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Abstract: This paper presents a direct neural-fuzzy-based Model Reference Adaptive Controller 
(MRAC) for nonlinear dynamical systems with unknown parameters. The two-phase learning is 
implemented to perform structure identification and parameter estimation for the controller. In the first 
phase, similarity index-based fuzzy c-means clustering technique extracts the fuzzy rules in the 
premise part for the neural-fuzzy controller. This technique enables the recruitment of rule parameters 
in accordance to the number of clusters and kernel centers it automatically generated. In the second 
phase, the parameters of the controller are directly tuned from the training data via the tracking error. 
The consequent parts of the rules are thus determined. This iterative process employs Radial Basis 
Function Neural Network (RBFNN) structure with a reference model to provide a closed-loop 
performance feedback. 
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INTRODUCTION 
 
 Model Reference Adaptive Systems or MRAS 
have been adopted by many researchers in controlling 
nonlinear plants [1-6]. Such approach only requires the 
input and output measurements of the system and is, 
thus, congruous for plants where mathematical models 
are unavailable or difficult to obtain. In addition to this 
advantage, the stability of the system is somehow 
assured through the convergence of both the states and 
parameters of the plant and the reference model[1]. In 
direct MRAS, the controller parameters are directly 
adjusted to reduce some norm of the output error 
between the plant output and the desired reference 
trajectory. 
 Neural-fuzzy systems, on the other hand, are highly 
compelling for controlling nonlinear systems with 
unknown parameters. The integration of neural and 
fuzzy methods effectuates an excellent learning and 
flexible knowledge-representational capability. 
 The data-driven fuzzy systems meliorate heuristic 
procedures or expert knowledge in designing the fuzzy 
control rules which has been a drawback in 

conventional fuzzy systems. On the other hand, neural 
network is suitable to be used in solving nonlinear 
identification and control problems involving complex 
plants - especially when forming a mathematical model 
of the system is tedious or not possible.  
 Many researchers[7-10], have successfully adopted 
the neural-fuzzy system architecture in solving 
nonlinear dynamical system identification and control. 
Jang[7], proposed Adaptive Network-based Fuzzy 
Inference System (ANFIS) that directly transforms the 
fuzzy inference system into a functional equivalent 
adaptive network. ANFIS employs the back-
propagation algorithm to update the premise parameters 
and least square estimates to identify the consequent 
parameters. A number of researchers[8-10] have 
employed various clustering techniques as a method to 
partition input data into clusters, which subsequently 
provides the number of rules in the premise part. 
Consequently, the recursive least square method[8], a 
simplified method of fuzzy reasoning[9], and back-
propagation learning[10] are used for the parameter 
identification which provide the consequent part of the 
rules. 
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 In this paper, a direct Neural-Fuzzy Model 
Reference Adaptive Controller (NFMRAC) is proposed 
for nonlinear systems with unknown parameters. It 
consists of a two-learning phase that eventually 
determines the fuzzy set partitions, number of rules, 
membership functions, and also an estimation of the 
controller parameters.  
 Figure 1 shows the configuration of the NFMRAC 
control system. In the structure identification 
mechanism, a similarity index-based fuzzy c-means 
clustering technique (SIFCM) is proposed to extract the 
premise or IF part of the rules for Takagi-Sugeno (TS) 
fuzzy model. This type of fuzzy model was proposed by 
Takagi and Sugeno[11] in an effort to develop a 
systematic approach to generating fuzzy rules from a 
given input-output data set. It also provides the 
capability to describe highly nonlinear plants using 
fewer rules as compared to Mamdani model. The TS 
model will be described in detail in the following 
section.  
 Based on the proposed clustering method, the 
acquired number of rules directly corresponds to the 
number of hidden nodes of the controller. The 
consequent or THEN part of the rules, on the other 
hand, is realized through an iterative process of weights 
adaptation based on radial basis function neural 
network (RBFNN) by[12] which is carried out in the 
adaptation mechanism.  
 The control strategy used to define the adaptation 
law is based on the tracking error between the actual 
plant output and target output, which is the response of 
the reference model. Then, tuning of the weights is 
based on the standard delta rule or steepest descent 
algorithm to minimize the tracking error. This 
algorithm is preferred since the weights update is 
governed by the first derivative of the error, and thus 
produces faster rate of convergence, consistent training 
and not getting stuck in local minima[13]. 
 This paper is organized as follows. The next 
section discusses the system structure identification 
mechanism that includes the proposed SIFCM 
clustering technique for input data partitioning, 
automatic generation of rules and tuning of its 
parameters based on observed input-output data of a 
reference model. This model characterized the desired 
performance of the plant. Section 3 presents the second 
phase where adaptation mechanism, based on the 
proposed method, tunes the controller parameters so as 
to track the target output presented by the reference 
model. Simulation results a number of nonlinear plants 
using the proposed technique are discussed in Section 4 
which is then followed by the conclusion. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Configuration of the NFMRAC system. 
 
