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Abstract: Moment invariants are widely used in image processing, pattern recognition and computer 
vision. Several methods and algorithms have been proposed for fast and efficient calculation of 
moment's invariants where numerical approximation errors are involved in most of these methods. In 
this paper, an optimized set of moment invariants with respect to rotation, scaling and translation is 
presented. An accurate method is used for exact computation of moment invariants for gray level 
images. A fast algorithm is applied to accelerate the process of computation. Error analysis is presented 
and a comparison with other conventional methods is performed. The obtained results explain the 
superiority of the proposed method.  
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INTRODUCTION 

 
 Moment invariants was introduced in the pioneer 
work of Hu[1], who employed the results of the theory 
of algebraic invariants and derived his seven invariants 
to rotation of 2-D objects. Hu's invariants have been 
utilized as pattern recognition features in a number of 
applications such as aircraft identification[2], data 
matching[3], character recognition[4,5], image 
normalization[6] and texture classification[7]. Mukundan 
and his co-authors[8,9] applied them to estimate the 
position and the attitude of the object in 3-D space. 
Flusser et al.[10, 11] used moment invariants in the 
analysis and recognition of blurred and degraded 
images. Many works have been devoted to various 
improvements and generalizations of Hu's invariants. 
Reiss[12] revised the theory of moment invariants. 
Flusser and Suk[13] derived invariants to general affine 
transform and proved their applicability in simple 
recognition tasks. Flusser[14] discussed the problem of 
dependence of Hu's invariants and derived a new set of 
only   rotation   moment invariants of any order. 
Derrode et al.[15] derived a set of both rotation and scale 
invariants. Flusser and Suk[16] extended the original 
work of Flusser[14] and introduced a set of rotationally 
moment invariants for symmetric objects. 
 Computation of moment invariants is completely 
dependent on the algebraic relation with geometric or 
complex moments. Therefore, accurate computation of 
geometric and complex moments consequently led to 
accurate moment invariants.  
 This paper proposes a new set of optimized RST 
moment invariants. A set of two-dimensional geometric 
moments are computed exactly by using a mathematical 

integration of the monomial polynomials, then complex 
moments and moments invariants are exactly calculated 
based on the algebraic relations with geometric 
moments. A fast algorithm and suppression of factorial 
terms are applied for computation complexity 
reduction. Error assessment is performed and the 
experimental results clearly show the superiority of this 
proposed method.  
 
Moment invariants: Image or shape feature invariants 
remain unchanged if that image or shape undergoes any 
combination of the geometric changes: Change of 
position -Translation, change of size -Scaling and 
change of orientation -Rotation and finally Reflection. 
The moment invariants can be subdivided into skew 
and true moment invariants where the skew moment 
invariants are invariant under change of position, size 
and rotation (Rotation-Scaling-Translation) only. True 
moment invariants are invariant under all of the 
previous changes including reflection. 
 
Translation invariance : Regular or geometric 
moments of order (p+q) for image intensity function 
f(x, y) are defined as:  
 

 
( ) dydxyxfyxm qp

qp ,� �= ∞
∞−

∞
∞−  (1) 

 
 The effect of changing the location of an image on 
moment computation can be cancelled out by 
translation invariance property. This is achieved by 
shifting the image such that the image centroid ( )yx ,  
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coincides with the origin of the coordinate system. The 
centriod of the image is: 
 

 0001 mmx = , 0010 mmy =  (2)  
 
 Central moments are translation invariants. These 
are expressed as a linear combination of geometric 
moments of the same order or less as:  
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Scale invariance: Assume α and β are scaling factors 
in x- and y-directions respectively. Any positive 
numeric values can be assigned to the scaling factors. 
Values less than the unity refer to size reduction, while 
values greater than unity mean size enlargement. 
Scaling is said to be uniform if the assigned numeric 
values are equal. Therefore, the central moments after a 
uniform scaling are defined in terms of original central 
moments as: 
 

 qp
qp

qp µαµ 2++=′
 (4) 

 
 The zeroth order moment, µ00, represents the total 
mass of the given image intensity function. Scale 
invariance is achieved by setting µ00 equal to the unity. 
The scale-normalized moments are: 
 
 

λµµη 00qpqp = , 22++= qpλ  (5) 
 
Rotation invariance: Rotation through a measured 
counterclockwise angle θ about the coordinate origin is 
represented by the following matrix form: 
 

