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Abstract: This study deals with a single server in the D-policy M/G/1 queueing system in which the server
is turned off at the end of each complete period and is activated again only when the cumulative completion
times of the customers in the system exceeds a given level D. While the server is working, he is subject to
breakdowns according to a Poisson process. When the server breaks down, he requires repair at a repair
facility, where the repair time obeys a general distribution. We have demonstrated that the probability that
the server is busy in the steady-state is equal to the traffic intensity. The total expected cost function per
customer per unit time is constructed to determine the optimal operating D-policy at a minimum cost. We
use the steady-state analytic results and apply an efficient Matlab computer program to calculate the
optimal value of D. Based on three different service distributions: exponential, 3-stage Erlang and
deterministic, we provide extensive numerical computation for illustration purpose. Sensitivity analysis is
also investigated.
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INTRODUCTION

In this study, we deal with the optimal operation of
a single non-reliable sever in an M/G/1 queueing
system operating under the D-policy, i.e., the server is
turned off at the end of each complete period (busy
period plus breakdown period) and is turned on when
the sum of the completion times of all waiting
customers exceeds the fixed value D. A non-reliable
server means that the server is typically subject to
unpredictable breakdowns. It is assumed that the
breakdown times of the server follow the negative
exponential distribution and the repair times of the
server obey a general distribution.

One example of an application fitting our model is
the following central mail handling system. Mail is
collected from mailboxes with fixed pick-up times and
then is sent to the central mail handling office. The
workers at the central mail handling office sorts the
parcels into categories including registered mail,
ordinary mail in a long flat envelope and ordinary mail
in a standard envelope. Sorted mail forms a waiting line
according to a random process. When the workload of
sorted mail exceeds D, the automated distribution

machine is turned on and starts dispensing the parcels
into slots according to the destination post office. In
addition, the machine may be broken down when it is
working. When the automated distribution machine
fails, it is emergently repaired. As soon as the repair is
completed, the automated distribution machine
immediately servers the waiting sorted mail until the
processed workload becomes zero. Another application
of this model is in the study of PCB Surface Mount
process. Consider a PCB Surface Mount system.
Assume that PCB arrives according to a random
process. Because of the cost involved in setup machine,
it is desirable that the reflow machine begins operating
whenever the workload of PCB reaches a critical value
D. The reflow process may be interrupted when
machine encounters unpredicted breakdowns. When
reflow interruptions occur (breakdowns), it is
emergently recovered with a random time.

It is assumed that customers arrive following a
Poisson process with parameter A and the service times
of the customers are independent and identically
distributed (i.i.d.) random variables having a
distribution function Fg(t), a probability density
function fg(t) and a finite kth moment py = E[Sk] k=1,
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2, 3). Let fs(s) denote the Laplace-Stieltjes transform

(abbreviated LST) of a function fg(t). It is assumed that
the server can break down at any time with a Poisson
breakdown intensity «. Whenever the server breaks
down, he is immediately repaired in a repair facility,
where the repair times are independent and identically
distributed random variables having a distribution
function Fg(t), a probability density function fx(t) and a

finite kth moment 3, = E[Rk] k=1,2,3). Let fR (s)
denote the LST of a function fg (t) . Service is allowed

to be interrupted if the server breaks down. The server
immediately starts repair and once the server is repaired
he immediately returns to serve customers until the
system becomes empty.

The controllable M/G/1 queueing system has been
extensively investigated in the open literature.
Balachandran'"! first introduced the concept of a D-
policy which turns the server off when the system is
empty and turned the server on when the cumulative
service times of the customers in the system exceed a
given threshold of size D. The D-policy M/G/1
queueing system with a reliable server was analyzed
by Balachandran'!, Balachandran and  Tijms",
Gakis er al” and many others. Balachandran and
Tijms' developed the optimal D-policy when the cost
function is based on the expected number of customers
in the system. Gakis et al”!' demonstrated that the
probability that the server is busy in the steady-state is
equal to the traffic intensity. Li and Niu'! developed the
waiting distribution (in queue) of customers in the more
general GI/G/1 queue with D-policy. For an M/G/1
queueing system operating under the D-policy,
Sivazlian derived an explicit approximate expression
for the optimal value of D.

The first objective of this paper is to derive the
steady-state analytic results, such as the expected length
of the complete, busy, breakdown and idle periods, the
expected length of the busy cycle and the probability
that the server is busy. We show that the probability
that the server is busy is equal to traffic intensity p. The
second objective of the paper is to formulate the
system’s total expected cost in order to determine the
optimal operating D-policy at the minimum cost. The
steady-state analytic results and an efficient Matlab
computer program are used to calculate the optimal
value of D. The final objective of the paper is to present
extensive numerical computation for three different
service distributions such as exponential, 3-stage Erlang
and deterministic, to illustrate sensitivity investigation.
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THE ORDINARY M/G/1 QUEUEING SYSTEM
WITH SERVER BREAKDOWNS

First three moments of the completion time
distribution: Let H be a random variable representing
the completion time of a customer, which includes both
the service time of a customer and the repair time of a
server, in the ordinary M/G/1 queueing system with
server breakdowns.

