling that based
on round robin scheduling algorithm. This can be done
by analyzing the process to identify its burst time, the
analysis carried out only once when the process executed
for the first time, without the need to be replicated,
except in rare cases such as the program had been
changed, modified, or updated since the last analysis.
 The analysis will determine the burst time of the
process and accordingly the operating system can adapt
itself by readjusting the value of the time-slice or time
quantum Q to commensurate with the set of the
programs in the ready queue.

Table 1: Summary of main questionnaire parts
Questions No (%) Yes (%)
Do you use specific programs always? 7 93
Do you frequently install new programs? 92 8
Can other people use your computer? 81 19
Do other people who use your computer 4 96
use the same programs that you use?
Do you use programs that are related to 27 73
your work?

 Description of the proposed method: When
operating system installed for the first time, it begins
with a default time quantum value, which is subject to
change after a period of time through which the
operating system can identify the burst time for a subset
of the programs used by the user. So, I assume that the
system will not immediately take advantage of this
method because it needs a short period of time to learn
user behavior through the analysis of the burst time of
the new processes. The determined time quantum
represents real and optimal value because it based on
real burst time unlike the other methods, which depend
on fixed or possible time quantum value, determined by
a variety methodologies such as guessing, fuzzy
logic…[13,14].
 Repeatedly, when a new process loaded to be
executed the operating system tests the status of the
specified program which can be either 1 or 0.
 When the status equals to 0 this means that the
process is either being executed for the first time or it
has been modified or updated since the last analysis. In
this case the operating system assign a counter to find
the burst time of the process and continues executing
the processes in the ready queue on the current round
including the new arrival process using the current time
quantum Q, otherwise and when status is equal to 1,
then the operating system recalculates the time quantum
Q depending on the remaining burst time of all ready
processes including the new arrival process.
 I have found through experience that the optimal
time quantum can be presented by the median[15,16] for
the set of processes in the ready queue, if the median
less, than 25 then its value must be modified to 25 to
avoid the overhead of the context switch. Formula 1
represents the value of time quantum Q consequences
for the medianxɶ :

(N 1)/2

N/2 1 N/2

Y if N is odd

Q x 1
(Y) (Y) if N is even

2

+

+


= ≡ 

+


ɶ (1)

where, Y is the number located in the middle of a
group of numbers arranged in ascending order.
Because the value of Q should not be less than 25,

Am. J. Applied Sci., 6 (10): 1831-1837, 2009

1833

Fig. 1: The rate of decrease in the number of processes

in each round

we can rewrite formula (1) in more specific form to fit
with the allowed range:

x, if x 25
Q

25, if x 25

≥
=  <

ɶ ɶ

ɶ
 (2)

 This means that 50% of the processes will be
terminated through the first round and as time quantum
calculated repeatedly for each round then 50% of the
remaining processes will be terminated during the
second round, with the same manner for the third
round, fourth round, which is mean that the maximum
number of rounds will be less than or equal to 6
whatever the number of process or their burst time.
Figure 1 shows the significant decrease of the number
of processes in each round.
 The significant decrease of the number of
processes, inevitably will lead to significant reduction
in the number of context switch, which may pose high
overhead on the operating system in many cases. The
number of context switch can be represented
mathematically as follow:

[]
r

T r
1

Q k) 1 = −∑ (3)

Where
QT = The total number of context switch
r = The total number of rounds, r = 1, 2…6
kr = The total number of processes in each round

 In other variants of round robin scheduling
algorithm the context switch occurs even if there is only
a single process in the ready queue, where the operating
system assigns the process a specific time quantum Q,
when time quantum expires the process interrupted and
again assigned the same time quantum Q, regardless,

Fig. 2: Pseudocode of self-adjustment-round-robin

(SARR) algorithm

Fig. 3: Flowchart of Self-Adjustment-Round-Robin

(SARR) algorithm

whether the process alone in the ready queue or not,
which means that, there will be additional unnecessary
context switches, while this problem does not occur at
all in the new proposed algorithm; because in this case
the time quantum will equal to the remaining burst time
of the process.
 Figure 2 represents the pseudocode of the proposed
algorithm and Fig. 3 shows its flowchart.

