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Abstract: This study explores the fractionally integrated (FI) time series analysis in Malaysian stock 
market. Four proxies of latent volatility, namely the absolute return, squared return and range-based 
(Parkinson and Garman and Klass) volatilities are selected for the empirical studies. In addition, the 
well-known FI autoregressive conditional variance (ARCH) type model is also taken into account for 
comparison purposes. Our empirical results evidence the proxy of absolute return and ARCH-type 
volatility model provides better performances in both the estimation and forecasting evaluations. 
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INTRODUCTION 

 
 Recent literatures of long-range dependence[1,5] 
indicate that the fractionally integrated models are 
widely used in financial time series analysis such as 
risk management, portfolio analysis and derivative 
pricing. The long-range dependence processes 
commonly capture by the fractional integrated operator 
(1-B)d in ARFIMA model. Granger[6], Granger and 
Joyeux[4] and Hosking[7] employ this operator as a filter 
to transform a general time series into a constant plus a 
white noise process. Later, Baillie[1] introduces the 
fractionally integrated autoregressive conditional 
heteroscedasticity (FIGARCH) model which relates to 
financial volatility dynamics. 
 The phenomenon of long-range dependence asset 
returns has further improved the model specification in 
volatility modelling which previously concentrate on 
short memory basis. Moreover, these underlying 
predictability components have led to new 
implications[5,8,9] in efficiency market hypothesis 
(EMH) which stated that the future returns are 
unpredictable by using information on past returns. 
Another important application derives from the return’s 
volatility is the measurement of value-at-risk (VaR) in 
risk management[10,11]. The VaR implementation is also 
recommended by international institutions such as the 
Bank For International Settlements, the American 
Federal Reserve Bank and the Securities and Exchange 
Commission for any derivatives market participants. 
The Kuala Lumpur stock exchange (KLSE), which is 
our focus, has received great attentions from 
researchers and investors as the empirical case studies 
country and potential investment alternatives in South 
East Asia. Cajueiro and Tabak[12] studied the long 

memory volatility of KLSE from 1992 to 2002 and 
found that the Hurst’s parameter with the value of 
0.628. Cheong et al.[3] investigated the asymmetry and 
long-memory volatility behaviour of the KLSE daily 
data over a period of 1991-2005 with four sub-periods. 
They fitted the asymmetry long memory GARCH 
models across the periods and the results shown the 
mixture of symmetry and asymmetry GARCH 
modelling. As a whole, the above literatures are mainly 
concentrated on the daily closing price indices. For 
further analysis, we have selected four volatility proxies 
and directly implement them in the ARFIMA models. 
On the other hand, we also consider the fractionally 
integrated GARCH by Baillie[1,13] for comparison in 
model specification evaluations. A battery of statistical 
tests has been employed to diagnose the model 
specifications. As a result, the model with absolute 
returns shows superior in in-sample estimation and 
forecasting evaluations as compare to other models.  
 

MATERIALS AND METHODS 
 
Data Source: The index transaction prices begin from 
1st January 2000 until 30 November 2005 (1445 
observations) in our empirical study. During this 
period, the Malaysia stock market was speculated by 
the RM-USD un-pegged regulation (implemented at 
year 2006 where the RM was expected undervalued by 
approximately 6.5%), the merged of MESDAQ in 
KLSE beside the Main board and Second board 
previously started in year 2002, the fluctuating of petrol 
prices, etc. We intended to study the stock market 
volatility and the reactions of market participants 
respected to good and bad events. 
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ARFIMA proxies volatility models: Absolute return 
and squared returns are the two volatility proxies 
commonly used in empirical financial time series 
analysis. Due to its availability and simplicity, most 
empirical finance literatures using this daily return 
(squared returns/residual) as the measure of latent 
volatility. Ding et al.[2] claim that the absolute return 
exhibits consistently higher long memory behaviour 
than squared returns in S and P 500. Ding and 
Granger[14] further examines world wide stock markets 
and foreign exchange and find similar results. 
 Another alternative measurement of volatility is 
using the range, the logarithm difference between the 
highest and lowest prices. Most of the free distributed 
financial time series, such as newspaper and website, 
are provided with the information of closing, opening, 
high and low stock prices, currencies, interest rate, etc. 
We focus on the range-based volatility proxies include 
the earliest work by Parkinson[15] and Garman and 
Klass[16] with the assumption of expected return equal 
to zero. The mean return is not statistically different 
from zero at 5% level under the t-test (t-statistic 
1.7521). The above studies have proven that the 
Parkinson[15] approach is five times efficient than the 
classical average volatility estimator. Both the volatility 
estimators are define as: 
 