( )
( ) ( ) dydxyxfxy
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 Rotation normalization can be achieved by the 
major principal axis method[17]. The principal axis 
moments are obtained by rotating the axis of the central 
moments until µ11 is zero. The angle θ is: 
 

 ( )200211
1 2tan21 µµµθ −−= −

 (7) 
 
 This method gives accurate results only in case of 
non-symmetric images and shapes while it fails with the 
N-fold symmetrical objects if N>2. 
 The idea to use the complex moments for deriving 
invariants was described first by Mostafa and Psaltis[18]. 
Complex moments of order (p+q) are expressed as a 

combination of geometric moments of the same order 
or less as: 
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 For complex moments up to the order S≥2, 
Flusser[14] derived a complete and independent set of 
rotation invariants Ψp, q  defined as: 
 

 qp
qp

ppqp CC ,,1, 00

−
−=ψ  (9) 

 
where, p0>0 is an arbitrary index, Cp0-1,p0 ≠ 0 and the 
values of p, q are selected according to ( ) sqpqp ≤+∧≥ . 
 Derrode et al.[15] derived a set of both rotation and 
scale invariants. These moment invariants are defined 
as: 
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 (10) 
 
where 
 

 ( )( )0,1arg ff C=Θ  (11) 
 
 It is clear that, this set of invariant can not achieve 
translation invariance. For N-fold rotation symmetry 
objects, Flusser and Suk[16] extended the previous work 
and described a new set of rotationally moment 
invariants for symmetric objects. For S≥N 
 

 ( ) qp
N

qp

pNpqp CC ,,, 00

	



	
�
�

� −

−=ψ  (12) 
 
 Where p0>0 is an arbitrary index, Cp0-N, p0 ≠ 0 and 
the values of p, q are selected according to 
p>q∧(p+q)≤S. For N = 1 which mean no rotation 
symmetry, Eq. 12 will coincides with 9. 
 
Optimized RST moment invariants: In this section, 
the proposed set of RST moment invariants is 
presented. In the first two subsections, an overview of 
exact geometric and complex moment's computation is 
presented. For more details, the reader is referred to our 
previous work[19]. Computational complexity is 
discussed in details showing advantages of the 
proposed set of moment invariants. 
 Numerical experiments are performed to assess the 
absolute error for both Derrode's and Flusser's methods. 
The 512×512 gray-scale image of Lena is used in the 
first numerical experiments, while, the noisy image of 
Lena   is  used  in the second one. From Fig. 1, it's clear  
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(a) 

 

 
(b) 

 
Fig. 1: a: Absolute  error  of the original Lena image, 

b: Absolute error of the noisy Lena image 
 
that, the absolute error in both cases strongly fluctuated, 
where the range of the Derrode's error is smaller than 
that of Flusser's. Since Derrode's set works only with 
the non-symmetric images and on the other side, the set 
of Flusser's works with symmetric as well as non-
symmetric, this set is more suitable for optimization.  
 In order to achieve optimized Rotation, Scaling and 
Translation invariance of symmetric as well as 
asymmetric gray scale images and objects we proposed 
the following set of moment invariants. 
 

 ( ) ( )0,, 00 pCpNpCOMI T
N
p

T −=  (13) 
 
with 
 

 ( ) ( ) 0,1 000 ≠−∧≥∧+≥ pNpCNpNp T  Where 
N refers to finite N - fold rotation symmetry. Values of 
N are starting with 2N and increase with step value N; 
CT (p0-N, p0) are the scale-normalized complex 
moments. Such moments are obtained by replacing the 
geometric moments in Eq. 8 by the scale-normalized 

moments defined by Eq. 5. It is easy to see that, if all 
OMI invariants are known, it is possible to reconstruct 
back the set of complex moments CT (p, 
0).Consequently, the set of OMI is complete. 
For non-symmetric images; N = 1, the first five 
optimized moment invariants are: 
 

( ) ( )22,10,2 CC , ( ) ( )32,10,3 CC , ( ) ( )42,10,4 CC , ( ) ( )52,10,5 CC and 
( ) ( )62,10,6 CC . 

 Similarly, it is easy to construct the optimized 
moment invariants for symmetric images with any 
finite fold. 
 