Am. J. Applied Sci., 6 (10): 1831-1837, 2009

1834

RESULTS

 The proposed algorithm was designed to meet all
scheduling criteria such as max CPU utilization, max
throughput, min turnaround time, min waiting time and
min response time.
 To evaluate the proposed method with regard to the
above criteria[17-21], for the purpose of simplicity I will
take a group of four processes in four different cases
with random burst time and what should be mentioned
here that the number of processes does not change the
result because the algorithm works effectively even if it
used with a very large number of processes.
 In each case I will compare the result of the
proposed method with the classic approach used in
round robin scheduling algorithm and as classical
approach uses fixed time quantum Q, so I assume a
constant time quantum Q equal to 20 in all cases, in
order to compare the two algorithms fairly.

Case 1: Assume four processes arrived at time = 0,
with burst time (P1 = 20, P2 = 40, P3 = 60, P4 = 80) as
shown in Table 2. part (a) in Table 2 shows the output
using classical approach, while part (b) in Table 2
shows the output using new proposed method. Figure 4
shows Gantt chart for part (a) and Fig. 5 shows Gantt
chart for part (b).

Table 2: Comparison between fixed and dynamic time quantum in

round robin algorithm (case 1)
Process Arrival time Burst time
Part (a), with static Q = 20
P1 0 20
P2 0 40
P3 0 60
P4 0 80
Time quantum 20
Turn-around time 120
Waiting time 70
Context switch 9
Part (b), with dynamic Q
P1 0 20
P2 0 40
P3 0 60
P4 0 80
Time quantum 50, 25, 25
Turn-around time 65
Waiting time 62.5
Context switch 6

Fig. 4: Gantt chart for part (a) in Table 2 (case 1)

Case 2: Assume four processes arrived at time = 0,
with burst time (P1 = 10, P2 = 14, P3 = 70, P4 = 120) as
shown in Table 3. Part (a) in Table 3 shows the output
using classical approach, while part (b) in Table 3
shows the output using new proposed method. Figure 6
shows Gantt chart for part (a) and Fig. 7 shows Gantt
chart for part (b).

Case 3: Assume four processes arrived at different
time, respectively 0, 4, 8, 16, with burst time (P1 = 18,
P2 = 70, P3 = 74, P4 = 80) as shown in Table 4. Part (a)
in Table 4 shows the output using classical approach,
while part (b) in Table 4 shows the output using new
proposed method. Figure 8 shows Gantt chart for part
(a) and Fig. 9 shows Gantt chart for part (b).

Table 3: Comparison between fixed and dynamic time quantum in

round robin algorithm (case 2)
Process Arrival time Burst time
Part (a), with static Q = 20
P1 0 10
P2 0 14
P3 0 70
P4 0 120
Time quantum 20
Turn-around time 100.5
Waiting time 47
Context switch 11
Part (b), with dynamic Q
P1 0 10
P2 0 14
P3 0 70
P4 0 120
Time quantum 42, 53, 25
Turn-around time 71
Waiting time 42.5
Context switch 6

Fig. 5: Gantt chart for part (b) in Table 2 (case 1)

Fig. 6: Gantt chart for part (a) in Table 3

Fig. 7: Gantt chart for part (b) in Table 3

Am. J. Applied Sci., 6 (10): 1831-1837, 2009

1835

Fig. 8: Gantt chart for part (a) in Table 4

Table 4: Comparison between fixed and dynamic time quantum in

round robin algorithm (case 3)
Process Arrival time Burst time
Part (a), with static Q = 20
P1 0 18
P2 4 22
P3 8 70
P4 16 74
Time quantum 20
Turn-around time 106
Waiting time 60
Context switch 10
Part (b), with dynamic Q
P1 0 18
P2 4 22
P3 8 70
P4 16 74
Time quantum 25, 70, 25
Turn-around time 46
Waiting time 35
Context switch 4

Table 5: Comparison between fixed and dynamic time quantum in

round robin algorithm (case 4)
Process Arrival time Burst time
Part (a), with static Q = 20
P1 0 10
P2 6 14
P3 13 70
P4 21 120
Time quantum 20
Turn-around time 90.5
Waiting time 37
Context switch 11
Part (b), with dynamic Q
P1 0 10
P2 6 14
P3 13 70
P4 21 120
Time quantum 25, 46, 49, 25
Turn-around time 46
Waiting time 30.5
Context switch 4