Let fH(s) denote the LST of completion time H.
Thus fy(s) is given by:

£,(5) = fy[s + 0 — afy (5)] (1)

where fs(s) and ?R (s) denote the LST of service time

and repair time, respectively and o denotes the
breakdown rate. The derivation of (1) is given in Wang
and Ke'”. It follows from (1) that the first three
moments of the completion time distribution are given
by:

d —
0, =ElH]=—~[T,]  =ma+ap) )
d® =
0, = E[H’] =§[f,{(s)] L =m0roB) +ia, ()
0, =E[H’]= —d—3[f ] =wa+op)

3 dS3 H 0 3 1 (4)

+3u,0B, 1+ af,) —n,ab;,

and

Py =8, =p(l+ap) (5)

where p = Au,. The traffic intensity py is assumed to be
less than unity.

Expected length of the complete period, the busy
period and the breakdown period: The busy period is
initiated when the customer arrives in the system and
the server begins for service. During the busy period,
the server may break down and starts his repair
immediately. This is called the breakdown period. The
server is turned off when the system becomes empty.
This is called the idle period. Since the complete period
starts when the idle period terminates, the complete
period is represented by the sum of the busy period and
the breakdown period.
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From the results of Wang and Ke!”!, the LST of the Note that the expression for f, (x) is obtained only
distribution of the complete period for the ordinary
M/G/1 queueing system with server breakdowns is
given by:

by replacing busy period by completion period Hy in
the formula of the D policy M/G/1 queueing system
with server breakdowns.

Taking the LST of £y, (X), we have:
T, (6)=1, [s+x AT, (s)} (6)

£, (5)= j “e U, (x - D)dx
Using (1-3) and (6), the first two moments of the

. . n  —Ay
complete period are given by: ,[ J‘ fo (- D)zf*(n)(x y)mdydx. (11)
n!
wd+aB) _ 6
E[H, ]_1 ]p(l+(xB ) - 1‘;’14 %) Changing the order of integration of (11) and
changing the variables of integration, it finally yields
w,(+0p,)” +u,0p 6 -
E[Hz]: 2 1 R S 2 (8) [A+s Afiy, (5)IDT _
D o tr Bl dp.y £, (5)= o, [A+s=2F, )] (12)
We denote by E[B,] and E[Dg]the expected length Let E[Hp] be the expected length of the complete

of the busy period and the breakdown period, period for the D poligy M/G/1 queueing system with
respectively. We shall use the following known server breakdowns. Using (12), we get:
formulas, which can be found in Wang and Kel™:

BlH, 1= [ (s)]

u (13)
E[B,]= ! 9
Bol=10 ©) =(1+AE[H0])<D+E[RD]),
here E[Hy] is given in (7). We note from (7) that:
BID, ] = p]_ocB] (10) w. [Ho] is given in (7) (7
H
1+ AE[H, =1+ 22 LE B
THE D POLICY M/G/1 QUEUEING SYSTEM 1=py

WITH SERVER BREAKDOWNS __ 1 =i>< 6, _E[H] (14)

1-py e] 1-py e1

Expected length of the complete period, the busy

period and the breakdown period: The server is Following the result of Balachandran and Tijms'”,
turned off (idle) at the end of each complete period and we have

is activated again only when the cumulative workload

(the cumulative completion times of the customers in D+E[R,]=6,[1+M,(D)] (15)
the system) firstly exceeds the fixed value D. Let Rp be
the forward recurrent time of the ordinary renewal
process X, at epoch t = D. Thus the total workload
when a complete period is initiated is D + Rp. Applying -
the expression (58) of Gakis et al.™! (p. 57), we get: M, (D)= > FM(D), (16)

n=l

Here, My(D) is the renewal function

e 0<x<D
where, E(D) is the n -fold convolution of F with
£y, (x)=0, itself.
Substituting (14) and (15) into (13), we obtain:

e D<x<w
E[H,]=E[H,][1+M,(D)] (17)

f, (x)=e™f, (x-D)+
. We denote by E[Bp] and E[Dp] the expected length of
J‘ fo (y- D)Z fi0(x - y) S (7‘3’) dy. the busy period and the breakdown period, respectively.
We obtain:
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E[H,]=E[B,]+E[D,]

Recall that E[H,]=E[B,]+E[D,]. It implies from
9), (10), (17) that:

w[1+M, (D)]

E[B,]=E[B,I[1+M,(D)]= =p

(18)

o [1+My (D))

1=y 4

E[D,]=E[D,][1+ M (D)] =

Expected length of the busy cycle: The busy cycle for
the D policy M/G/1 queueing system with server
breakdowns, denoted by Cp, is the length of time from
the beginning of the last idle period to the beginning of
the next idle period. Since the busy cycle is the sum of
the idle period and the complete period, we obtain:

E[C,]1=E[l,]+E[H,] (20)