 

MATERIALS AND METHODS 
 
Structure Identification Mechanism: The structure 
identification mechanism for the control system 
determines the number of the hidden nodes required in 
the network. Hence, the number of clusters which 
consequently defined the number of rules, need to be 
derived by partitioning the input space into several 
fuzzy regions. The SIFCM clustering method is used to 
determine the structure of the network and to extract the 
antecedent part of the fuzzy rules.   The TS model is 
presented in this section for clarification on data-driven 
fuzzy inference systems.  
 
Fuzzy Inference Systems: For data-driven fuzzy 
inference systems, the TS model is commonly used 
based on its singleton defuzzification. This model 
consists of IF-THEN rules with fuzzy premises and the 
mathematical functions in the consequent part. The 
premise fuzzy sets partition the input space into a 
number of fuzzy regions, while the consequent 
functions describe the system behavior in these regions. 
The input-output relations using fuzzy rules with the 
premise and consequent parts can be described as  
 
    Ri:  IF x1 is Ai1 and..and xn is Ain THEN yi = fi(x)  
    fi(x) = a0i + a1i x1 + a2i x2 + . . . + ani xn                    (1) 
 
 where Ri is the ith rule,  and i=1,2,…p and p is the 
number of rules. X is the observed values of the input 
variables and yi is the rule output of linear function 
fi(x). Ai1 … Ain are fuzzy sets defined by             
membership functions µij(xj):R→[0,1] and thus,              
form the fuzzy partition of the input space. Given               
that di(x) is the normalized  firing  strength  or                      
the weight of ith rule, the overall output of the model is 
defined as the weighted    average   of  the                 
weighted    sum    of   each   rule’s   output    such   that, 
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  (2) 
 
 
 
 
 The inferred value of the TSK fuzzy model in (2) 
indicates that the consequent of each rule is linear. All 
the fuzzy rules are considered in the determination of 
the parameters, where the consequent parameters are 
estimated to minimize the overall error between the 
fuzzy model and targeted output of the controlled 
system.  
 
Rules extraction by similarity index-based fuzzy           
c-means technique: The conventional grid-type 
partition used in the TS fuzzy model for rule extraction 
has a limitation since the number of rules increases 
exponentially with the number of the input-output 
variables. Through clustering method the number of 
fuzzy rules can be reduced. A number of data clustering 
techniques[14-16] has been implemented for rules 
extraction in the control of nonlinear dynamical 
systems. 
 Figure 2 shows how each cluster denoting a rule, 
corresponds to the fuzzy set for a system with two 
inputs, x1 and x2 and one output, y1.  
 In Figure 2, Vxicj denotes the center for input xi 
and cluster cj for i=1,2,..,m and j=1,2,3,..,n. m is the 
input dimensions and n is the number of clusters. 
Gaussian functions are used as the input membership 
functions.  µ(xi)  is   the   grade   of  membership   of  xi  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  2: In this example, each cluster represents a rule 

which corresponds to the input fuzzy sets 

belonging to a fuzzy set, Aji. The input-output relation 
using fuzzy rules for the TS model in (1) is thus 
applicable. 
 