Case 4: Assume four processes arrived at different
time, respectively 0, 6, 13, 21, with burst time (P1 = 10,
P2 = 14, P3 = 70, P4 = 120) as shown in Table 5. Part (a)
in Table 4 shows the output using classical approach,
while part (b) in Table 5 shows the output using new
proposed method. Figure 10 shows Gantt chart for par t
(a) and Fig. 11 shows Gantt chart for part (b).
 From the above comparisons, it is clear that the
dynamic time quantum approach is superior to the fixed
time quantum approach in round robin algorithm,

Fig. 9: Gantt chart for part (b) in Table 4

Fig. 10: Gantt chart for part (a) in Table 5

Fig. 11: Gantt chart for part (b) in Table 5

Fig. 12: Difference in context switch between dynamic

and fixed time quantum

Fig. 13: Difference in turnaround time between

dynamic and fixed time quantum

where the dynamic time quantum significantly reduces
the context switch, turnaround time and the waiting
time. Respectively, Fig. 12-14 represent the difference
in context switch, waiting time and turnaround time
between the proposed algorithm with dynamic time
quantum and the other algorithms based on fixed time
quantum.

Am. J. Applied Sci., 6 (10): 1831-1837, 2009

1836

Fig. 14: Difference in waiting time between dynamic

and fixed time quantum

DISCUSSION

 A lot of attempts were developed to find a solution
for the high turnaround time, high waiting time and the
overhead of extra context switches in round robin
algorithm, regardless of the different methodologies
used in these attempts; however all of them rely based
on the fixed-time-quantum
 The proposed algorithm called Self-Adjustment-
Round-Robin (SARR) based on dynamic-time-quantum
was designed to solve all critical previously mentioned
problems in a practical, simple and applicable manner.
 The above comparisons show that the proposed
algorithm provides much better results twice or three
times and in some cases perhaps more than other
approaches based on fixed time quantum in all
scheduling criteria.
 Laboratory test of this algorithm showed through a
simulation program which is prepared for this purpose
that this algorithm works in a stable manner regardless
of the number of the now running processes, taking into
consideration the terminated and the new arrival
processes.
 It is recommended to use the dynamic-time-
quantum concept; because it will give the operating
system the ability to adapt to the user behavior and not
vice versa, which may lead us to rethink building an
intelligent, learnable and adaptable operating system.

CONCLUSION

 Time quantum is the bottleneck facing round robin
algorithm and was more frequently asked question:
What is the optimal time quantum to be used in round
robin algorithm?
 This research provides definitive answer to this
question by using dynamic time quantum instead of fixed
time quantum, where the operating system itself finds the
optimal time quantum without user intervention.

REFERENCES

1. Helmy, T. and A. Dekdouk, 2007. Burst round

robin as a proportional-share scheduling algorithm.
IEEEGCC, King Fahed University.
http://eprints.kfupm.edu.sa/1462/

2. Rashid, M.M. and Z.N. Akhtar, 2006. A new
multilevel CPU scheduling algorithm. J. Applied
Sci., 6: 2036-2039. DOI:
10.3923/jas.2006.2036.2039

3. Tanebaun, A.S., 2008. Modern Operating Systems.
3rd Edn., Prentice Hall, ISBN: 13:
9780136006633, pp: 1104.

4. Silberschatz, A., P.B. Galvin and G. Gagne, 2004.
Operating Systems Concepts. 7th Edn., John Wiley
and Sons, USA., ISBN: 13: 978-0471694663,
pp: 944.

5. Place, J., 1989. FCFS: A novel scheduling policy
for tightly-coupled parallel computer systems.
Proceeding of the ACM Annual Computer Science
Conference, Proceedings of the 17th ACM Annual
Conference on Computer Science, Feb. 21-23,
ACM Press, Louisville, Kentucky, pp: 188-194.
DOI: 10.1145/75427.75450

6. Zhao, W. and J.A. Stankovic, 1989. Performance
analysis of FCFS and improved FCFS scheduling
algorithms for dynamic real-time computer
systems. Proceeding of the IEEE Real-Time
Systems Symposium, Dec. 1989, pp: 156-165.
http://tw.rpi.edu/wiki/Performance_Analysis_of_F
CFS_and_Improved_FCFS_Scheduling_Algorithm
s_for_Dynamic_Real-Time_Computer_Systems

7. Lupetti, S. and D. Zagorodnov, 2006. Data
popularity and shortest-job-first scheduling of
network transfers. Proceeding of the International
Conference on Digital Telecommunications, Aug. 29-
31, EEE Computer Society, USA., pp: 26-26. DOI:
10.1109/ICDT.2006.28