We must now find E[I/D]. Following the
terminating of an idle period, the server returns to the
system to initiate a complete period, if the cumulative
amount of workload firstly exceeds D. The idle period
is denoted by the sum of K idle periods in the ordinary
M/G/1 queueing system with server breakdowns where
K satisfies the following condition:

K =min{n|H, + H, +....,H, >D}

where H;, i = 1, 2, ..., n denotes the completion times.
Let f (x|.K:n) be defined as the conditional

probability density function of the idle period given
K =n. Thus, we obtain:

f, (x]K=n)=£"(x)n=12,.... (21)
We note that:

P{K=n}=P{X(D)=n-1}=F""(D)-F (D). It implies
from (21) that:

f, (x)=>f, (x| K=n)P{K=n}
n=1
= ifl’;‘“)(x)[F}‘l“’”(D)—FP([“)(D)] (22)
n=l
Taking the LST on both side of (22) yields:

Lo=X[Lo] R ®-Fo] @3

The expected length of the idle period, E[I/D], for
the D policy M/G/1 queueing system with server
breakdowns is obtained by using (23):

Bl ] = B[]S n[Fy (D)~ F (D) |
n=1

= E[Io]i F"(D) (24)
n=0

=E[I,][1+ My (D)]

where E[ly] = 1/A, M, (D)=>"" F"(D) and E’(D) is

defined to be 1.
Substituting (17) and (24)
E[C,,]= (E[],]+E[H, D1+ M (D)].
From (1), (4) and (7), we get:

into (20) yields

1+M,,(D)

E[C,]=
AMl-py)

(25)

Probability that the server is busy: In steady state, the
probability that the server is busy in the D policy M/G/1
queueing system with server breakdowns, denoted by

P, is the proportion of time the server is busy, that is,

p - EIBy]
" EIC,]

(26)

Substituting E[Bp] in (18) and E[Cp] in (25) into
(26) yields:

P, =My, =p. 27)

On the D-policy M/G/1 queueing system with
server breakdowns, we prove that the probability that
the server is busy in the steady-state is equal to the
traffic intensity.

OPTIMAL DESIGN OF THE D POLICY

Expected number of customers in the system:
Applying the known formula for the expected number
of customers in the D policy M/G/1 queueing system
with a reliable server, we obtain the following expected
number of customers in the D policy M/G/1 queueing
system with server breakdowns

D
20, D] Moy
2(1-py) 1+ M, (D)
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We note that expression (28) is obtained only by
replacing service times by completion times in the
formula of the D policy M/G/1 queueing system with
reliable server (Tijmsm)

Determining the optimal policy: We develop the
average total expected cost per unit time for the D
policy M/G/1 queueing system with server breakdowns
in which D is a decision variable. Our objective is to
determine the optimum value of the control parameter
D, say D* at minimum cost.

The operating cost and the breakdown cost for the
server are neglected because E[Bp]/E[Cp] and
E[Dp]/D[Cp] are not functions of the decision variable
D. Let:

R(R,) = fixed cost for turning the server on (off); we
putR=R; + Ry;

h = holding cost per unit time for each customer present
in the system.

Then, applying the results of Balachandran and
Tijms® (or Tijms'®), the minimum average total
expected cost per unit time for the D policy M/G/1
queueing system with server breakdowns is given by:

F(D)=R hL, =R0=Pu)
E[C, ] 1+M,(D)
o (29)
D+ [ My (y)d
N '[0 H(Y)y.
2l-py)  1+M,(D)

It is easy to show that F(D) is minimal for the
unique solution D* satisfying

D’ « (D
[0+ My ()Idy =D"+ [ M, (y)dy

_RMI-py)
H

(30)

Substituting D* into (29), we obtain the minimum
average expected cost per unit time for the D policy
M/G/1 queue with server breakdowns as:

HA®,

F(D)=HD" +
2-p,)

(3D

Approximate solution for the optimal D level: We
now develop the asymptotic expansions as follows.
Suppose that D is sufficiently large compared with 0,.
Following the results of Tijms'®, we get:

2

0
ER,) =
Rp) ==

0
and E(R})=—-
(Rp) 20

1 1

(32)
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which is independent of D. We assume that Oz;<eo. It
yields from (16) and (32) that:

M, (D)= DHERo]
1
D 6,
~—t—2— 33
o, 20 )
It follows from (32) and (33) that:
b bly 9,
M d —+—=-11|d
fo () y»fo {q] +2q12 } y
2 2
zD—+D{e—g—1}+e—g—e—g. (34)
26, 26° 407 66’

Substituting the asymptotic expansion (34) into
(29), we obtain that for the D policy M/G/1 queueing
system with server breakdowns, the average total
expected cost per unit time is approximated by:

h
4| RAA-py)——
D 6, 2
FD)=| —+—2 , ,
0, 20 D> Do, 6> 6,
o o 200 307
1 1 1 1
+hD+ﬂ. 35)
2(1-py)
Setting dF(D)/dD = 0 yields
_ 3
.8, 6 [2RAL ZpH)G] Jre]e23 L 3
20, 6, he? 30 4
Since
2
d"F(D) >0,
dD’

thus D* is the unique minimizer of F(D).

