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Abstract: This study presents analytical models allowing to study a forced convection laminar flow in 
non-established dynamic and thermic regimes. We treated a flow in a bitubular exchanger in permanent 
thermal contact with a semi-infinite medium, such as the ground. The wall temperature as well as the 
wall heat flux evolve in the course of time until a quasi-steady mode. The theoretical method is original 
because it uses Green’s functions method to determine the analytical solutions of the heat propagation 
equation on the wall during the heating phase. These analytical solutions allow to identify the 
temperature distribution versus time. The complexity of the system geometry as well as the infinity of 
the medium surrounding the exchanger make the traditional methods of numerical resolution unable to 
solve the problem. We used, to solve it, the finite volume method coupled with the finite element 
method at the boundary. We studied the effect of Reynolds number, the fluid entry temperature and the 
transfer duration on the axial evolution of the heat transfer coefficient. We illustrated also the profile of 
the temperature field in the fluid medium.  
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INTRODUCTION 

 
 The problem of the thermal flow, once the conduct 
wall is subjected to an imposed temperature or heat 
flux, interested much the researchers. Among the works 
relating to this subject,   we will quote the works[1, 4]. 
 However, the studies, which relate to the non-
established flow in an annular conduct undergoing an 
unknown heat flux, through its wall, are rare[5, 8]. This 
type of flow is obtained in the case of heat exchangers.  
 The problem of the thermal flow, once the conduct 
wall is subjected to an imposed temperature or heat 
flux, interested much the researchers. Among the works 
relating to this subject,   we will quote the works[1, 4]. 
 However, the studies, which relate to the non-
established flow in an annular conduct undergoing an 
unknown heat flux, through its wall, are rare[5, 8]. This 
type of flow is obtained in the case of heat exchangers.  
 A theoric model[5] using the theory of  Green’s 
functions[10] and the finite element method on 
boundary, enables to completely calculate the 
temperatures evolution of such systems.  However, the 
use of this model requires in any way the precise 
experimental knowledge of the local coefficient of heat 
exchange, which is usually impossible because of the 
difficulty of obtaining precise local measurements.  
Indeed, several experimental studies were made[11, 16], 

establishing the expression of the local coefficient of 
transfer, wall-fluid, in correlated or empirical forms.   
 This present work relates primarily to determinate 
the heat transfer coefficient of an exchanger in 
permanent contact with a semi-infinite medium such as 
the ground. The equations of energy in both parts of the 
system, solid and fluid, were established and coupled 
with the continuity relations of temperature and of heat 
flux at the surface of contact fluid-solid. While basing 
on the theory of Green’s functions, the equation of 
energy in the solid medium, infinite and tri-dimensional 
medium (volume of ground), was transformed into an 
integral equation to be solved in a finite and bi-
dimensional medium (surface of the exchanger). One 
deduces from it a system of differential and integral 
equations governing the velocity and temperature fields 
where the expression of the local coefficient of transfer 
appears. The finite volume method combined with the 
finite elements method at the boundary allows a 
numerical resolution of this system. We deduce from it 
the various thermal parameters such as the temperature 
field then the local and average coefficient of heat 
transfer. One notices an agreement of our model results 
with the experimental and numerical results of previous 
works[12, 13]. 
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MATHEMATICAL FORMULATION OF THE 
PROBLEM 

 
 Our system is a bitubular exchanger composed of 
two concentric tubes inserted in the soil (Fig. 1). The 
interior tube is considered thermically insulator. 
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Fig. 1: Geometry of the exchanger 
 
 The hot fluid enters the inner tube at temperature 
Te(t), circulates from top to bottom, goes up from base 
in annular space at average velocityW0  and leaves at an 
exit temperature Ts(t).   
 The medium of storage (ground) constitutes a 
domain (D) limited by a boundary surface (S). The 
equation of heat propagation in it is: 
 
  (1) 
 
 The Green function G ( r

�

, r
�

,t) is the solution of the 
associated equation (2): 
 
  (2) 
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the medium to a heat impulse on the point  'r

�
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 and 'r
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Fig. 2: Boundary surface of the system 
 
 The surface (S) of the domain (D) is the reunion of 
the free surface of the ground (St) and the surface of the 
buried exchanger (Se); (S) =  (Se) ∪ (St) (Fig. 2). 
 If we apply the Laplace transform to the equations 
(1) and (2) and we combine them and then we integrate 
on r

�
 in the domain (D) limited by surface (S) we 

obtain: 
  
 (3) 
 
 
 
 
 
 
 Going to the original, the temperature of the 
exchanger surface (wall and base) is relied to the heat 
flux that escapes at any point from this surface[5,  10,  17]:  
 
 
 
 (4) 
 
 
 
where: 
 

 
  (5) 

 
  
 
 The general solution of the Eq. (2) is the Green 
function: 
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 We consider on (St) the case where the surface 
temperature is imposed and equal to Ta( r
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 This boundary condition imposes to G ( r
�

, r '
�

,t) to 
be null on the level of the ground surface (St). We 
evoke   the   particular   case   where    the   temperature 
imposed on (St) is equal to the reference temperature T0 
supposed as uniform. Consequently, F( r '

�

,t  ) is null[6].   
 