( )22
, 2ln4

1
ttparkt LH −=σ

 (1) 
 

( )

( )

22 0.511 H Lt tt,GK
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 where the definitions are follow Yang and 
Zhang[17] with Ht, Lt and Ct represent the normalized 
high, low and closing prices respectively. 
 Our volatility model appears to be fractionally 
integrated and correlated with the lagged return (risk 
premium), negative returns (leverage effect) and heavy-
tailed distributed respectively. For risk premium 
analysis, if the return-volatility poses a positive 
relationship, we assume that for a more volatility 
(riskier) securities, the rational market participants 
require a greater risk premium. On the other hand, if the 
relationship is negative, it implies that the market 
participants are more favourable in saving. Whereas the 
asymmetric effect (leverage effect) implies that impact 
of bad news increases volatility is relatively deeper than 
good news. The model can be estimated by using the 

maximum likelihood estimation in the following 
ARFIMAX model: 
 
(1-B)d

�1-�I(B))  

= co+c1 1−tr + c2

−
−1tr +(1+�I(B))at, (3) 

 

 where 
−
−1tr  indicates rt-1 when rt-1<0 and is zero 

otherwise. While coefficient, c1 indicates the presence 
of risk premium. The conditional volatility component 
is applicable only if the estimated volatility performs 
the presence of further volatility components[18]. The 
shock term, at, follows a conditional time-varying 
variance and the εt~iid, N (0,σ2) or t-dist (�). 
 
Fractionally Integrated GARCH: The conditional 
mean equations of KLSE stock returns are an AR (1) 
model of (rt) as below: 
 
rt = �0+�1rt-1+at. (4) 
 
 The infrequent trading that often occurs in 
emerging market can be adjusted[19] by a first order 
autoregressive model to avoid the spurious correlation 
in the conditional volatility models. For conditional 
variance specifications, the at is serially uncorrelated, 
but dependent to its lagged values or the conditional 
variance components as follow: 
 

at = σtεt 
 

where 
 
εt~iid, t-dist (�) (5) 
 
� (B) and � (B) capture the shot-run of volatility while 
the fractional difference parameter d models the long 
run characteristics of volatility with the intraday 
information is as follow: 
 

d(B)(1 B)2 20 1 at t1 (B) 1 (B)

� �α ϕ −� �σ = + −� �− β − β� �� �

 (6) 

 
with 0≤d≤1. When 0<d<0.5, the term (1-B)d has an 
infinite binomial distribution for non-integer powers. 
Finally, Tse[20] includes the new impact component and 
introduces the FIAPARCH (p,d,q): 
 

d(B)(1 B)0 1t 1 (B) 1 (B)

� �α ϕ −� �δσ = + −� �−β −β� �� �

(| a | a )t t
δ−γ  (7)
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Table 1: Descriptive statistics of volatility proxies 

 |rt| log|rt| r2
t log r2

t 2
t,parkσ  log 2

t,parkσ  2
t,GKσ  log 2

t,GKσ  

 Mean 0.6977 -0.8586 0.9784 -1.7173 0.6045 -1.0866 0.6643 -1.0333 
 Maximum 6.3422 1.8472 40.2235 3.6945 18.6944 2.9282 13.6433 2.6132 
 Minimum 0.0014 -6.5693 0.0000 -13.1386 0.0146 -4.2243 0.0177 -4.0344 
 Std. Dev. 0.7014 1.1693 2.6642 2.3387 0.9973 1.0328 1.0788 1.0700 
 Skewness 2.7549 -1.1783 8.3041 -1.1783 7.6903 0.2772 5.4592 0.3006 
 Kurtosis 15.4275 5.6188 96.5083 5.6188 103.4999 3.0075 45.5174 2.9084 
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Fig. 1: Sample autocorrelation function 
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Fig. 2: return and squared-return 
 
where the δ and γ couple the possible varying power of 
standard deviation and leverage effect respectively. 
 The forecasting evaluations are base on mean 
squared error (MSE), mean error (ME), mean absolute 
error (MAE) and Mincer-Zarnowitz Regression. For 
Mincer-Zarnowitz regression, 2

tσ  is the proxy of the 
(realized volatility) for time period t and 2ˆ tσ  is the 
forecasted conditional variance for time t. The realized 
volatility is measures according to Chin et al.[3] 
approach.  