Special cases: We consider three special cases for three
different service time and repair time distributions such
as exponential (M), k-stage Erlang (Ey) and
deterministic (D). The explicit expressions for the
0i (i=1, 2, 3) for three different service time and repair
time distributions such as exponential, k-stage Erlang
and deterministic are listed as follows.

Case 1: The service time and repair time have
exponential distribution. Let p; and Bi(i = 1, 2, 3) be the
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first three moments of the service time and repair time
distributions. In this case, we have u; = 1/u, p, = 2/p’,
us = 6/u’ and B1 = 1/, B, = 2/p%, Bs = 6/B°.

It implies from (1-3) that:

61:1(1+E},
ul B
6 —i[1+2]2+ 20
wl B) ppt
6 12 6
o~ S{1n8] Laf 8] 00,
u B) B B) up’

Substituting 6; (i = 1, 2, 3) into formula (36) and
using (4), we obtain the approximate optimal value D*
for the exponential service and repair times.

Case 2: The service time has k-stage Erlang
distribution and the repair time has m-stage Erlang
distribution. In this case, we have yu;, = 1/u, u,
(k+1)/kp?, @ = (k+1) (k+2)/k’w’ and By = 1/B, B,
(m+1)/mP?, B3 = (m+1)(m+2)/m’p’.

Again, it follows from (1)-(3) that:

e]:l[1+g]

U B
’ 1

(1+5J 4 ot Do

B muf’
:w@gj
k' B

L 3k +Dm+ Do (1+%]

kmMZBZ
Similarly, substituting 0; (i = 1, 2, 3) into formula
(36) and using (4), we get the approximate optimal
value D* for the k-stage Erlang service time and m-
stage Erlang repair time.

k+1
0, = e
"

6,

_ (m+Dh(m+2)a
m’pp’

Case 3: The service time and repair time have constant
distribution. In this case, we have u; = 1/u, u, = 1/p2,
w' =1/u’ and B, = 1/B, B, = 1/B%, B3 = 1/p°.

It yields from (1-3) that:

-4

1

[

6,

GZZL(lﬁ-gj-ﬂ-a
wi B) pp
eg-L[H&] +3_a(1+&]_i
wioB) wpl B) wp

Substituting 0; (i = 1, 2, 3) into formula (36) and
using (4) again, we have the approximate optimal value
D* for the constant service and repair times.

NUMERICAL ILLUSTRATIONS AND
SENSITIVITY ANALYSIS

We set the holding cost h to be $5 and $20. We
should mention that the D policy is applied to manage
the queuing system due to expensive cost (R) which
denotes the sum of the cost for turning the server on
and the cost for turning the server off. The cost R is
relative to the holding cost h. We set the ratio R/h to be
160, 320 and 640, in order to cover three levels of cost
relationship (cases 1-3). Numerical results are provided
by considering the cost parameters shown in Table 1.

It is to be noted that O<p = Mu<1 is sufficient for
steady-state condition. In our numerical investigations,
the traffic intensity pe(0.1, 0.9) is considered. In
Table 2, row 2 list the parameter settings for various
values of A. We fix & = 0.1 and p = 1.0, choose p = 1.0
and vary p from 0.1 to 0.9 (low to high). Solving p =
Mu for A, we obtain A = 0.1(0.05)0.9. Row 3 list the
parameter settings for various values of u. We fix o =
0.1 and P = 1.0, choose A = 0.45 and vary p from 0.1 to
0.9. Again, solving p = A/u for p, we obtain p =
0.5(0.25)4.5. Row 4 list the parameter settings for
various values of «. We choose A =0.45, p = 1.0 and
B = 1.0 and consider o = 0.1(0.05)0.9. Row 5 list the
parameter settings for various values of f. We select A

= 045, pu = 10 and o = 1.0 and consider p =
1.0(0.5)9.0.

Table 1: The costs for each case

Case h R R/h
1 5 1600 320
2 5 3200 640
3 20 3200 160

Table 2: Parameters settings for various system parameters

A u o B Parameters settings
- 1.0 0.1 1.0 A =0.1(0.05)0.9
0.45 - 0.1 1.0 = 0.5(0.25)4.5
0.45 1.0 1.0 a=0.1(0.05)0.9
0.45 1.0 1.0 . B = 1.0(0.5)9.0
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Table 3: The optimal value D* and its minimum expected cost F(D*) for u = 1.0, = 0.1 and B = 1.0 (the D policy M/M/1 queueing system with server breakdowns)