  (8) 
 
 We study the case where the contact between the 
soil and the exchanger is perfect. Consequently, the 
wall temperature Tw is equal to the temperature Tf, 
which reigns in the boundary layer of the fluid 
circulating in the exchanger. The boundary condition on 
the exchanger surface will be:   
 
  (9) 
 
 The quantity of heat yielded by the calorific fluid is 
completely received by the ground. The density of heat 
flux, at the wall of the exchanger, is then continuous.  
 
   (10) 
 
 
 
 If we replace the intervening terms in the relations 
(9) and (10) in the expression of the temperature at the 
wall of the relation (4), we obtain:   
 
 
   
  (11) 
 
 
 
The heat flux density is expressed as:  
 
  (12) 
 
 We treat the case where ρf is supposed constant. 
The axial symmetry of the system (exchanger-fluid) 
imposes that the flow is plane (v = 0) and bi-
dimensional. Thus the equations, which govern the 
flow, are written:   
 
 
 
  (13) 
 
 
 
 
 

 
  (14) 
  
 
 To simplify the writing, we note in the continuation 
T the temperature in any point of the system.  
 In order to compare with the results presented in 
the literature, we impose on the entry annular space (on 
the level of the exchanger base) uniform velocity and 
temperature fields. For the field velocity and the field 
temperature the boundary conditions associated with 
this problem are respectively: 
 
  
 
  (15) 
 
 
 
 
 
 
 
  (16) 
 
 
 
 
 
 
 
 
 
 
 If we consider a cross section of the exchanger  
(Fig. 1), the mean temperature Tm (z, t) is the mean of 
various local temperatures T(r, z, t) on this section. 
 
  
  (17) 
 
 
 The Eq. (12) enables to express the coefficient h (z, 
t) as follows:   
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NUMERICAL RESOLUTION 
 
 We profited from the decoupling between the 
dynamic problem and the thermal problem: The 
dynamic equations were solved in first stage. However, 
the discretized energy equations in the fluid zone and 
on the exchanger surface, were solved in second stage. 
The equations governing the velocity field were 
resolved using the finite volume method by adopting 
the technique of the staggered grid. We use a non-
uniform and tight grid near the inner and outer walls to 
take account of the significant variations of the velocity 
and the temperature in the zone of the boundary layer. 
The used grid is of (30*120). The coupling pressure-
velocity rests on the algorithm Semi-Implicit Method 
for Pressure Linked Revised (S. I. M. P. L. E. R)[18].  
 The equations would be integrated on control 
volume and in interval of time [t, t+δ]. We adopt an 
implicit diagram for the temporal discretization, which 
has the advantage of being unconditionally stable. The 
convective terms are discretized by using an upwind 
diagram, in order to ensure the stability of the 
numerical model. 
 For the discretization of  the energy equation on the 
exchanger surface, the used method is the finite element 
method at the border[5].  It consists in cutting out the 
exchanger surface in finite annular elements of height 
∆ .  The base alone is considered as an element. 
Knowing the solution T (pδ) at an instant pδ; we 
determine T ((p+1) δ) solution at the instant (p+1) δ. 
Thus step-by-step from p = 0 to p = n, (t = nδ) we will 
have the solution. The used discretization schema is an 
extension of the one adopted by Desmons[5]. The 
stability of this schema was studied by the same author.  
 The retained iterative method, for the resolution, is 
the Gauss-Seidel line-by-line method, along the radial 
axis.   
 

RESULTS AND DISCUSSION 
 
 We determined, numerically, the field of 
temperature in the system for several combinations of 
Re, (Te-T0)/T0  and t. 
 We represented in the Fig. 3 the field of 
temperature. The behaviour of the thermal field was, in 
general, the same for the various combinations. But a 
precise sight of the results enables us to note that: 
 The profile of the temperature, uniform at the 
section of entry, deforms progressively and tends 
asymptotically towards a profile corresponding to the 
established thermal regime. 
 There are two fluid zones: a zone of insulation 
located near the internal wall where the transfer of heat 
is negligible and a zone of cooling located near the 
external wall. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Profile of the temperature field in the annular 

space for (Te-T0)/T0 = 1 and Re = 1500 and for 
duration of heating t = 240 s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4: Variation of the local heat-transfer coefficient 

for various Reynolds numbers 
  
 The coefficient h is independent from Te (for a 
weak temperature variation where ρf remains constant); 
what    is   confirmed   by   the   correlations   based   on 
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Fig. 5:  Variation of the average heat-transfer 