RESULTS AND DISCUSSION 
 
Descriptive statistics: Table 1 reports the descriptive 
statistics for all the volatility proxies. For |rt| and r2

t 
indicate serious excess kurtosis with the values 15.42 
and 96.51 compare to a standard normal distribution 
with kurtosis 3. A parametric t-distribution is in favor to 
normally distribution assumption in the model 
specifications. On the other hand, both the range-based 
volatility estimators (after natural logarithm) show 
similar statistical property with normal distribution with 
unity standard deviation and kurtosis of 3 respectively. 
Therefore, this preliminary statistics suggest 

estimations under normality assumption for both the 
range-based volatilities. 
 
Long-range dependences: In Figure 1, the long-range 
dependences are observed in all the volatility proxies 
where the sample autocorrelation function indicates 
significant spikes even after long lags. All the figures 
also obviously show that range-based volatilities are far 
more long persistence as compare to transformed-
returns volatility. This property can be further examined 
in the model estimations. 
 
Estimation and diagnostic: Table 2 reports the 
estimation results of ARFIMAX and ARCH-type with 
the assumption of Gaussian or student-t distributions. 
Firstly, we examine the ARFIMAX (0,d,1) models and 
find that all the coefficient (except r2

t) if the return-
volatility poses a positive relationship, we assume that 
for a more volatility (riskier) securities, the rational 
market participants require a greater risk premium, are 
significantly different from zero at 5% level of 
significant. These findings suggest that the Malaysian 
stock asset returns display a tendency to be negatively 
correlated with the returns volatility. Or in short, the 
leverage effect indicates that stock market volatility 
tends to rise in response to bad news and responses 
reverse to good news. For positive return-volatility 
relationship, in fig. 2 we conclude that for a more 
volatility (riskier) securities, the rational market 
participants require a greater risk premium in their 
investment for all the proxies except r2

t . The |rt| and r2
t 

are significant imply that both the proxies are excess 
kurtosis and exhibit heave-tailed compare to normally 
distributed range-based volatilities. For parameter 
dARFIMA, all the values are fall in the range of 0<d<0.5 
which indicates the presence of long persistence 
volatility. The strength of long persistence is strongest 
in log 2

t,GKσ (0.4182), follows by log 2
t,parkσ (0.4003), |rt| 

(0.083) and lowest in r2
t (0.0452) respectively. It is also 

worth notes that only |rt| exhibits the ARCH-effect in 
the standard residual of ARFIMA. 
 For ARCH-type models, the AR (1) t-distributed 
asymmetry power GARCH estimations are reported in 
Table 2. The δs are close to 2 suggest the conditional 
variance for the KLCI. On the other hand, the γs 
indicate similar results in ARFIMA models with 
leverage effect. The fractional parameter dGARCH is 
statistically significant with the value 0.2388 also 
indicates identical inference of long-range dependence 
volatility. In Table 2, the |rt| ARFIMA (0,d,1)-GARCH 
(1,1) provides a slightly statistical improvement over 
other models based on Akaike and Schwarz information 
criterion (AIC and BIC). In Table 2, the Ljung-Box 
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Table 2: maximum likelihood estimation and model diagnostic  
 ARFIMA     ARCH Type 
 ------------------------------------------------------------------------------------------------- ----------------------------------------------- 

Estimation |rt| r2
t log 2

, parktσ  log 2
t,GKσ  AR(1)-APARCH AR(1)-FIAPARCH 

c0 0.0177(0.029) 0.0396(0.390) -0.6752(0.009) -0.7316(0.002) c0 -0.0055(0.824) -0.0042(0.864) 
c1, retlag 0.9288(0.000) -0.0722(0.330) 0.1076(0.045) 0.2162(0.000) αI 0.1670(0.000) 0.1630(0.000) 
c2,retneglag -1.8906(0.000) 0.1072(0.442) -0.2876(0.002) -0.4901(0.000)    
αI -0.9135(0.000) 0.0465(0.291) 0.1636(0.004) -0.1911 (0.000) α0 0.0639(0.000) 0.1567(0.107) 
dARFIMA 0.0632(0.083) 0.0452(0.000) 0.4003(0.000) 0.4182(0.000) αII 0.1594(0.000) -0.3621(0.438) 
     βII 0.7981(0.000) -0.2857(0.572) 
α0 0.0692(0.001) 5.0900(0.324) 0.2662(0.580) 0.3233(0.582) γ 0.2124(0.015) 0.1951(0.032) 
αII 0.1884(0.000) 6.5479(0.329) 0.0222(0.482) 0.0214(0.475) δ 1.4875(0.000) 1.9454(0.000) 
βII 0.6949(0.000) 0.5420(0.000) 0.5968(0.398) 0.4470(0.647) dGARCH 0.2388(0.000) 
        