Exact computation of geometric and complex 
moments: For image discrete-space version, Eq. (1) is 
usually approximated as: 
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 Equation 14 is so-called direct method for 
geometric moment's computations, which is the 
approximated version using zeroth-order approximation 
(ZOA). This method is not a very accurate 
approximation of Eq. 1. 
 Recently, Hosny[19] introduced an exact and fast 
geometric moment's computation for gray-level as well 
as binary images. In this exact method, a digital image 
of size M×N is an array of pixels. Centers of these 
pixels are the points ( )ji yx , , where the image intensity 
function is defined only for this discrete set of points 
( ) [ ] [ ]2121 ,,, yyxxyx ji ×∈ . iii xxx −=∆ + 1 , 

jjj yyy −=∆ +1  are sampling intervals in the x -and y -
directions respectively. In the literature of digital image 

processing, the intervals ix∆ and jy∆ are fixed at 

constant values ( ) Mxxxi 12 −=∆ ,and ( ) Nyyy j 12 −=∆  

respectively. Therefore, the set of points ( )ji yx ,  are: 
 

 xixxi ∆−+= )5.0(1  (15-1) 
 

 yjyy j ∆−+= )5.0(1  (15-2) 
 

With Mi ,.......3,2,1= and Nj ,........3,2,1= . The set of geometric 
moments can be computed exactly by: 
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Using Eq. 16 in 8 yields exact complex moments. 
 
Fast Algorithm: Computation of exact geometric 
moments using Eq. 16 is similar to the direct method, 
which is very time consuming. Fast computation of 
exact geometric moments can be achieved by 
successive computation of the 1D q-th order moments 
for each row. Eq. 16 will be rewritten in a separable 
form as follows: 
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ˆ
 (17) 

 
where 
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qiY  in Eq. (18) is the q-th order moment of row i.. 
Since,  
 

 ( ) MiI 20 =  (19) 
 
Substitute Eq. (19) into (16), yields; 
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Computational Complexity: The computation 
complexity is a crucial issue. Computation of moment 
invariants using the proposed method as well as both 
Derrod's and Flusser's methods rely on the computation 
of complex moments. The time-consuming direct 
computations of factorial terms are avoided by using 
the following recurrence relations: 
 

 ( ) ( ) ( )kpDkppkpD ,1, −−=  (21a) 
 

 ( ) ( )( ) ( )1,1, −−= kpDkpkkpD  (21b) 
 

 ( ) 10,0 =D  and ( ) 10, =pD  (21c) 
 
 Where the matrix D is created and stored for future 
use.  Computation of moment invariants of order Max 
using Derrod's method and Flusser's method required 
the computation of ( )( ) 221 ++ MaxMax complex moments 
using Eq. 8. On the other side, the proposed method 
requires only ( )1+Max complex moments using Eq. 22.  
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 Where the complex moment CT (p0-N, p0) that 
required by Eq. 13 is the complex conjugate 

of ( )NppCT −00 , . The later computed directly using Eq. 
22. For more clarity, the following Eq. calculates the 
reduction percentage (RP) in the computational 
complexity: 
 

 

( )
( )( ) 100

2max1max5.0
1max

1 ×��
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��
�

�

++
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 (23) 
 
For more simplicity, Eq. (23) will be written as: 
 
 ( ) 1002maxmax ×+=RP  (24) 
 
 From Eq. 23, the computational complexity RP 
increases   as   the    moment   order   increase, where 
RP = 67% for Max = 4 and RP = 75% for Max = 6. 
 
Numerical Experiments: Numerical experiments are 
divided into two groups namely, non-symmetric and 
symmetric images. First subsection is the devoted to 
non-symmetric images, where we compare the 
proposed set of moment invariants (Eq.13) and compare 
this set with Hu's invariants, sets of complex invariants 
of Derrod's (Eq. 10, 11) and Flusser's (Eq. 9) using 
standard images. All the aforementioned sets of 
moment invariants were computed for the original 
image and then the image is subject to different kinds of 
transformations. The moment invariants of the 
transformed image are computed and the absolute error 
is evaluated.  
 The second subsection is intended to symmetric 
images, where only the proposed set and the proposed 
set of moment invariants (Eq. 13) is compared with the 
Flusser's (Eq. 12) using different images of different N-
fold rotation symmetry.   
 In all our numerical experiments, the absolute error 
is used as criteria of comparison. To make such 
comparisons possible, a 1D array of moment invariants 
is constructed from the computed 2D array.  The 
following algorithm is designed to achieve this 
conversion process. 
 