A 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 055 0.6 0.65 0.7 075 0.8 0.85 0.9
Case 1 D* 6.80 826 935 10.16 1076 11.17 1142 11.51 11.44 1123 10.84 10.28  9.51 848 7.10 5.14 1.56
F(D) 34.74 4250 4841 53.05 5671 59.57 61.76 6337 6449 6525 6578 6635 67.50 70.50 79.19 111.37 597.29
Case 2 D* 10.06 1213 13.67 14.82 15.67 1625 16.60 16.73 16.64 1633 1579 15.00 1391 1245 10.49 7.70 2.54
F(D) 51.02 61.85 70.03 7637 8127 8499 87.69 89.49 9049 90.79 90.52 89.92 89.46 90.31 96.10 124.14 602.18
Case3 D* 4.51 554 630 6.87 729  7.58 7.76 7.82 778 7.62  7.35 6.96 642 570 473 3.36 0.90
F(D) 93.23 11551 132.74 146.49 157.59 166.58 173.86 179.76 184.65 188.95 193.33 198.94 208.09 226.19 269.19 409.72 2376.1

Table 4: The optimal value D* and its minimum expected cost F(D*) for A = 0.45, ¢ = 0.1 and B = 1.0 (the D policy M/M/1 queueing system with server breakdowns)

u 0.5 075 1 125 1.5 1.75 2 225 25 275 3 325 35 375 4 425 45
Case 1 D* 1.08 10.52 11.51 1143 11.09 10.69 1029 991 955 923 893 8.66 841 8.18 7.96 776 1.57
F(D) 113940 67.71 6337 6034 5749 5486 5249 5035 4843 46.69 4512 43.69 4238 41.17 40.06 39.04 38.08
Case2 D* 1.92 1546 1673 16.55 16.01 1540 1481 1425 1373 1326 12.82 1243 1206 11.72 11.41 11.12 10.86
F(D) 1143.60 92.40 89.49 8592 82.09 7844 7508 72.04 6930 66.82 64.57 6251 60.64 5891 57.32 55.85 54.48
Case3 D* 0.58 7.05 7.82 782 17.62 7.36 709 684 660 638 618 6.00 583 5.67 5.52 538 525
F(D) 4547.50 201.41 179.76 169.13 160.43 152.82 146.07 140.07 134.69 129.85 125.47 121.49 117.85 114.50 111.42 108.56 105.91

Table 5: The optimal value D* and its minimum expected cost F(D*) for A = 0.45, u = 1.0 and B = 1.0 (the D policy M/M/1 queueing system with server breakdowns)

o 0.1 0.15 0.2 025 03 0.35 0.4 045 0.5 055 0.6 0.65 0.7 0.75 0.8 0.8 09
Case 1 D* 1151 1141 1130 11.16 11.01 10.82 10.61 1038 10.12 9.83 951 9.16 877 8.34 7.87 735 677
F(D) 6337 6394 6452 65.14 6582 6656 6742 6843 69.64 7T1.11 7294 7525 7821 82.06 87.18 94.12 103.83
Case2 D* 16.73 16.63 1651 1634 16.15 1592 15.65 1534 1500 14.61 14.18 13.70 13.17 1258 11.92 11.20 10.39
F(D) 89.49 90.04 90.55 91.04 9153 92.04 9259 9324 94.03 9501 96.28 97.96 100.20 103.25 107.46 113.39 121.94
Case3 D* 782 773  7.63 752 738 7.24 707 689 6.69 647 623 597 5.69 5.38 5.04 4.66 4.25
F(D) 179.76 182.13 184.72 187.59 190.83 194.54 198.85 203.93 209.98 217.30 226.24 237.32 251.23 268.99 292.08 322.83 364.99

Table 6: The optimal value D* and its minimum expected cost F(D*) for A = 0.45, u = 1.0 and & = 1.0 (the D policy M/M/1 queueing system with server breakdowns)

B 1 1.5 2 2.5 3 35 4 4.5 5 55 6 6.5 7 7.5 8 8.5 9
Casel D* 540  9.17 1029 10.79 11.05 11.21 11.32 11.39 11.43 1147 1150 11.52 11.54 11.55 11.56 11.57 11.58
F(D) 139.48 74.84 6876 66.83 6590 6533 64.94 64.64 06441 6423 64.07 6394 6383 6373 63.64 63.56 63.49
Case2 D* 845 13.66 15.17 1582 16.17 1637 1649 1658 16.64 16.68 16.72 16.74 16.76 1677 16.78 16.79 16.80
F(D) 15476 9731 93.14 92.00 9145 91.10 90.83 90.62 90.44 90.29 90.15 90.04 89.94 89.84 89.76 89.69 89.62
Case3 D* 329  6.02 6.86 725 746 7.58 767 772 777 780 782 784 785 7.87 7.88 7.89 7.89
F(D) 51584 236.38 206.49 196.52 191.64 188.72 186.77 185.36 184.28 183.43 182.74 182.16 181.67 181.25 180.89 180.57 180.29

The purpose of this section is to present specific
numerical illustrations and sensitivity analysis for three
different service time distributions such as exponential
(M), 3-stage Erlang (E;) and deterministic, respectively.
This section consists of the following three subsections:

Numerical illustrations and sensitivity analysis for
the D policy M/M/1 queueing system with server
breakdowns;
Numerical illustrations and sensitivity analysis for
the D policy M/E3/1 queueing system with server
breakdowns;
Numerical illustrations and sensitivity analysis for
the D policy M/D/1 queueing system with server
breakdowns.