coefficient versus Reynolds number 
 
experimental data, presented in the literature. In the 
same  way,  we  checked,  numerically, that this transfer  
coefficient is independent of the heating duration. It is 
constant and preserves the same value during the 
unsteady regime.   
 We determined, numerically, the axial evolution of 
the transfer local coefficient h (z, Re) for Ri/rex = 2, 
L/DH = 50 and various values of the Reynolds number 
corresponding to laminar regime (100≤ Re ≤2500),  
(Fig. 4). We notice that: 
 For all Re, the curve h (z, Re) tends asymptotically 
towards the value 2.95 W/m2K (Fig. 4), which is close 
to the value 2.86 W/m2K (corresponding to the Nusselt 
number 4.36 often quoted in most textbooks). This 
value is obtained for a conductivity kf ≈ 0.0262W/mK 
suitable with the air at the temperature near 300K 
(0.05≤ (Tm-T0)/T0≤2.5), T0 being equal to the ambient 
temperature Ta.  
 h (z, Re) can be correlated in the following form:  
 
   
  (19) 
 
  
       We treated in this work the case of a wall, which is 
not subjected to any of these two conditions. In general, 
the flux is variable and not uniform during the 
functioning of the exchanger. It evolves in the course of 
the time in  a  significant  way  at  the beginning  of  the 

heating operation. However, the mode                 
remains unsteady. 
 The average value of the transfer coefficient h, 
taken over the whole length of the wall, is correlated 
under the following equation, valid for Re≥500: 
  
 
 
  (20) 
 
 
 
where: 
 

Reln057.0941.0
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h
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−

=
Reln107.0627.1
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−

+=
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 We illustrated, in Fig. 5, the transfer average 
coefficient evolution versus Reynolds numbers. Our 
results are concordant with those of the previous works: 
the analysis of uncertainty shows that the error does not 
exceed 13 % compared to Stephan’s results [12, 13]. 
 

CONCLUSION 
 
 The developed method is able to handle a variable 
or constant unspecified entry temperature in the course 
of time. We do not impose any condition between the 
exchanger and the ground. Thus, we approach the real 
and practical case for the buried exchangers.   
 This model enabled us to determine certain 
significant thermophysical parameters  such as the local 
and average coefficients of heat transfer , the wall 
temperature and the mean temperature in any point of 
the axis of the exchanger and in particular at the exit 
(temperature Ts). 
 In this study, we are concentrated on the validation 
of our theoretical and numerical model. For that, we 
considered a particular case of fluid (the air:Pr≈0.7) and 
for a ratio L/DH = 50. We will exploit soon this code to 
generalize our results versus various parameters such as 
Ri/rex, L/DH, Pr, etc. It can also be developed for being 
available in the case of turbulent flows. 
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NOMENCLATURE 
 
aso = diffusivity of the ground, m2/s 
af = diffusivity of the fluid, m2/s 
D = domain of storage 
DH = hydraulic diameter, [2 (Ri-rex)], m 
G ( r

�
, r'
�

, t) = Green’s function  
h = local convective transfer coefficient 

= at the wall, W/m2K 
hav = average      convective    transfer 

coefficient at the wall, W/m2K 
kf = thermal conductivity of the fluid, 

W/mK 
ks = thermal conductivity of the soil, 

W/mK 
L = length of the exchanger, m  
n
�

 = unit vector of the outer normal at the 
point r

�
on surface (S) 

P* = Dynamic fluid pressure, Pa 
)z,y,x(r

�

 = vector-position in the space 
r'
�

 (x′, y′,z′) = vector-position in the space where 
the temperature is evaluated   

rex = outer radius of the central tube, m 
Ri = inner radius of the exchanger, m 
S = boundary surface of storage domain, 
m2 
Se = exchanger surface, m2 

St = free surface of the ground, m2 

t = time, s 
T ( r

�
, t) = temperature at point r

�
 at the instant 

t, K 
Ta ( r

�
, t) = ambient temperature, K  

Te = entry temperature of the fluid in the 
inner tube, K   

Tm = mean temperature of the fluid in 
annular space at height z and 
moment  t, K  

Tw ( r '
�

, t) = temperature of the exchanger wall at  
= height z and  moment  t, K  

T0 ( r
�

) = initial temperature field in the 
ground T( r

�
, t = 0), K 

u = radial velocity, m/s 
v = orthoradial velocity, m/s 
w = axial velocity in annular space, m/s 
W0 = average velocity of fluid in annular 

space, m/s 
z = axial coordinate, m 

Greek symbols 
δ = time step, s 
∆r = radial width of the control volume, 

m 
∆z = z-direction width of the control 

volume, m 
Φ = heat flux density, W/m 
νf = cinematic viscosity of the fluid, m2/s  
ρf = fluid density, kg/m  
τ = variable of integration of time, s 
θ = polar angle 
Subscripts 
a = ambient 
av = average 
e = entry of the exchanger  
f = fluid 
ex = outer of the central tube  
H = hydraulic 
i = inner of the exchanger 
m = mean 
w = exchanger wall 
0 = Initial 
Non-dimensional numbers 
Pr = Prandtl number 
Re = Reynolds number, [W0DHρf/µ) 
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