Similarity index method: Using the similarity index-
based fuzzy c-means technique, rules can be extracted 
from the input data set. This is done by identifying a 
group of data that belongs to a particular cluster.  A 
simple one-pass similarity measure process is carried 
out to indicate the similarity index, γin between one 
datum to another. The index, γin∈[0,1] defines the 
degree of similarity based on the neighborhood function 
according to the Euclidean distance using the equation 
below: 
 
   
  (3) 
 
 
 
 
 where x is the input vector, for i and j=1,2,…,m, m 
is the dimension of input data and σ is the adjusting 
parameter. All the data within the circumference which 
is defined by the radius, r, belongs to the same cluster. 
The radius of each cluster can be predetermined and 
transforms into a value, called the threshold similarity 
index, γth, which can be described as: 
 
 
   (4) 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Illustration on input data belonging to a cluster 
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where y is a point whose distance from the input data x 
define  the radius of a cluster. Therefore, if γin > γth, this 
indicates that the two data is not within the vicinity of 
each other and, is, thus, regarded as dissimilar. 
Likewise, similar data is indicated if γin < γth. This 
description is as illustrated in Fig. 3. The center of the 
cluster is then decided by using fuzzy c-means, which is 
discussed in the next sub-section. 
 
The Fuzzy C-Means Algorithms (FCM): The fuzzy 
c-means algorithm uses the reciprocal of distances to 
decide the cluster centers and this representation 
reflects the distance of a feature vector from the cluster 
center and similarities of the input data. It is an iterative 
algorithm used to divide N number of data xj into c 
clusters by finding the degree of membership                    
µjk ∈ [0,1] and its cluster center vk by minimizing the 
objective function, 
 
   (5) 
 
  
 where m>1 is the parameter that determines the 
overlap factor of the clusters. The number of clusters, c 
determines the number of rules that form the premise 
part of the IF-THEN rules in the neuro-fuzzy controller. 
xj for j= 1,2,..,N is the input-output training data pairs 
and vk = [v1

k, v2
k, . . . , vn

k]T for k=1,2,..,c are the cluster 
centers. µjk for j= 1,2,..,N and k=1,2,..,c is the degrees 
of    membership   of  xj    in    the    kth    cluster   while 
 
 
 
is the Euclidean norm. Consequently, the minimization 
of the objective function results in the selection of 
cluster centers. This technique is described in more 
detail in[14]. 
  
Adaptation mechanism: The adaptation law in the 
proposed control method is based on the Radial Basis 
Function Neural Network (RBFNN). RBFNN is highly 
favored since it requires only one hidden layer, has high 
convergence rate and is functionally similar to fuzzy 
inference system described by TS model [17]. The 
training time is faster because the output is a linear 
function of the network weights and the analysis is 
simpler than multilayer perceptrons network due to its 
localized receptive field and computationally is simpler. 
 Introduced by Moody and Darken[12], RBFNN is 
basically a feedforward network with a single hidden 
layer and an output layer. Each node in the hidden layer 
performs a fixed nonlinear transformation on the inputs.  
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4: RBFNN structure with one output 
 
It contains no adjustable weights and has a radically 
symmetric response around a node parameter vector 
called a center. The network output layer is a set of 
linear combiners with weights. The structure of the 
RBFNN for m-dimensional inputs and one output is 
shown as in Fig. 4.  
 The architecture consists of three different layers: 
an input layer which is made up of source nodes, a 
hidden layer in which each neuron computes its output 
using a radial basis function and an output layer which 
builds a linear weighted sum of the hidden layer. The 
mapping from the input layer to the hidden layer is 
nonlinear and from the hidden layer to the output layer 
is linear.  
 A RBFNN with one output neuron implements the 
input-output relation given as: 
 