8. Sandmann, W., 2006. Benefits of alternating
FCFS/SJF service order. Proceedings of the 6th
WSEAS International Conference on Applied
Informatics and Communications, Aug. 18-20,
World Scientific and Engineering Academy and
Society, Stevens Point, Wisconsin, USA., pp: 194-199.
http://portal.acm.org/citation.cfm?id=1366454

9. Back, D.S., K. Pyun, S.M. Lee, J. Cho and N. Kim,
2007. A hierarchical deficit round-robin scheduling
algorithm for a high level of fair service.
Proceedings of the International Symposium on
Information Technology Convergence, Nov. 23-24,
IEEE Computer Society, Washington DC., USA.,
pp: 115-119.

 http://portal.acm.org/citation.cfm?id=1338146

Am. J. Applied Sci., 6 (10): 1831-1837, 2009

1837

10. Nieh, J., C. Vaill and H. Zhong, 2001. Virtual-time
round-robin: An O(1) Proportional share scheduler.
Proceedings of the General Track: USENIX
Annual Technical Conference, (UAT‘01),
USENIX, pp: 245-260.
http://www.usenix.org/event/usenix01/full_papers/
nieh/nieh_html/

11. Caprita, B., W.C. Chan, J.N.C. Stein and H. Zheng,
2004. Group ratio round-robin: O(1) Proportional
Share scheduling for uniprocessor and
multiprocessor systems. Columbia University,
Technical Report CUCS-028-04.
http://www.ncl.cs.columbia.edu/publications/cucs-
028-04.pdf

12. Tong, W. and J. Zhao, 2007. Quantum varying
deficit round robin scheduling over priority queues.
Proceedings of the International Conference on
Computational Intelligence and Security, Dec. 15-
19, Computer Society, Harbin, China, pp: 252-256.
DOI: 10.1109/CIS.2007.189

13. Zahedi, M.H., M. Ghazizadeh and M. Naghibzadeh,
2007. Fuzzy Round Robin CPU Scheduling
(FRRCS) algorithm. Proceedings of the 2007
International Conference on Systems, Computing
Sciences and Software Engineering (SCSS), Part of
the International Joint Conferences on Computer,
Information and Systems Sciences and
Engineering, Dec. 3-12, Pubzone, Bridgeport, CT.,
USA., pp: 348-353. DOI: 10.1007/978-1-4020-
8741-7_63

14. Finley, D., J.R. Ramos, V. Rego and J. Sang, 2009.
A fast computational algorithm for simulating
round-robin service. J. Simulat., 3: 29-39. DOI:
10.1057/jos.2008.10

15. Plesha, Michael Gray, Gary Costanzo and
Francesco, 2009. Engineering Mechanics: Statics.
9th Edn., McGraw-Hill, ISBN: 0077275535, pp: 704.

16. Hibbeler, R.C., 2009. Statics Study Pack for
Engineering Mechanics: Statics. 12th Edn.,
Prentice Hall, ISBN: 0136091830, pp: 168.

17. Ramos, J.R., V. Rego and J. Sang, 2003. An
improved computational algorithm for round-robin
service. Proceedings of the 2003 Winter Simulation
Conference, Dec. 7-10, IEEE Xplore Press, USA.,
pp: 721-728.

 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1261488

18. Ramos, J.R., V. Rego and J. Sang, 2006. An
efficient burst-arrival and batch-departure
algorithm for round-robin service. Simulat. Model.
Pract. Theor., 14: 1-24. DOI:
10.1016/J.SIMPAT.2005.02.008

19. Kurimoto, T., O. Eiji and Y. Naoaki, 2003.
Adaptive Deficit round robin algorithm achieving
fair bandwidth allocation and improving the delay
quality. IEIC Tech. Rep., 101: 19-24.
http://sciencelinks.jp/j-
east/article/200203/000020020301A1026118.php

20. Lee, E.T., 1990. On average turnaround time.
Kybernetes, 19: 46-58. DOI: 10.1108/eb005836

21. Chaskar, H.M. and U. Madhow, 2003. Fair
scheduling with tunable latency: A round-robin
approach. IEEE/ACM Trans. Network, 11: 592-601.
DOI: 10.1109/TNET.2003.815290