 for p = 0 to Max 
  for q = p to 0 
   k = 0.5 * ( p +1 )*( p+2) - q -1; 
 I (k) = M ( q , p - q );  
  endfor 
 endfor 
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 Where I refer to the 1D array, M to the 2D array 
and Max is the maximum order of moments ( )qp + . For 
each element of the vector I, we compute the absolute 
error between moment invariants of the original and the 
transformed image. Average absolute error is easily 
calculated and used as accuracy indicator of the 
different sets of moment invariants. In all Fig., the 
description invariant order below the horizontal axes 
refers to elements of the vector I.  All images included 
in this work are padded, where padding is for display 
purposes only and are not used in any moment 
computation process. Finally, it must be noted that, all 
computations are performed using Matlab7 on a 1.8 P4 
processor with RAM 512 MB. 
 
Non-symmetric images: As mentioned above, this 
section is concerning with the non-symmetric images. 
The 512×512 gray scale image of Lena is used in our 
numerical experiments. The first experiment is 
concerned with testing invariance against rotation 
where the original image of Lena is rotated by 30°, 60° 
and 95° as shown in Fig. 2b, c and 2d.  
 The absolute errors between the elements of 
invariant vector of the original image and the rotated 
ones are plotted in Fig. 3a, b and c. It is clear that, the 
absolute errors in case of the proposed moment 
invariants are much smaller than the corresponding 
ones whatever the rotation angle. These errors are 
monotonically decreased as the invariant order is 
increased.  On the other side, the absolute errors in the 
case of Derrod's, Flusser's and Hu's sets of moment 
invariants are relatively high and fluctuated in a fixed 
range even the invariant order increase.  
 Invariance against scaling for both image reduction 
and enlargement is tested. Lena's image is reduced by 
the scaled factors 0.75 and 0.95. It is also enlarged by 
the factor 1.25 as shown in Fig. 2e, f and g. The 
absolute errors of the original image and the scaled 
ones are plotted in Fig. 3d, e and f. As in the 
experiment of rotation invariance, the absolute errors in 
case of the proposed moment invariants are much 
smaller than the corresponding ones whatever the 
scaling factor. 
 To test invariance against rotation-scaling, the 
image of Lena is reduced by the percentage of 75% and 
then rotated by the angle 30°. In another test, Lena 
image is reduced by through the factor 0.75 and 
enlarged using the scaling factor 1.25; and then rotated 
by the angle 800. The transformed images are shown in 
Fig. (2h, i and g), while one case of the absolute errors 
is plotted in Fig. (3i). Absolute errors of the optimized 
set of moment invariants are much smaller than the 
corresponding ones whatever the scaling factor and the 
rotation angle. 

   
 2a  2b  2c 

 

   
2d   2e  2f 

 

   
    2g  2h  2i 
 

   
2j  2k  2m 

 
Fig. 2:  a: Original     image,   b:    Rotation    R = 30°, 

c: R = 60°, d: R = 95°,    e:    Scaling   S = 0.75, 
f:  S = 0.95,   g:   S = 1.25, h:    S = 0.75    and 
R = 30°, I: S = 0.75 and R = 80°, j: S = 1.25 and 
R =  80°, k: Noisy    image,   m:   S = 0.75    
and R = 80° 

 
To test robustness against noise, a Gaussian noise is 
added to the image of Lena according to the Matlab 
statement: 
 
 A = imnoise (A ,'Gaussian', 0, 0.05 ) (25) 
 
 The noisy image (Fig. 2k) is scaled with the factor 
0.75 and then rotated with the angle 80° (Fig. 2m). 
 The plots of absolute errors clearly ensure the fact 
that, all set of moment invariants are affected by the 
noise. It is clear that, the absolute errors of the 
optimized set of moment invariants keep it’s superiority 
over the corresponding ones. 
 Average absolute errors of all the mentioned 
numerical   experiments are   in Table 1. Different plots 
and the table 



Am. J. Applied Sci., 5 (6): 726-735, 2008 
 

 731 

  
(a) (b) 

 

 
(b) (d) 

 

 
 (e) (f) 

 
 (g) (h) 
 