  
  F(λ;C; x) = (6) 
 
 
 where x is the input vector, λ is the linear weight 
vector between the hidden layer and the output layer 
and C is in matrix whose columns are the centers of the 
RBFNN with its width predetermined. The radial basis 
function φ(.) is the output function of the hidden neuron 
and is given by the Gaussian function: 
 
  (7) 
 
 
 where σ is the width of the basis function. The 
radial basis function φ computed by the hidden units is 
maximum when the input vector x is near the center c 
of that unit. 
 The representation of the input-output relations 
which indicates the weighted sum of the function value 
associated with  each  receptive  field  can  produce  the 
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normalized response function as the weighted average 
of the firing strength, φ such that: 
 
   (8)  
  
 
 
 
 The basis function described above indicates that 
the center vectors C are fixed points in m-dimensional 
input space.  The functional equivalence described in 
[17] between the FIS and the RBFNN, as given in          
Eq. (2) and (8), enhance the possibility of constructing 
a hybrid system.  
 As indicated above, the RBFNN is iterative and the 
weights wj are tuned to minimize the tracking error, 
which is the difference between the target and estimated 
output. The control strategy used to define the 
adaptation law is upheld by inserting a reference model 
that produces a target output. Then, tuning of the 
weights is based on the standard delta rule defined as: 
   
  (9) 
 
  
 where Wjkdenotes the weight from the node j to the 
output neuron k, η>0 is the learning rate, δk is the error 
between expected output and the actual output of k and 
ok is the output of the hidden neuron k. This rule 
effectively reduces the tracking error by moving the 
weight vector nearer to the ideal weight vector. 
 The target output produces by the reference model 
that quantifies the desired performance is selected 
based on a certain characteristic, which maybe discrete 
or continuous, linear or nonlinear, time invariant or 
time varying. The desired performance should be within 
the constraints of the controller and the plant itself. 
 

RESULTS AND DISCUSSION 
 
 Two benchmark problems are used to study the 
performance of the proposed NFMRAC system. The 
first plant is a SISO nonlinear dynamical system[6] 
given by the difference equation described below: 
 
  (10) 
 
 
where,                                is  assumed  to  be  unknown. 
For simulation purposes, the unknown function is 
described as 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5:  The response of the plant and reference model  

with input    
 
   
  (11) 
 
 
 
 While the reference model is a second-order 
difference equation described by 
 
 
 (12) 
 
  
 The bounded reference input,                            
                         is used to simulate both the plant 
and the reference model. A set of 300 inputs is 
observed and Fig. 5 shows the response of the plant 
with its corresponding reference model output. 
 In the first phase of learning, a set of input-output 
training data is collected from the response of the 
reference model. The SIFCM method automatically 
clusters the observed data into n number of clusters, 
defined by the threshold value, γth. The number of 
clusters denotes the number of hidden nodes (or the 
rules) with its respective centers forming the center 
vector for each hidden node.  
 The training process is based on equation (3) where 
the matching degrees between the input vector and the 
center vector in the hidden layer are calculated. The 
average weighted sum of the corresponding output 
centers and its matching degrees gives an estimate of 
the plant output.   Based on γth =0.6 for 19 rules, the 
center vector and the parameter of the consequent part 
is as shown in Table 1. 
 Figure 6 illustrates the response of controlled plant, 
with the control signal, u(k), shown below it. Table 2 
indicates the mean squared error (MSE) for different 
number of clusters (or rules). 
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Table 1: The center vector and the consequent parameters for 19 rules 

 Premise Parameters  
Fuzzy ----------------------------------------------- Consequent 
Rules r(k) Ym(k) Ym(k-1) Parameter 
1 0.00 0.00 0.24 1.25  
2 0.25 0.63 0.68 1.54 
3 1.11 1.63 0.95 -0.30 
4 1.63 2.15 0.99 1.27 
5 2.62 2.98 0.90 2.51 
6 3.21 3.29 0.58 0.08 
7 2.95 2.53 -0.12 -2.37 
8 2.53 1.98 -0.36 -1.82 
9 1.98 1.33 -0.58 -0.27 
10 1.33 0.60 -0.77 -0.72 
11 0.60 -0.14 -0.90 -3.12 
12 0.14 -0.86 -0.98 -3.59 
13 0.86 -1.53 -0.99 -2.61 
14 1.53 -2.09 -0.95 -3.91 
15 2.51 -2.76 -0.68 -4.21 
16 2.74 -2.46 0.02 -0.08 
18 1.45 -0.79 0.68 0.49 
19 0.79 -0.07 0.84 3.22 
 
Table 2: MSE based on number of rules extracted in the system. 