The M/M/1 queueing system: First, we perform some
numerical illustrations and sensitivity analysis for the D
policy M/M/l queueing system with server
breakdowns. The optimum value D* is shown on
changes in specific values of A, u, o and B. Using the
parameters settings listed in Table 1 and 2, we obtain
the numerical results for the optimal value D* and the
corresponding minimum expected cost F(D) shown in
Table 3-6.
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The optimal value D* and its minimum expected
cost F(D*) are presented in Table 3 for parameter p =
1.0, @ = 0.1, p = 1.0 and A = 0.1(0.05)0.9, as the case
shown in Table 2 (row 2). We observe from Table 3
that (i) for py<1/2, D* increases as A increases for any
case and for py<1/2, D* decreases as A increases for
any case, (ii) F(D*) increases as A increases (see cases
1, 3), (iii) for fixed values of h, D* and F(D¥*) both
increase as R increases (see cases 1, 2) and (iv) for
fixed values of R, D* decreases but F(D*) increases as
h increases (cases 2, 3).

The optimal value D* and its minimum expected
cost F(D*) are displayed in Table 4, for parameter A =
045, =0.1, B = 1.0 and p = 0.5(0.25)4.5, as the case
shown in Table 2 (see row 3). One sees from Table 4
that (i) for u<1.0, D* increases as p increases for any
case and for p>1.0, D* decreases as p increases for any
case, (ii) F(D*) decreases as p increases for any case,
(iii) for fixed values of h, D* and F(D¥*) both increase
as R increases (cases 1, 2) and (iv) for fixed values of
R, D* decreases but F(D*) increases as h increases
(cases 2, 3).

The optimal value D* and its minimum expected
cost F(D*) are presented in Table 5, for parameter A =
0.45,u=1.0,f=1.0and e =0.1(0.05)0.9, as the case
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Table 7: The optimal value D* and its minimum expected cost F(D*) for u = 1.0, = 0.1 and B = 1.0 (the D policy M/Es/1 queueing system with server breakdowns)

A 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 055 0.6 0.65 0.7 075 0.8 0.8 09
Case 1 D* 7.15 8.62 970 1052 11.12 11.53 11.78 11.87 11.81 11.59 11.21 10.64 9.87 8.84 7.45 5.47 1.80
F(D) 3622 4387 49.64 5410 57.54 60.14 62.01 6324 63.89 64.02 63.73 63.17 62.64 6290 6636 84.47 401.98
Case2 D* 1042 1250 14.04 1519 16.04 1663 1698 17.10 17.02 16.71 16.17 1537 1427 1281 10.85 8.05 282
F(D) 5258 6328 7132 7747 8216 85.61 88.00 89.41 89.93 89.61 8853 86.80 84.66 82.78 83.35 97.34 407.09
Case3 D* 4.84 587 6.64 722 7.64 7.93 8.11  8.17 813 797 170 7.30 6.76  6.03 5.05 3.66 1.09
F(D) 98.70 120.62 137.31 150.36 160.62 168.58 174.61 178.98 181.94 183.77 184.87 18593 188.34 19547 217.47 301.58 1593.80

Table 8. The optimal value D* and its minimum expected cost F(D*) for A = 0.45, & = 0.1 and  =1.0 (the D policy M/E5/1 queueing system with server breakdowns)

u 0.5 0.75 1 1.25 1.5 175 2 225 25 275 3 325 35 375 4 425 45
Case 1 D* 1.28 1097 1187 11.73 11.35 1092 1049 10.10 9.73 939 9.09 880 8.54 8.31 8.09 7.88 7.69
F(D) 76240 6495 6324 60.79 58.11 5554 53.17 51.02 49.08 47.32 45.73 4427 4294 4172 40.60 39.56 38.59
Case2 D* 224 1593 17.10 16.86 1628 15.64 15.01 1444 1390 1342 1297 1257 1220 11.85 11.54 11.24 10.97
F(D) 76721 89.73 89.41 8640 8274 79.13 7578 7272 69.96 6745 65.17 63.10 6120 5946 57.85 5637 54.98
Case3 D* 0.64 748 8.17 8.11  7.87 7.58 730 7.03 678 655 633 614 596 5.80 5.64 550 537
F(D) 303690 189.83 178.98 170.78 162.83 155.45 148.75 142.71 137.27 132.36 127.90 123.84 120.13 116.72 113.58 110.67 107.96