Fig. 3: Absolute errors a: Rotation R = 30°, b: R = 60°, c: R = 95°, d:   Scaling S = 0.75, e:    S = 0.95, f: S = 1.25, 

g: S = 1.25 and R = 80°, h: Noise and S = 0.75 and R = 80° 
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Table 1:Average Absolute error 
Transformation  Average absolute error 
------------------------------------------- -------------------------------------------------------------------------------------------------------------------- 
   Derrod's Flusser's Hu's  Optimized  
R S N invariants invariants invariants invariants 
30° ----- 0 1.3087×10-6 1.0004×10-6 6.4720×10-7 4.1115×10-11 
60° ----- 0 9.3532×10-7 6.3919×10-7 3.8761×10-7 7.5785×10-11 
95° ----- 0 1.2973×10-6 7.4428×10-7 4.6493×10-7 1.9093×10-11 
----- 0.75 0 1.6661×10-5 2.4387×10-6 1.7428×10-6 8.1766×10-10 
----- 0.95 0 7.9070×10-6 2.8346×10-6 2.1631×10-7 4.9708×10-10 
----- 1.25 0 4.7320×10-6 1.1311×10-6 8.3002×10-7 3.9208×10-10 
80° 0.75 0 1.5155×10-5 1.0063×10-6 5.7400×10-7 7.8050×10-10 
80° 1.25 0 1.2397×10-5 3.1309×10-6 1.5338×10-7 6.2220×10-10 
80° 0.75 1 1.0997×10-3 2.5519×10-4 1.4037 ×10-4 1.2527×10-7 
 

     
  4a  4b  4c 

     
  4d  4e  4f 

   
   4g  4h 
 
Fig. 4: a: recycling   symbol's    image,    b: Rotation 

R = 30°, c: R = 60°, d: R = 95°, e: S = 0.75 
and R = 80°, f: S = 1.25 and R = 80°, g: Noisy 
image, h: Noise and S = 0.75 and R = 30° 

 
of average absolute errors clearly ensure the superiority 
of the optimized set of moment invariants over the 
other mentioned sets. 
 
Images with N-FRS = 3: The symbol of recycling 
image is an example of 3-fold rotation symmetry. The 
gray level recycle image of size 128×128 (Fig. 4a) is 
rotated by 30°, 60° and 95° as shown in Fig. 4b, c and 
d. As in all the previous numerical experiments, the 
absolute errors are computed and only one case is 
plotted in Fig. (5a). 

 As expected, the absolute errors of the optimized 
moment invariants are much smaller than that of 
Flusser's whatever the rotation angle. These errors are 
decreased as the invariant order increased, while the 
absolute errors of Flusser's set of moment invariants are 
relatively high. Invariance against a combination of 
scaling and rotation is tested where the test image is 
reduced by the percentage of 75% and then rotated 
through the angle 80°. In another experiment, the test 
image is enlarged using the percentage 125% and then 
rotated through the angle 80° as shown in Fig. 4e and f. 
The absolute errors are plotted in Fig. 5b and c. The 
optimized moment invariants still have the superiority 
over the Flusser's set. 
 Noisy test image is obtained from original image 
using Eq. 25. The noisy image (Fig. 4g) is scaled with 
the factor 0.75 and then the noisy image is rotated by an 
angle 30° (Fig. 4h). The absolute errors of Flusser's and 
the optimized moment invariants of are compared and 
plotted in Fig. (5d). The optimized set of moment 
invariants shows much smaller errors than that of 
Flusser's. 
 Average absolute errors of the 3-fold rotation 
symmetry are shown in Table 2. The analysis of the 
Table 2 and the absolute error plots clearly ensure the 
superiority of the optimized set of moment invariants 
over the Flusser's one. 
 
Table 2: Average absolute error of recycling symbol's image 
Transformation  Average absolute error 
------------------------------- ------------------------------------------ 
   Flusser's Optimized 
R S N invariants invariants 
30° ----- 0 1.4069×10-3 3.6662×10-11 
60° ----- 0 2.7885×10-3 4.7660×10-11 
95° ----- 0 4.0280×10-3 9.5535×10-12 
80° 0.75 0 3.7630×10-3 1.6140×10-9 
80° 1.25 0 3.6664×10-3 7.3051×10-10 

30° 0.75 1 1.4297×10-3 3.2564×10-9 
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5a 

 

 
5b 
 

 
5c 
 

 
5d 

 
Fig. 5: Absolute errors a: Rotation R = 30°, b: Scaling 

S = 0.75 and R = 80°, c: Scaling S = 1.25 and 
R = 80°, d: Noise S = 0.75 and R= 30° 