γth No. of clusters/rules MSE 

0.1 8 0.2403 
0.2 10 0.1605 
0.3 11 0.0335 
0.4 14 0.0238 
0.5 17 0.0232 
0.6 19 0.0097 
0.7 22 0.0087 
0.8 24 0.0086 
0.9 36 0.0085 

 
 The proposed technique is next applied on a water 
bath temperature control system[18], which is described 
by the following discrete-time equation: 
 
 
  (13) 
 
 
where                 and                               . The water bath 
parameters are α=1.00151e-4, β=8.69793e-3, γ=40 and 
Y0=25°C which is obtained from BT-15 model [18]. To 
exhibit the capability of the controller to track the 
performance indicated by the reference model, and for 
simulation purposes, the plant input u(t) for this case 
can be between 0 to 25 volt. This single-input single-
output control system exhibits a linear behavior up to 
70°C and then becomes nonlinear and saturates at 80°C. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6:  The response of the controlled plant using the 

proposed NFMRAC system 

 
Fig. 7: The structure of reference model 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8:  Response of controlled plant and its control 

signal u(k) 
 
The reference model is a first-order difference equation 
described by 
                               
  (14) 
 
 
The overall resultant reference model with an initial 
temperature of 25°C is as shown in Fig. 7. 
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Table 3: The center vector and the consequent parameters for 14 rules 
 Premise Parameters  
Fuzzy ------------------------------ Consequent 
Rules r(k) Ym(k)  Parameter 

1 0 25.00 -5.5854 
2 10 29.00 41.8789 
3 10 31.40 5.3427 
4 10 33.70 -32.0975 
5 30 43.00 35.7624 
6 30 47.80 3.8894 
7 30 50.68 -1.8696 
8 30 52.41 -3.0944 
9 30 54.07 -4.1227 
10 50 63.00 36.0325 
11 50 67.80 3.8766 
12 50 70.68 -1.9723 
13 50 72.41 -3.1296 
14 50 74.07 -3.9302 
 
Table 4: MSE based on number of rules  extracted in the system. 

γth No. of clusters/rules MSE 

0.3 20 0.0146 
0.35 24 0.0037 
0.4 28 0.0026 
0.7 36 4.55e-4 
0.9 44 2.71e-4 

  
 When γth is set to 0.1, a total of 14 rules were 
extracted from the SIFCM clustering technique that has 
been proposed. The parameter of the consequent part is 
defined based on a learning rate of η=0.05, and width, 
σ=9.2 with an iteration of 500. These parameters are 
shown in Table 3.  
 Figure 8 shows the response of controlled plant 
based on the NFMRAC. The mean squared error (MSE) 
for the 300 simulated data is 0.0478. Table 4 shows the 
mean squared error (MSE) as determined by the 
number of clusters  (or rules).  
 

CONCLUSION 
 
 A neural-fuzzy controller based on RBFNN and a 
reference model is proposed referred to as NFMRAC 
which can be applied to control nonlinear systems with 
unknown parameters. The two-learning phase performs 
structure identification and parameter estimation of the 
controller. The SIFCM method used for rule extraction 
is simple to implement and the number of rules can be 
automatically generated. This hybrid method combines 
a one-pass learning process which calculates the 
similarity index based on neighborhood function and an 
iterative FCM method to determine the center vector. 

The adaptation mechanism gives good performance 
with fast convergence. The proposed method has been 
implemented on two nonlinear plants and the results 
were found to be satisfactory.   
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