Table 9: The optimal value D* and its minimum expected cost F(D*) for A = 0.45, u = 1.0 and = 1.0 (the D policy M/E5/1 queueing system with server breakdowns)

o 0.1 0.15 0.2 025 03 035 04 045 05 055 0.6 0.65 0.7 075 0.8 085 0.9
Casel D* 11.87 11.80 11.72 11.60 11.47 11.31 11.12 1090 10.66 10.39 10.08 9.75  9.37 8.95 849 798 740
F(D) 63.24  63.60 6393 6423 6453 64.83 65.16 6554 66.00 66.58 67.35 6837 69.76 71.68 7435 78.15 83.68
Case2 D* 17.10 17.04 1693 1680 16.62 1642 16.17 1588 1556 15.19 1478 1431 13.80 13.22 1258 11.87 11.07
F(D) 89.41 89.76  90.01 90.20 90.31 90.38 90.41 90.44 90.49 90.59 90.81 9121 91.90 93.03 94.81 97.61 102.01
Case3 D* 8.17  8.11 8.03 794 783 770 755 739 720 7.00 677 652 6.25 5.95 5.61 524 4383
F(D) 178.98 180.48 182.01 183.59 185.29 187.17 189.32 191.84 194.87 198.57 203.20 209.07 216.64 226.55 239.78 257.84 283.18
Table 10: The optimal value D* and its minimum expected cost F(D*) for for A = 0.45, p = 1.0 and & = 1.0 (the D policy M/Es/1 queueing system with server
breakdowns)
B 1 L5 2 25 3 35 4 45 5 55 6 6.5 7 7.5 8 8.5 9
Casel D* 6.03 971 1077 11.23 11.47 11.61 11.70 11.76 11.80 11.83 11.86 11.87 11.89 11.90 1190 1191 11.92
F(D) 105.14 6790 6540 6476 6445 6425 6409 6396 63.85 6375 63.67 63.59 6353 6347 6341 6336 63.32
Case2 D* 9.14 1424 1567 1628 16.60 16.78 16.90 1697 17.02 17.06 17.08 17.10 17.12 17.13 17.14 17.15 17.15
F(MD) 120.70 90.52 89.89 90.01 90.08 90.09 90.05 90.00 89.94 89.87 89.81 89.75 89.69 89.64 89.59 89.54 89.50
Case3 D* 385 652 732 7.67  7.85 7.96 8.04 808 812 814 816 818 819 8.20 8.21 821 822
F(D) 376.93 207.83 19247 187.71 185.40 183.99 183.01 182.27 181.68 181.21 180.81 180.47 180.17 179.92 179.69 179.49 179.31
Table 11: The optimal value D* and its minimum expected cost F(D*) for p = 1.0, & = 0.1 and B = 1.0 (the D policy M/D/1 queueing system with server breakdowns)
A 0.1 0.15 0.2 025 03 035 04 045 05 055 0.6 0.65 0.7 075 038 085 09
Casel D* 733 880 9.89 1071 1131 11.72 1197 1206 12.00 11.78 11.39 10.83 10.06 9.02 763 565 195
F(D) 37.01 4459 50.29 54.66 5799 6046 62.17 6321 63.61 6344 6275 61.62 6025 59.15 60.00 71.08 304.48
Case2 D* 10.60 12.69 1423 1538 1623 16.82 17.17 17.30 17.21 1690 1636 1556 1446 13.00 11.04 823 298
F(D) 5339 64.03 7199 78.05 82.62 8595 838.18 8940 89.67 89.05 87.56 8526 8229 79.05 77.01 83.98 309.65
Case3 D* 501 605 6.82 7.40  7.82 8.12 829 836 831 816 7.89 749 694 621 523 383 122
F(D) 101.72 123.42 139.81 152.51 162.33 169.77 175.17 178.77 180.77 181.36 180.83 179.62 178.68 180.35 191.89 247.87 1203.30
shown in Table 2 (row 4). From Table 5 we find that (i) The M/E;/1 queueing system: We perform the

D* decreases as « increases for any case, (ii) F(D*)
increases as o increases for any case, (iii) for fixed
values of h, D* and F(D*) both increase as R increases
(cases 1, 2) and (iv) for fixed values of R, D* decreases
but F(D*) increases as h increases (cases 2, 3).

The optimal value D* and its minimum expected
cost F(D*) are displayed in Table 6, for parameter A =
045, 1 =1.0, « = 1.0 and B = 1.0(0.5)9.0, as the case
shown in Table 2 (row 5). From Table 6 we observe
that (i) D* increases as [ increases for any case, (ii)
F(D*) decreases as P increases for any case, (iii) for
fixed values of h, D* and F(D*) both increase as R
increases (cases 1, 2) and (iv) for fixed values of R, D*
decreases but F(D*) increases as h increases (cases 2,

3).

numerical illustrations and sensitivity analysis on the
optimum value D* based on changes in specific values
of A, u, a and P, for the D policy M/E;/1 queueing
system with server breakdowns. Using the parameters
settings listed in Table 1 and 2, we obtain the numerical
results for the optimal value D* and the corresponding
minimum expected cost F(D) shown in Table 7-10.
The interpretations of the results in Table 7-10 are the
same as those in Table 3-6.