   
  6a  6b  6c 

 

   
  6d  6e  6f 

 

   
6g  6h 

 
Fig. 6: a: Cross-shaped image,  b: Rotation  R = 30°, 

c:   R = 60°,    d:   R = 95°,   e:   S = 0.75    and   
R = 95°, f: S = 1.25 and R = 95°, g: Noisy 
image, h: Noise and S = 1.25 and R = 95° 

 
Images with N-FRS = 4: A cross-shaped image is an 
example of image with 4-fold rotation symmetry. This 
image is a gray level image of size 128×128 (Fig. 6a). 
 The considered image is rotated by the same group 
of different angles as shown in Fig. 6b, c and d. The 
absolute errors are very similar to those obtained from 
the previous numerical experiments. The absolute 
errors of the optimized moment invariants are much 
smaller than that of Flusser's whatever the rotation 
angle. Invariance against a combination of scaling and 
rotation and robustness against are considered and 
tested. The transformed images are displayed in Fig. 6e 
and f. The optimized set of moment invariants still have 
the superiority over the Flusser's set. 
 Noisy cross-shaped image is obtained from original 
image using Eq. 25. The noisy image (Fig. 6g) is scaled 
with the factor 1.25 and then the noisy image is rotated 
by an angle 30° (Fig. 6h). The absolute errors of 
Flusser's and the optimized moment invariants are 
compared. The optimized set of moment invariants 
shows much smaller errors than that of Flusser's.  
 Average absolute errors of the 4-fold rotation 
symmetry are shown in Table 3. The analysis of the 
Table 3 and the absolute error plots ensure the previous 
results. 
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Table 3: Average absolute errors of the cross-shaped image 
Transformation  Average absolute error 
------------------------------- ----------------------------------------- 
   Flusser's Optimized 
R S N invariants invariants 
30° ----- 0 9.680× 10-5 7.5188×10-11 
60° ----- 0 1.6387×10-4 1.2721×10-10 
95° ----- 0 1.5885×10-4 5.3242×10-11 
95° 0.75 0 2.0596×10-4 8.0210×10-9 
95° 1.25 0 1.9745×10-4 5.6625×10-9 
95° 1.25 1 3.2430×10-4 3.1200×10-7 

 
Images with N-FRS = 5: A 5-point star image shown 
is 5-fold rotation symmetry. This image is a gray level 
image of size 128×128 (Fig. 7a). The considered image 
is rotated by the same group of different angles as 
shown in Fig. 7b, c and d. The absolute errors are 
computed. As expected these average absolute errors 
are matched with the previous numerical experiments. 
Invariance against a combination of scaling and rotation 
as in Fig. 7e and f is tested. 
 The absolute errors of the optimized moment 
invariants are much smaller than that of Flusser's. The 
obtained results clearly show that, the optimized set of 
invariants is more robust against the Guassian noise 
than Flusser's set of invariants.  
 

   
  7a  7b  7c 

 

   
  7d  7e  7f 

 

  
   7g  7h 
 
Fig. 7: a: 5-point star   image, b:   Rotation    R = 30°, 

c:    R = 60°,     d:    R = 95°,   e:   S = 0.75 and 
R = 95°, f: S = 1.25 and R = 95°, g: Noisy 
image, h: Noise and S = 1.25 and R = 95° 

Table 4: Average absolute error of 5-point star image 
Transformation  Average absolute error 
------------------------------- ------------------------------------------ 
   Flusser's Optimized 
R S N invariants invariants 
30° ----- 0 3.2656×10-4 2.8292×10-10 
60° ----- 0 6.0456×10-4 5.5676×10-10 
95° ----- 0 7.9564×10-4 6.8004×10-10 
95° 0.75 0 8.2447×10-4 6.8703×10-10 
95° 1.25 0 8.1786× 10-4 6.8039×10-10 
95° 1.25 1 3.2438×10-3 1.9566×10-9 

 
 Average absolute errors of the 5-fold rotation 
symmetry are shown in Table 4. The analysis of the 
Table 4 ensures the previous results. 
 