υ 2.9801(0.000) 2.0086(0.000)  51.4487(0.395) υ 5.7000(0.000) 6.0147(0.000) 
        
L -1053 -1523  -1660 -1568              -1686                   -1678 
AIC 1.5858 2.2876 2.4910 2.3532  2.5276 2.5161 
SIC 1.6208 2.3226 2.5220 2.3842  2.5586 2.5510 
        
Diagnostic        
(1) Q-(12) on  at 7.2009(0.782) 1.7258(0.999) 12.0312(0.361) 16.7476(0.115)  17.5587(0.092) 16.2388(0.132) 
(2) Q-(12) on ta~ 2       8.3195(0.597) 4.1171(0.941) 
(3) ARCH test      0.6837(0.768) 0.4073(0.961) 
Forecasting 
evaluation        
MSE 0.0844 0.1805 0.4235 0.391  0.03607 0.0219 
ME -0.0195 0.0694 -0.1306 -0.0974  -0.1198 -0.0335 
MAE 0.2109 0.1812 0.5177 0.5053  0.1573 0.1111 
Theil 0.3654 0.7190 0.1619 0.1583  0.2539 0.2244 
MZ        
a -0.0231(0.876) 0.1750(0.836) -0.3430(0.663) -0.6797(0.617)  -0.0079(0.932) 0.0065(0.948) 
b 1.1121(0.044) 0.0081(0.008) 0.9228(0.427) 1.6124(0.479)  0.7243(0.004) 0.8743(0.009) 
R2 0.2023 0.2263 0.0070 0.0156  0.2129 0.2195 
NOTES: at and ta~ represent the residual and standardized residual respectively, (1) and (2): Ljung Box Serial Correlation Test ( Q-statistics) on 

ta~  and 2
ta~ : Null hypothesis – No serial correlation, (3) LM ARCH test: Null hypothesis - No ARCH effect, (4)Forecasting evaluation, Mincer-

Zarnowitz (MZ) regression, 2 2ˆa b ut t tσ = + σ + , where 2
tσ  : realized volatility with 20-minute interval and 2ˆ tσ : forecasted conditional variance 

for time t. The values in the parentheses represent the p-value. 
 
statistics indicate that all serial correlations in the error 
terms are not significant at 1% significant level. For 
ARCH-type models, the asymmetry FIAPARCH shows 
better diagnostic results compare to APARCH model in 
the Ljung-Box standardized residual correlation test. 
For squared standardized residuals, both the tests 
exhibit no significant serial correlations and ARCH 
effect at 1% level of significance. Finally, Table 2 
presents 100 one-step-ahead daily volatility forecasts 
for the KLSE stock index. The fractionally integrated 
ARCH-type models show smallest MSE and MAE 
while the |rt|-ARFIMA indicates relative lesser in term 
of magnitude for ME. In the regression analysis, the 
proxies |rt|, r

2
t and FIAPACH show the highest R2 value 

(0.2023 to 0.2263) compare to the range-based 
volatility models with insignificant bs. However, the |rt| 
exhibit superior in the regressor coefficient, b, (1.1121) 
which are nearest to unity compare to other models. 

 As a result, in terms of model fitting and 
specifications, we conclude that the |rt|, ARFIMA 
(0,d,1)-GARCH model is out-performance compare to 
all the conditional and range-based volatility models. 
 

CONCLUSION 
 
 This study investigates the fractionally integrated 
behaviour of KLSE’s volatility over the year 2000 to 
year 2005. During this recovery period, the stock 
market exhibits the presence of long memory volatility, 
presence of risk premium, significant relation between 
news (lagged return) and volatility which implied that 
bad news have the higher predictive power for 
upcoming volatility and finally the existence of heavy-
tailed property in selected FI volatility models. As a 
conclusion, the empirical results show that the inclusion 
of time-varying volatility in the absolute return 
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ARFIMA model contributes a better in-sample 
estimation as well as one-day-ahead forecasting. For 
further research, we are interested to use the estimated 
volatility in the Value-at-risk application for long and 
short trading analyses. 
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