The M/D/1 queueing system: We now present the
numerical illustrations and sensitivity analysis for the
M/D/1 queueing system. The optimum value D* is
shown on changes in specific values of A, u, & and f3.
Using the parameters settings listed in Table 1 and 2,
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Table 12: The optimal value D* and its minimum expected cost F(D*) for A = 0.45,

o« = 0.1 and B = 1.0 (the D policy M/D/1 queueing system with server

breakdowns)
0.5 075 1 125 15 175 2 225 25 275 3 325 35 375 4 425 45
Casel D*¥ 146 1121 1206 11.89 1149 11.04 1060 1019 982 947 916 8838 861 837 815 794 7.75
FD) 57432 63.63 6321 61.04 5844 5589 5352 5136 49.41 47.64 46.03 4457 4323 4200 40.86 39.81 38.84
Case2 D* 248 1618 1730 1701 1641 1575 1512 1453 1399 1350 13.05 12.64 1226 11.92 1160 1130 11.03
FD) 579.40 88.44 89.40 86.66 83.08 79.48 7613 73.06 7029 6777 6548 6339 6149 5973 5812 56.62 5523
Case3 D 076 771 836 827 800 770 740 712 68 663 641 621 603 58 571 556 543
FD) 228320 18439 17877 17171 164.10 156.81 150.12 144.06 138.58 133.62 129.12 125.02 121.27 117.82 114.65 111.71 108.97
Table 13: The optimal value D* and its minimum expected cost F(D*) for A = 0.45, u = 1.0 and B = 1.0 (the D policy M/D/1 queueing system with server
breakdowns)
01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 08 09
Casel D*¥ 1206 1200 1193 1183 1171 1156 1138 1118 1095 10.68 1039 1006 9.69 928 883 832 7.75
FD) 6321 6347 63.67 63.82 6393 64.02 64.08 6415 6424 6439 64.63 6502 6563 6659 6805 7029 73.75
Case2 D*¥ 1730 1724 17.15 17.03 1687 1667 1644 1616 1585 1549 1509 14.63 1413 1356 1293 1222 1143
FD) 8940 89.64 89.77 89.80 89.74 89.59 8936 89.08 88.77 88.44 88.13 87.90 87.82 87.99 8857 89.82 92.15
Case3 D 836 831 824 816 806 794 781 765 748 728 707 682 656 626 593 556 5.15
FD) 17877 179.86 180.87 181.83 182.78 183.77 184.87 186.13 187.67 189.61 192.11 195.42 199.86 20591 21427 226.04 243.05
Table 14: The optimal value D* and its minimum expected cost F(D*) for A = 0.45, u = 1.0 and a = 1.0 (the D policy M/D/1 queueing system with server
breakdowns)
1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9
Casel D* 638 1001 1103 1147 11.69 11.82 1191 11.96 1200 12.02 12.04 1206 1207 1208 1208 12.09 12.09
FD)  88.15 6452 6379 6378 63.78 6375 6371 63.66 63.61 63.55 63.50 6346 6341 6337 6334 6330 6327
Case2 D* 951 1454 1593 1652 1682 17.00 17.10 17.17 1722 1725 1727 1729 17.30 1731 17.32 1733 17.33
FD) 10381 87.19 8831 89.06 89.43 89.61 89.69 89.72 89.71 89.69 89.66 89.63 89.59 89.56 89.52 89.49 89.46
Case3 D 417 680 756  7.89 807 817 823 828 831 833 834 836 837 837 838 839 839
F(D) 30845 194.07 185.85 183.63 182.57 181.89 181.37 180.96 180.61 180.31 180.06 179.83 179.63 179.45 179.29 179.14 179.01
we obtain the numerical results for the optimal value 2. Balachandran, K.R. and H. Tijms, 1975. On the
D* and the corresponding minimum expected cost F(D) D-policy for the M/G/1 queue. Manage. Sci.,
shown in Table 11-14. The interpretations of the results 21: 1073-1076.
in Table 11-14 are the same as those in Table 3-6. 3. Gakis, K.G., HK. Rhee and B.D. Sivazlian, 1995.
Distributions and first moments of the busy and
CONCLUSION idle periods in controllable M/G/1 queueing
models with simple and dyadic policies. Stochastic
In this study we have developed analytic steady- Anal. Applic., 13: 47-81.
state results for the M/G/1 queueing system with server 4. Li, J. and S.C. Niu, 1992. The waiting-time
breakdowns operating under the D-policy. More distribution for the GI/G/1 queue under the D-
especially, we approximated the first two moments of policy. Probab. Eng. Inform. Sci., 6: 287-308.
Rp as well as the renewal quantities My(D) and 5. Sivazlian, B.D., 1979. Approximate optimal
b o . . R .
J‘ M, (y)dy . It is important to mention that the solution for a D-policy in an M/G/1 queueing
0 . ) ) ) system. AIIE Trans., 11: 341-343.
probability that the server is busy is p. We derive the ¢ Tijms, H.C., 1986. Stochastic Modeling and
optimum value of the control parameter D so as to Analysis: A Computational Approach. John Wiley
minimize t.he total expfected' cost fu'nctlon per customer and Sons, New York.
per unit time. Numerical illustrations and sensitivity 7 Wang, K.H. and J.C. Ke, 2002. Control policies

analysis are provided for three different service time
distributions,  exponential, 3-stage Erlang and
deterministic.
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