CONCLUSION 
 
 This paper proposes an optimized set of RST 
moment invariants for symmetric and non-symmetric 
images and shapes. The exact computations of 
geometric moments resulting exact complex moments. 
Therefore, approximation numerical errors are 
completely removed. On the other side, the 
approximated values suffer from the high dynamic 
range due to the approximated geometric moments. The 
performed numerical experiments ensure this where the 
proposed set of moment invariants has very smaller 
errors than the others. The huge reduction in the 
computational complexity is another advantage of the 
proposed set of moment invariants.  The obtained 
results ensure the superiority of the proposed method 
over all available methods for moment invariants 
computations. 
 

REFERENCES 
 
1. Hu, M., 1962. Visual Pattern Recognition by 

Moment Invariants, IRE Transactions on 
Information Theory, 8: 179-187. 

2. Dudani, S.A.K. and B.J. McGhee, 1983. Aircraft 
Identification by Moment Invariants, IEEE Trans. 
on Computers, 26: 39-45. 

3. Wong, R.Y. and E.L. Hall, 1978. Scene Matching   
With Invariant Moments, Computer Graphics, 
Image Processing, 8: 16-24. 

4. El-Khaly, F. and M.A. Sid-Ahmed, 1990. Machine 
recognition of Optically Captured Machine Printed 
Arabic Text, Pattern Recognition, 23: 1207-1214. 

5. Tsirikolias, K. and B.G. Mertzios, 1993. Statistical 
Pattern Recognition Using Efficient Two-
Dimensional Moments with Applications to 
Character Recognition, Pattern Recognition, 26: 
877-882. 



Am. J. Applied Sci., 5 (6): 726-735, 2008 
 

 735 

6. Gruber, M. and K.Y. Hsu, 1997. Moment-Based 
Image Normalization with High Noise-Tolerance, 
Pattern Recognition, 19: 136-139. 

7. Campisi, P., A. Neri, G. Panci and G. Scarano, 
2004. Robust Rotation-Invariant Texture 
Classification,   IEEE    Trans.    Image Process, 
13: 782-791. 

8. Mukundan, R. and N.K. Malik, 1995. Attitude 
Estimation Using Moment Invariants, Pattern 
Recognition Letters, 14: 199-205. 

9. Mukundan, R. and K. R. Ramakrishnan, 1996.  An 
Iterative Solution For Object Pose Parameters 
Using Image Moments, 1996. Pattern Recognition 
Letters, 17: 1279-1284. 

10. Flusser, J., T. Suk and S. Saic, 1996. Recognition 
of Blurred Images by the Method of Moments, 
IEEE Trans. Image Process, 5: 533-538. 

11. Flusser, J. and T. Suk, 1998. Degraded Image 
Analysis: An Invariant Approach, IEEE Trans. 
Pattern   Anal. Mach. Intell., 20: 590-603. 

12. Reiss, T.H., 1991. The Revised Fundamental 
Theorem of Moment Invariants, IEEE Trans. 
Pattern   Anal.  Mach. Intell., 13: 830-834. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13. Flusser , J. and T. Suk, 1993. Pattern Recognition 
by Affine Moment Invariants, Pattern Recognition, 
26: 167-174. 

14. Flusser, J., 2000. On the  independence of rotation 
moment     invariants,    Pattern       Recognition, 
33: 1405-1410. 

15. Ghorbel, F., S. Derrode, R. Mezhoud, T. Bannour 
and S. Dhahbi, 2006. Image Reconstruction From 
A Complete Set Of Similarity Invariants Extracted 
From Complex Moments, Pattern Recognition 
Letters, 27: 1361-1369. 

16. Flusser, J. and T. Suk, 2006. Rotation Moment 
Invariants For Recognition Of Symmetric Objects, 
IEEE Trans. on Image Processing, 15: 3784-3790. 

17. Reeers, A.,  P.R.J.  Prkop,   S.E. Andrews   and 
F.P. Kuhl, 1988. Three-Dimensional Shape 
Analysis Using Moments and Fourier Descriptors, 
IEEE    Trans.     Pattern    Anal.    Mach.   Intell., 
10: 937-943. 

18. Abu-Mostafa, Y.S. and D. Psaltis, 1985. Image 
Normalization by Complex Moments, IEEE Trans.  
Pattern.  Anal. Mach. Intell., 7: 46-55. 

19. Hosny, K.M., 2007. Exact and Fast Computation of 
Geometric Moments for Gray Level, Applied 
Mathematics and Computation, 189: 1214-1222.  


